流 形

徐森林 韦春华

JUL/70/13

高等教育出版社
内容提要

本书前三章介绍了微分流形、向量丛、切丛、张量丛、外微分形式和单位分解等现代数学的一些重要概念，并证明了 Stokes 定理以及一些其它的重要定理。第四章介绍了流形上 Riemann 度量的存在性定理和 Riemann 联络的存在唯一性定理。研究了 Riemann 正则子流形的第 I、II 基本形式和证明了著名的 Gauss 定理。

本书可作为理科大学数学系和物理系有关近代科学研究的高年级大学生和研究生的选修课教材和自学参考书。阅读全书可使读者具有良好的近代数学基础和抽象思维的能力。

流形

徐春林 薛春华

清华大学出版社出版
新华书店总店、北京科技发行所发行
河北省香河县印刷厂印装

开本 850×1168 1/32 印张 12 字数 290 000
1991 年 6 月第 1 版 1991 年 6 月第 1 次印刷
印数 0 001～1 420
ISBN7-04-003040-3/O·947
定价 5.40 元
序 言

近代科学技术的飞速发展，使得科学家，特别是数学家和物理学家急需熟悉和掌握微分流形、向量丛、向量场、张量场、外微分形式、正则值、临界值、Brouwer 度、切向量场的指数、Riemann 度量、线性联络、Riemann 联络等近代数学的基本概念，急需通晓 Stokes 定理、Sard 定理、Poincaré-Hopf 指数定理、Riemann 度量的存在性定理和 Riemann 联络的存在唯一性等定理。这些概念和定理已成为科学家在研究和国际学术交流中不可缺少的数学语言和工具，它的重要性已愈来愈为人们所理解并感到其紧迫性。但是，目前国内绝大部分的大学生和研究生对这些内容了解极少，甚至一无所知。而又要找到深入浅出的、系统的，合适的外文参考书。本书就是为使他们能尽快从数学分析、线性代数、点集拓扑的基础上达到具有近代数学知识的较高水平而架设的桥梁。

本书在介绍微分流形的同时，还突出使用了纤维丛、向量丛的数学术语，使读者能站在更高的观点上理解近代数学的知识。全文反复和交替使用近代数学观点（不变观点或映射观点）和古典观点（坐标观点），可使读者既能理解以前的知识和方法又能熟悉近代数学语言。相信读者在今后的学习和研究中，运用这些内容和方法会给他们带来巨大的益处。书中精选了大量的、有趣的和具有一定难度的实例，它们能帮助读者更好地理解抽象的数学概念，增强分析思考问题的能力。

完成本书的构思和写作受到导师、著名数学家吴文俊教授的指导和帮助密切相关的。在吴先生即将到达70寿辰之际，作者完成此书以表达学生对老师的衷心感激。还应特别指出的是，吉
林大学数学系的江浩坚教授热情鼓励作者完成此书，并面授许多非常宝贵的意见和建议，在此向他表示衷心的感激。科大数系
81级优秀学生周坚为书中一些重要概念的叙述，为定理和定理推
例题的证明提供了许多深刻的见解。科大研究生杨和李和陈
广华阅读了全书并提出了宝贵的意见，作者对他们也表示谢意。

感谢国家自然科学基金会，意大利ICTP 和 TWAS为完成本
书提供的有效帮助和资助。

作者 徐森林 薛春华
目 录

序言 ... 1
第一章 微分流形 ... 1
 §1 微分流形 .. 1
 §2 C^∞映射 .. 21
 §3 单位分解 .. 36
第二章 向量丛和切丛 .. 48
 §1 Lie 群 ... 48
 §2 纤维丛和向量丛 ... 61
 §3 切丛 ... 83
 §4 C^∞ 切向量场和积分曲线 .. 103
第三章 外微分形式和 Stokes 定理 .. 128
 §1 张量丛和 C^∞ 张量场 .. 128
 §2 外微分形式和外微分 .. 149
 §3 C^∞ 丛的定向和 Stokes 定理 .. 189
第四章 Sard 定理，Brouwer 度和 Poincaré-
 Hopf 指数定理 ... 203
 §1 Sard 定理 .. 203
 §2 Brouwer 度 ... 211
 §3 C^∞ 切向量场的指数和 Poincaré-Hopf 指数定理 221
第五章 向量丛上的 Riemann 度量和线性联络 254
 §1 向量丛上的 Riemann 度量 ... 254
 §2 向量丛上的线性联络 ... 273
 §3 Levi-Civita 联络 ... 292
 §4 Riemann 正则子流形的 Riemann 联络 323
 §5 Lie 导数 τ_x, 散度 div 和 Laplace 算子 Δ 338
 §6 活动标架 ... 354
参考文献 .. 368
索引 ... 371
第一章 微分流形

在研究 Euclid 空间中大量的光滑曲线、曲面的基础上，本章 §1 引进了局部坐标和微分流形的概念。由于局部坐标的引入，使我们可以利用数学分析中微分学的知识，并在 §2 介绍了微分流形之间映射的可微性和嵌入、嵌人、微分同胚等重要概念。§3 中证明了一个紧致的 n 维微分流形可以嵌入（安装）到 Euclid 空间 R^N 中作为它的正则子流形，而 Whitney 嵌入定理指出，一个紧致的 n 维微分流形可以嵌入到 R^{2n+1} 中作为它的正则子流形。在 §3 中还介绍了单位分解，并证明了紧致 n 维微分流形上单位分解的存在性定理。它在第三章定义流形上的积分，证明 Stokes 定理和第五章证明向量丛上的 Riemann 度量存在性定理等起着极其重要的作用。

§1 微分流形

设 R 为实数域，N 为自然数集，$n \in N$，n 维 Euclid 空间

$$R^n = \left\{ x = (x^1, \cdots, x^n) \mid x^i \in R, 1 \leq i \leq n \right\},$$

其中 x^i 为点 x 的第 i 个坐标，如果 $x, y \in R^n$，我们用 $\langle x, y \rangle = \sum_{i=1}^{n} x^i y^i$

和 $\rho(x, y) = \sqrt{\sum_{i=1}^{n} (x^i - y^i)^2}$ 分别表示 x, y 的内积和距离，而

$$\| x \| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} (x^i)^2}$$

表示 x 的模。

设 $U \subset R^n$ 为开集，如果函数 $f: U \rightarrow R$ 连续，称 f 是 C^0 类的；如果 f 有一阶连续偏导数，则称 f 是 C^1 类的 ($n \in N$)；如果 f 有任意阶连续偏导数，则称 f 是 C^∞ 类的；如果 f 是实解析函数 (f 在 U
的每一点的某开邻域里可展开成 n 元收敛的幂级数)，则称 f 是 C^n 类的。

设 $f=(f_1, \cdots, f_m):U \to \mathbb{R}^n$ 为映射，如果 f_1, \cdots, f_m 都是 C^r 类的，则称映射 f 是 C^r 类的，其中 $r \in \{0, 1, 2, \cdots, \infty, \omega\}$。记 $C^r(U, \mathbb{R}^n) = \{f | f:U \to \mathbb{R}^n \text{ 是 } C^r \text{ 的}\}$，并规定 $0 < 1 < 2 < 3 < \cdots < \infty < \omega$。

众所周知，\mathbb{R}^n 中有整体的直角坐标。设 p 点的直角坐标为 $x^i = x^i(p), i = 1, \cdots, n$，则 $p \mapsto p_0 \mapsto x^1(p) \mapsto x^n(p_0), i = 1, \cdots, n$。那么单位球面 $S^n = \{x = (x^1, \cdots, x^{n+1}) | \sum_{i=1}^{n+1} (x^i)^2 = 1\} \subset \mathbb{R}^{n+1}$ 是否也有整体坐标呢？换句话说，是否存在一个同胚 $\varphi:S^n \to \varphi(S^n) \subset \mathbb{R}^n$，使得 $x^i(p), i = 1, \cdots, n$ 作为 p 点的坐标，利用 Brouwer 区域不变性定理，即设 $U \subset \mathbb{R}^n$ 为开集，$f:U \to f(U) \subset \mathbb{R}^n$ 为同胚映射，则 $f(U)$ 也为 \mathbb{R}^n 的开集，可以推出同胚 φ 是存在的。(反证) 假设 $\varphi:S^n \to \varphi(S^n) \subset \mathbb{R}^n$ 为同胚，由 S^n 的每一点 p 有一开邻域 V_p 同胚于 \mathbb{R}^n 中的一个开集和 Brouwer 区域不变性定理，$\varphi(V_p) \subset \varphi(S^n)$ 为 \mathbb{R}^n 中的开集，于是 $\varphi(S^n)$ 为 \mathbb{R}^n 中的开集。另一方面，因紧致集 S^n 的连续像 $\varphi(S^n)$ 是紧致集，故为闭集。又因 \mathbb{R}^n 连通，所以 $\varphi(S^n) = \mathbb{R}^n$。从 \mathbb{R}^n 非紧致可知 $\varphi(S^n)$ 也非紧致，这与上述 $\varphi(S^n)$ 紧致相矛盾。

因此，我们只能降低要求，看能否使 S^n 的每一点有一个开邻域与 \mathbb{R}^n 中的某个开集同胚(局部欧)。例如，从 $U_1 = S^n - \{(0, \cdots, 0, -1)\}$ 到 $\mathbb{R}^n = \{(x^1, \cdots, x^n, 0) | x^i \in \mathbb{R}\} \subset \mathbb{R}^{n+1}$ 作南极投影 $\varphi_1:U_1 \to \mathbb{R}^n$，使 $\varphi_1(p)$ 为 p 和南极 $(0, \cdots, 0, 1)$ 连线与 \mathbb{R}^n 的交点。类似地，从 $U_2 = S^n - \{(0, \cdots, 0, 1)\}$ 到 \mathbb{R}^n 作北极投影 $\varphi_2:U_2 \to \mathbb{R}^n$，使 $\varphi_2(p)$ 为 p 和北极 $(0, \cdots, 0, 1)$ 连线与 \mathbb{R}^n 的交点。于是，S^n 是由两个局部欧的开集粘起来的(见 8 页图 2)。

从上面这具体例子，就产生了拓扑流形这个近代数学中极其
重要和基本的概念。

定义 1 设 M 为 T_2（Hausdorff）空间，如果对任何 $p \in M$，都存在 p 在 M 中的邻域 U 和同胚 $\varphi : U \to \varphi(U)$，其中 $\varphi(U) \subset \mathbb{R}^n$ 为开集（局部欧），则称 M 为 n 维拓扑流形或 C^0 流形。

(U, φ) 称为局部坐标系（坐标卡，坐标图），U 称为局部坐标域，φ 称为局部坐标映射，$x^i(p) = (\varphi(p))^i, 1 \leq i \leq n$ 为 $p \in U$ 的局部坐标，简记为 $\{x^i\}$，有时也称它为局部坐标系。如果记 \mathcal{D}^0 为局部坐标系的全体，那末，拓扑流形就是由 \mathcal{D}^0 中的坐标图粘成的图册。如果 $p \in U$，则称 (U, φ) 为 p 的局部坐标系。

设 $(U_\alpha, \varphi_\alpha), (U_\beta, \varphi_\beta) \in \mathcal{D}^0, U_\alpha \cap U_\beta \neq \emptyset$，称 $\varphi_\alpha \circ \varphi_\beta^{-1}$ 和 $\varphi_\beta \circ \varphi_\alpha^{-1}$ 为坐标变换。对实函数 $f : M \to \mathbb{R}$，如果 $f \circ \varphi_\alpha^{-1} : \varphi_\alpha(U_\alpha) \to \mathbb{R}$ 是 C^r 类的 $(r \geq 1)$，$f \circ \varphi_\beta^{-1} : \varphi_\beta(U_\beta \cap U_\alpha) \to \mathbb{R}$ 不一定是 C^r 类的。但是，当 $\varphi_\alpha \circ \varphi_\beta^{-1}$ 是 C^r 类时，$f \circ \varphi_\beta^{-1} = (f \circ \varphi_\alpha^{-1}) \circ (\varphi_\alpha \circ \varphi_\beta^{-1})$ 也是 C^r 类的。由此引出我们定义下面 C^r 微分流形的概念。

定义 2 设 (M, \mathcal{D}^0) 为 n 维拓扑流形，Γ 是指标集，如果 $\mathcal{D} = \{(U_\alpha, \varphi_\alpha) | \alpha \in \Gamma\} \subset \mathcal{D}^0$ 满足：

(1) $\bigcup_{\alpha \in \Gamma} U_\alpha = M$；

(2) 相容性：如果 $(U_\alpha, \varphi_\alpha), (U_\beta, \varphi_\beta) \in \mathcal{D}$，$U_\alpha \cap U_\beta \neq \emptyset$，则 $\varphi_\beta \circ \varphi_\alpha^{-1} : \varphi_\alpha(U_\alpha \cap U_\beta) \to \mathbb{R}$ 是 C^r 类的，$r \in \{1, 2, \ldots, \infty, \omega\}$ (由对称性，当然 $\varphi_\beta \circ \varphi_\alpha^{-1}$ 也是 C^r 类的)，即

$$
\begin{align*}
\{\varphi_\alpha^{-1} \circ (x^1, \ldots, x^n) \\
\vdots \\
\varphi_\beta^{-1} \circ (x^1, \ldots, x^n)
\end{align*}
$$

是 C^r 类的；

(3) 最大性：\mathcal{D} 关于 (2) 是最大的，也就是说，如果 $(U, \varphi) \in \mathcal{D}^0$，且它与任何 $(U_\alpha, \varphi_\alpha) \in \mathcal{D}$ 是 C^r 相容的，则 $(U, \varphi) \in \mathcal{D}$。它等价于，如
果 \((U, \varphi) \in \mathcal{O}\)，则 \((U, \varphi)\) 必与某个 \((U_a, \varphi_a) \in \mathcal{O}\) 不是 \(C^r\) 相容的。

我们称 \(\mathcal{O}\) 为 \(M\) 上的 \(C^r\) 微分构造或 \(C^r\) 构造，\((M, \mathcal{O})\) 为 \(M\) 上的 \(C^r\) 微分流形或 \(C^r\) 流形。当 \(r = \omega\) 时，称 \((M, \mathcal{O})\) 为实解析流形（图 1）。

类似 \(\mathcal{O}\) 中其他光滑 \((C^r, r \geq 1)\) 构成的图册。

如果 \((U_a, \varphi_a), \{z_i\} \in \mathcal{O}\) 和 \((U_b, \varphi_b), \{y_i\} \in \mathcal{O}\) 为 \(p\) 的两个局部坐标系，\(U_a \cap U_b \approx \mathcal{O}\)，则由 \(Jacob\) 行列式的等式

\[
1 = \frac{\partial (y_1, \ldots, y^n)}{\partial (y_1, \ldots, y^n)} \cdot \frac{\partial (x_1, \ldots, x^n)}{\partial (x_1, \ldots, x^n)} = \frac{\partial (x_1, \ldots, x^n)}{\partial (y_1, \ldots, y^n)} \cdot \frac{\partial (y_1, \ldots, y^n)}{\partial (x_1, \ldots, x^n)}
\]

可知，在 \(\varphi_a(U_a \cap U_b)\) 中，

\[
\frac{\partial (y_1, \ldots, y^n)}{\partial (x_1, \ldots, x^n)} \neq 0.
\]

一般说来，要得到 \(\mathcal{O}\) 中所有的图册是困难的，下面定理指出，只要得到满足定义 2 中 (1) 和 (2) 的 \(\mathcal{O}\)’ 就可唯一确定 \(\mathcal{O}\) 了。我们称 \(\mathcal{O}\)’ 为微分构造 \(\mathcal{O}\) 的一个基。这就给出了具体构造微分流形的方法。它与线性代数中由基生成同态空间以及点集拓扑中由拓扑基生成拓扑的想法是完全类似的。
设 \((U, \varphi) \in \mathcal{D}_0\)，如果对任何 \((V, \psi) \in \mathcal{D} \subset \mathcal{D}_0\)，\(\varphi \circ \psi^{-1}\) 和 \(\psi \circ \varphi^{-1}\) 是 \(C^r\) 类的，则称 \((U, \varphi)\) 与 \(\mathcal{D}'\) 是 \(C^r\) 相容的。

定理 1 1° 设 \(\mathcal{D}' \subset \mathcal{D}_0\) 满足定义 2 中条件 (1) 和 (2)，则它唯一确定了一个 \(C^r\) 微分构造 \((r \geq 1) \mathcal{D} = \{(U, \varphi) \in \mathcal{D}_0 | (U, \varphi)\) 与 \(\mathcal{D}'\) 相容\)；

2° 设 \(\mathcal{D}_1, \mathcal{D}_2 \subset \mathcal{D}_0\) 满足定义 2 中条件 (1) 和 (2) 且彼此的元素 \(C^r\) 相容，则它们所确定的 \(C^r\) 微分构造是相同的，即 \(\mathcal{D}_1 = \mathcal{D}_2\)。

证明 1° 由条件 (2) 和 \(\mathcal{D}\) 的定义，\(\mathcal{D}' \subset \mathcal{D}\)，故 \(\mathcal{D}\) 满足条件 (1)。设 \((U, \varphi), (V, \psi) \in \mathcal{D}\)，若 \(p \in U \cap V\)，则存在 \(\varphi\) 的局部坐标系 \((W, \theta) \in \mathcal{D}'\) 使在 \(U \cap V \cap W\) 中，\(\varphi \circ \psi^{-1} = (\psi \circ \theta^{-1}) \circ (\theta \circ \varphi^{-1})\) 是 \(C^r\) 类的，因此，\(\mathcal{D}\) 满足条件 (2)。设 \((U, \varphi)\) 与 \(\mathcal{D} C^r\) 相容，由 \(\mathcal{D}' \subset \mathcal{D}\) 可知 \((U, \varphi)\) 与 \(\mathcal{D} C^r\) 相容，故 \((U, \varphi) \in \mathcal{D}\)。因此，\(\mathcal{D}\) 满足条件 (3)。这就证明了 \(\mathcal{D}\) 为 \(C^r\) 微分构造。

2° 设 \((U, \varphi) \in \mathcal{D}_1\)，对任何 \((V, \psi) \in \mathcal{D}_1\)，若 \(p \in U \cap V\)，则存在 \(\varphi\) 的局部坐标系 \((W, \theta) \in \mathcal{D}_1\) 使在 \(U \cap V \cap W\) 中，\(\varphi \circ \psi^{-1} = (\psi \circ \theta^{-1}) \circ (\theta \circ \varphi^{-1})\) 和 \(\varphi \circ \psi^{-1} = (\psi \circ \theta^{-1}) \circ (\theta \circ \psi^{-1})\) 是 \(C^r\) 类的，所以 \((U, \varphi) \in \mathcal{D}_2\)。\(\mathcal{D}_1 \subset \mathcal{D}_2\)，同理，\(\mathcal{D}_2 \subset \mathcal{D}_1\)。这就证明了 \(\mathcal{D}_1 = \mathcal{D}_2\)。

引理 1 设 \(k, r \in \{0, 1, 2, \ldots, \infty, \omega\}\)，\(k < r\)，则存在 \(f: \mathbb{R} \to \mathbb{R}\)，使 \(f\) 是 \(C^k\) 类但不是 \(C^r\) 类的。

证明 如果 \(0 \leq k < \infty\)，则

\[
f(x) = \begin{cases} x^{2k+1} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}
\]

为所求函数。如果 \(k = \infty, r = \omega\)，则

\[
f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x > 0, \\ 0 & \text{if } x \leq 0, \end{cases}
\]

为所求函数。事实上，由归纳法和 L'Hôpital (洛比塔) 法则可
知，
\[
f^{(n)}(x) = \left\{ \begin{array}{ll}
p_n\left(\frac{1}{2}\right)e^{-\frac{1}{2x}}, & x > 0, \\
0, & x \leq 0,
\end{array} \right.
\]
其中 \(p_n(u)\) 为 \(u\) 的多项式，这就证明了 \(f\) 是 \(C^\infty\)类的。但它不是 \(C^\infty\)类的。因为，若 \(f\) 是 \(C^\infty\)类的，则存在 \(\delta > 0\)，使
\[
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0, \quad x \in (-\delta, \delta),
\]
这与 \(f(x) = e^{-\frac{1}{x}} > 0, \quad x \in (0, \delta)\) 相矛盾。进一步，我们可以构造一个处处 \(C^\infty\)但无处解析的函数。为此，令
\[
\varphi(x) = \left\{ \begin{array}{ll}
e^{-\frac{1}{2x}}, & x > 0, \\
0, & x \leq 0,
\end{array} \right.
\]
\(\varphi_n(x) = \varphi(x)\varphi\left(\frac{1}{2^n} - x\right), \quad n \in \mathbb{N}.
\]
显然，在 \(x = 0, \frac{1}{2^n}\) 处，\(\varphi_n(x)\) 的各阶导数为 0，以 \(1/2^n\) 为周期将 \(\varphi_n\left|_{[0, \frac{1}{2^n}]}
ight.\) 延拓到整个 \(\mathbb{R}\) 上得 \(\varphi_n(x)\)，易见 \(\varphi_n(x)\) 为 \(C^\infty\)函数，且当 \(x \neq \frac{k}{2^n}\)（整数集 \(\mathbb{Z} \ni k\)）时解析。令
\[
0 < a_0 < \frac{1}{2^n} \left(\sup_{x \in \mathbb{R}} |\varphi_n(x)|, |\varphi'_n(x)|, \ldots, |\varphi^{(n)}_n(x)|\right)^{-1}
\]
和
\[
f(x) = \sum_{n=0}^{\infty} a_n \varphi_n(x).
\]
由 \(a_n\) 的取法易知 \(f\) 是 \(C^\infty\)类的，但 \(f(x)\) 在 \(x = \frac{k}{2^m}\)（\(k \in \mathbb{Z}, m \in \mathbb{N}\)）处不解析。事实上，不妨设 \(k\) 为奇数（否则约分），则 \(\psi_l(x)\) 在 \(\frac{k}{2^m}\) 处解析 \((l = 0, 1, \ldots, m - 1)\)。但当 \(n \geq m\) 时，
\[
\psi^{(s)}_n\left(\frac{k}{2^n}\right) = \psi^{(s)}_n\left(\frac{k}{2^m}\right) = 0, \quad s = 0, 1, 2, \ldots,
\]
故
\[
\sum_{n=0}^{\infty} a_n \varphi_n(x)
\]
在 \(\frac{k}{2^m}\) 处各阶导数为 0，但在 \(\frac{k}{2^m}\) 附近非恒为 0。
0，故不解析。这就证明了$ f(x) = \sum_{i=0}^{m-1} a_i \phi_i(x) + \sum_{n=m}^{\infty} a_n \phi_n(x) $在$ \frac{k}{2m} \in \mathbb{Z} $不解析。但$ \left\{ \frac{k}{2m} \mid k \in \mathbb{Z}, m \in \mathbb{N} \right\} $在$ \mathbb{R} $上稠密，故 $ f(x) $无处解析。

定理 2 设 $ k, r \in \{0, 1, 2, \ldots, \infty, \omega \} $，$ k < r $，$ \mathcal{O}' \subset \mathcal{O} $ 满足定义 2 中的条件 (1) 和 (2)，由 $ \mathcal{O}' $ 唯一确定的 $ C^r $ 微分构造 $ \mathcal{O}' = \{ (U, \varphi) \in \mathcal{O} \mid (U, \varphi) $ 与 $ \mathcal{O}' C^r $ 相容 $ \} $。如果将 $ \mathcal{O}' $ 的 $ C^r $ 相容
自然视作 $ C^k $ 相容，而由 $ \mathcal{O}' $ 唯一确定的 $ C^k $ 构造 $ \mathcal{O}' = \{ (U, \varphi) \in \mathcal{O} \mid (U, \varphi) $ 与 $ \mathcal{O}' C^k $ 相容 $ \} $。则 $ \mathcal{O}' \subset \mathcal{O} $。

证明 因 $ k < r $，故 $(U, \varphi) $ 与 $ \mathcal{O}' C^r $ 相容也是 $ C^k $ 相容，这就推出了 $ \mathcal{O}' \subset \mathcal{O} $。

再证 $ \mathcal{O}' \equiv \mathcal{O} $。设 $ f $ 为引理 1 中的 $ f $，如果 $ k = 0 $，令 $ g(x) = x + f(x) $，则 $ g'(0) = 1 + f'(0) = 1 $。如果 $ k = 0 $，令 $ g(x) = ax $。于是，存在 $ \delta > 0 $，
使 $ g $ 在 $ (-\delta, \delta) $ 内严格递增。设 $ (U, \varphi) \in \mathcal{O} $，$ p \in U $，令 $ \theta(x) = x - \varphi(p) $ 为平移；$ (-\delta, \delta)^n = \{ x = (x^1, \ldots, x^n) \in \mathbb{R}^n \mid |x^i| < \delta \} $，$ \eta: (-\delta, \delta)^n \to \mathbb{R}^n $，$ \eta(x) = (g(x^1), x^2, \ldots, x^n) $。则存在 $ \mathcal{O} $ 的开邻域 $ V \subset U $，且 $ 0 \in \theta \circ \varphi(V) \subset (-\delta, \delta)^n $。于是，

$ (\eta \circ \theta \circ \varphi) \circ \varphi^{-1} = \eta \circ \theta $ 是 $ C^k $ 类但不是 $ C^r $ 类的，这就证明了 $ (V, \eta \circ \theta \circ \varphi) $ 和 $ (U, \varphi) $ 是 $ C^k $ 相容但不是 $ C^r $ 相容的，即 $ (V, \eta \circ \theta \circ \varphi) \subset \mathcal{O} $ 但 $ (V, \eta \circ \theta \circ \varphi) \not\subset \mathcal{O}' $。不过这个定理可知，当 $ k < r $ 时，如果加进与 $ C^r $ 流形 $ (M, \mathcal{O}') C^k $ 相容的所有图像，它就可成为一个 $ C^k $ 流形 $ (M, \mathcal{O}^k) $，此时，$ \mathcal{O}^k $ 的图像确实比 $ \mathcal{O}' $ 的图像严格增多了。以后，当 $ k < r $ 时，凡是 $ C^r $ 流形，总是按上述理解，它也是一个 $ C^k $ 流形。

有了上述定理，我们就可构造各种各样的流形了。

例 1 设 $ M $ 为 $ \mathbb{R}^n $ 中的开集，$ \mathcal{O}' = \{ (M, Id_M) \mid Id_M: M \to M, Id_M(p) = p, p \in M \} $，则由 $ \mathcal{O}' $ 唯一确定了一个 $ C^r $ 流形 (由定理 2，它
也唯一确定了一个 C^r 流形，$r \in \{0, 1, 2, \ldots, \infty\}$，但当 r 增大时，图片严格减少，它就是通常所指的流形。称 Id_M 为 M 上的恒同映射。

例 2 设 (M, \mathcal{O}_M) 为 n 维 C^r 流形，$U \subseteq M$ 为开集，$\mathcal{O}_U = \{(U_\alpha, q_\alpha) \mid \alpha \in I\}$，令

$$
\mathcal{O}_U = \{(U \cap U_\alpha, \varphi_\alpha | U \cap U_\alpha) \mid U \cap U_\alpha \neq \emptyset, \alpha \in I\}.
$$

易证 (U, \mathcal{O}_U) 也是一个 n 维 C^r 流形，称为 (M, \mathcal{O}_M) 的 C^r 开子流形。

例 3 S^n 为 n 维 C^∞ 流形。

设 $p \in S^n \subset \mathbb{R}^{n+1}$，它的直角坐标为 (x^1, \ldots, x^{n+1})。如果将

$$
\mathbb{R}^n \setminus \{(x^1, \ldots, x^n, 0) \mid x^i \in \mathbb{R}, 1 \leq i \leq n\} \subset \mathbb{R}^{n+1} \text{ 与 } \{(x^1, \ldots, x^n) \mid x^i \in \mathbb{R}, 1 \leq i \leq n\}
$$

视作相同，则从图 2 可以算出

$$
\varphi_1 : U_1 \longrightarrow \mathbb{R}^n,
$$

$$(u^1, \ldots, u^n) = \varphi_1 (x^1, \ldots, x^{n+1}) = \left(\frac{x^1}{1 + x^{n+1}}, \ldots, \frac{x^n}{1 + x^{n+1}} \right),$$

$$(x^1, \ldots, x^{n-1}) = \varphi_1^{-1} (u^1, \ldots, u^n) = \left(\frac{2u^1}{1 + \sum_{i=1}^n (u^i)^2}, \ldots, \frac{2u^n}{1 + \sum_{i=1}^n (u^i)^2} , \frac{1 - \sum_{i=1}^n (u^i)^2}{1 + \sum_{i=1}^n (u^i)^2} \right).$$

图 2

$$
\varphi_1 : U_1 \longrightarrow \mathbb{R}^n,
$$

$$(u^1, \ldots, u^n) = \varphi_1 (x^1, \ldots, x^{n+1}) = \left(\frac{x^1}{1 + x^{n+1}}, \ldots, \frac{x^n}{1 + x^{n+1}} \right),$$

$$(x^1, \ldots, x^{n-1}) = \varphi_1^{-1} (u^1, \ldots, u^n) = \left(\frac{2u^1}{1 + \sum_{i=1}^n (u^i)^2}, \ldots, \frac{2u^n}{1 + \sum_{i=1}^n (u^i)^2} , \frac{1 - \sum_{i=1}^n (u^i)^2}{1 + \sum_{i=1}^n (u^i)^2} \right).$$

图 2
\[\varphi_2 : U_2 \rightarrow \mathbb{R}^n, \]

\[(\vec{u}', \cdots, \vec{u}^n) : \varphi_2 (x^1, \cdots, x^{n+1}) = \left(\frac{x^1}{1 - x^{n+1}}, \cdots, \frac{x^n}{1 - x^{n+1}} \right), \]

\[(x^1, \cdots, x^{n-1}) = \varphi^{-1}_2 (\vec{u}', \cdots, \vec{u}^n) = \left(\frac{-2\vec{u}^1}{1 + \sum_{i-1}^{n} (\vec{u}^i)^2}, \cdots, \frac{-2\vec{u}^n}{1 + \sum_{i-1}^{n} (\vec{u}^i)^2}, \frac{\sum_{i=1}^{n} (\vec{u}^i)^2 - 1}{1 + \sum_{i-1}^{n} (\vec{u}^i)^2} \right), \]

且

\[(\vec{u}', \cdots, \vec{u}^n) = \left(\frac{u^1}{\sum_{i=1}^{n} (u^i)^2}, \cdots, \frac{u^n}{\sum_{i=1}^{n} (u^i)^2} \right), \]

\[(x^1, \cdots, x^n) = \left(\frac{-\vec{u}^1}{\sum_{i-1}^{n} (\vec{u}^i)^2}, \cdots, \frac{-\vec{u}^n}{\sum_{i-1}^{n} (\vec{u}^i)^2} \right). \]

于是，\(\mathcal{D}' = \{(U_1, \varphi_1), (U_2, \varphi_2)\} \)满足定义1中条件(1)：\(\mathcal{S}' = U_1 \cup U_2 \)

和(2)：\(\mathcal{D}' \)中元素是\(C^\infty \)相容的(\(\{u^i\} \)和\(\{\vec{u}^i\} \)彼此可表示为实有理函数，由于实变量的有理函数自然可延拓为复变量的有理函数。再由求导的加减乘除法则，后者关于复变量是可导的，故解析，于是它在每一点的一个开区域内可展开成收敛的幂级数。如果再限制到实变量，它在每一实点的一个开区域可展开成收敛的幂级数。因此，实有理函数是实解析的。应用[1. M. 非霍金哥尔茨, 145页]的方法也可证明上述结论。）。

根据定理1，\(\mathcal{D}' \)确定了\(\mathcal{S}' \)上的一个\(C^\infty \)微分构造 \(\mathcal{D}_1 = \{(U, \varphi) \mid (U, \varphi) \)与\(\mathcal{D}' \)相容\)，而\(\mathcal{D}_1 \)是\(C^\infty \)微分构造 \(\mathcal{D}_1 \)的一个基。

通过计算得到 Jacobi 行列式为

\[J_{\varphi_2, \varphi_1} = -\frac{1}{\sum_{i=1}^{n} (u^i)^2}. \]

如果将局部坐标\(\{\vec{u}', \vec{u}^2, \vec{u}^3, \cdots, \vec{u}^n\} \)换成\(\{\vec{u}', \vec{u}^1, \vec{u}^2, \cdots, \vec{u}^n\} \)，则相应
的 Jacobi 行列式就大于 0。

下面我们换一种方式来给出 S^n 的 C^∞ 微分构造的另一个基。为此，对任何 $i = 1, \cdots, n+1$，令

$$U_i^+ = \{ (x^1, \cdots, x^{n+1}) \in S^n | x^i > 0 \},$$

$$U_i^- = \{ (x^1, \cdots, x^{n+1}) \in S^n | x^i < 0 \},$$

$$\varphi_i^+: U_i^+ \rightarrow \varphi_i^+(U_i^+) = \{ (x^1, \cdots, x^i', \cdots, x^{n+1}) | \sum_{j \neq i}^n (x^j)^2 < 1 \},$$

$$\varphi_i^-(x^1, \cdots, x^{n+1}) = (x^1, \cdots, x^i, \cdots, x^{n+1}),$$

称 $\{x^1, \cdots, x^i', \cdots, x^{n+1}\}$ 为 U_i^+ 中的局部坐标，其中 x^i 表示删去 x^i。

容易看出，$\mathcal{D}_2 = \{ (U_i^+ , \varphi_i^+) | i = 1, \cdots, n+1 \}$ 满足定义 1 中的 (1): $S^n = \bigcup_{i=1}^{n+1} (U_i^+ \cup U_i^-)$ 和 (2): \mathcal{D}_2 中的元素是 C^∞ 相容的，例如，

$$\varphi_i^+ \circ (\varphi_i^-)^{-1}(x^1, \cdots, x^{n+1}) = \varphi_i^+(x^1, \cdots, x^{n+1}) = (x^1, x^2, \cdots, x^{n+1}),$$

$$= \left(-\sqrt{1 - \sum_{i=2}^{n+1} (x^i)^2}, x^2, \cdots, x^{n+1} \right)$$

是 C^∞ 类的（利用 $\sqrt{1 - u}$ 在 0 的开邻域 $(-1, 1)$ 中可展开成收敛的幂级数和 [I. M. 非赫尔金科尔茨, p438] 证明或直接用 $\varepsilon-N$ 方法证明）根据定理 1，\mathcal{D}_2 确定了 S^n 上的一个 C^∞ 微分构造 $\mathcal{D}_2 = \{ (U, \varphi) | (U, \varphi) \text{ 与 } \mathcal{D}_2 \text{ 相容} \}$，而 \mathcal{D}_2 是 C^∞ 微分构造 \mathcal{D}_2 的一个基。通过计算得到 Jacobi 行列式为

$$J_{\varphi_i^+ \circ (\varphi_i^-)^{-1}} = (-1)^{i+1} \frac{x^i}{x^1}.\quad \text{如果取} (-1)^{i+1} \{x^1, \cdots, x^i, \cdots, x^{n+1}\} \quad \text{为} U_i^+ \text{ 的局部坐标，}$$

$$(-1)^{i+1} \{x^1, \cdots, x^i, \cdots, x^{n+1}\} \text{ 表示将坐标}$$

$$\{x^1, \cdots, x^i, \cdots, x^{n+1}\} \text{ 作} i + 1 \text{ 次对换，}$$

$$(-1)^{i} \{x^1, \cdots, x^i, \cdots, x^{n+1}\} \text{ 为} U_i^- \text{ 的局部坐标，则相应的 Jacobi 行列式就大于 0。}$$

因为 $\{x^1, \cdots, x^{n+1}\}$ 与 $\{u^1, \cdots, u^n\}$ (或 $\{\bar{u}^1, \cdots, \bar{u}^n\}$) 彼此可以表示出来，且 \mathcal{D}_1 与 \mathcal{D}_2 中的元素是 C^∞ 相容的，由定理 1 可知，$\mathcal{D}_1 = \mathcal{D}_2$。

应该指出的是，紧致集 S^n 不能与 R^n 中的开集同胚，所以 S^n
不是局部坐标邻域。

此外, 对于 S^2, 球面坐标系 $(U, \varphi) \in \Omega_1 = \Omega_2$, 它是局部坐标系
而不是整体坐标系, 其中
$$
\varphi^{-1}: (0, \pi) \times (0, 2\pi) \to U = \varphi^{-1}((0, \pi) \times (0, 2\pi)) \subset S^n,
$$
$$
\varphi^{-1}(\theta, \varphi) = (\sin \theta \cdot \cos \varphi, \sin \theta \cdot \sin \varphi, \cos \theta).
$$
对于 S^1, 令
$$
\psi_1: S^1 - \{e^{i\theta}\} \to (0, 2\pi) \subset \mathbb{R}^1,
$$
$$
\psi_1(e^{i\theta}) = \theta, \theta \in (0, 2\pi),
$$
$$
\psi_2: S^1 - \{e^{i\eta}\} \to (\pi, 3\pi) \subset \mathbb{R}^1,
$$
$$
\psi_2(e^{i\eta}) = \eta, \eta \in (\pi, 3\pi).
$$
显然，在 $S^1 - \{e^{i\theta}, e^{i\eta}\}$ 中，$e^{i\eta} = e^{i\theta} \Leftrightarrow \eta = \theta + 2k\pi, k \in (0, \pi)
$$
$$
\eta = \theta + 2k\pi \Rightarrow \frac{\eta \in (\pi, 3\pi)}{\theta \in (0, 2\pi)}.
$$
于是 η 是 θ 的 C^∞ 函数，θ 也是 η 的 C^∞ 函数。由定理 1, $\Omega_1 = \{(S^1 - \{e^{i\eta}\}, \psi_1), (S^1 - \{e^{i\theta}\}, \psi_2)\}$ 确定了一个 1 维 C^∞ 微分构造 Ω_2。
易见 $\Omega_3 = \Omega_2 = \Omega_1$. 同样值得注意的是，$\theta$ 是局部坐标系而不是整体坐标系。

例 4 n 维实射(投)影空间 $P^n(\mathbb{R})$。
设 $x = (x^1, \cdots, x^{n+1}), y = (y^1, \cdots, y^{n+1}) \in \mathbb{R}^{n+1} - \{0\}$. $x \sim y \Leftrightarrow x = \lambda y, \lambda \in \mathbb{R}, \lambda \neq 0, x \in \mathbb{R}^{n+1} - \{0\}$ 的等价类 $[x] = \{y \in \mathbb{R}^{n+1} - \{0\} | y \sim x\}$, 等价类的全体为
$$
P^n(\mathbb{R}) = (\mathbb{R}^{n+1} - \{0\}) / \sim = \{[x] | x \in \mathbb{R}^{n+1} - \{0\}\}.
$$
其中 $\pi: \mathbb{R}^{n+1} - \{0\} \to P^n(\mathbb{R}), \pi(x) = [x]$. 设 $\mathbb{R}^{n+1} - \{0\}$ 的拓扑为 τ, 易证 $\tau' = \{U | \pi^{-1}(U) \in \tau\}$ 为 $P^n(\mathbb{R})$ 上的一个拓扑, 于是 $(P^n(\mathbb{R}), \tau')$ 为 $(\mathbb{R}^{n+1} - \{0\}, \tau)$ 的商拓扑空间，称为 n 维实射影空间。下面我们证明每个 $P^n(\mathbb{R})$ 为 n 维 C^∞ 流形。对任何 $[x], [y] \in P^n(\mathbb{R}), [x] \approx [y]$, 存在含 $\pi^{-1}([x])$ 的开集 $[x]$ 的以原点为心的去心开锥体 V_x 和含
\(\pi^{-1}(\left[y \right]) \) 的以原点为心的去心开锥体 \(V_y \)，使得 \(V_x \cap V_y = \emptyset \)，因而 \(\pi(V_x) \) 和 \(\pi(V_y) \) 分别是含 \([x]\) 和 \([y]\) 的不相交的开集，故 (\(P^n(R) \)，
\(\tau' \)) 为 \(T^2 \) 空间。令
\[
U_k = \{ [x] \in P^n(R) \mid x = (x^1, \ldots, x^{n+1}), x^k = 0 \},
\]
\(
\varphi_k : U_k \to R^n,
\]
\(
\varphi_k([x]) = \left(\frac{x^1}{x^k}, \ldots, \frac{x^{k-1}}{x^k}, \frac{x^{k+1}}{x^k}, \ldots, \frac{x^{n+1}}{x^k} \right) = (x^{e_1}, \ldots, x^{e_{k-1}}, x^{e_{k+1}}, \ldots, x^{e_{n+1}})
\)

我们称 \((x^1, \ldots, x^{n+1})\) 为 \([x]\) 的齐次坐标，\((x^{e_1}, x^{e_{k-1}}, x^{e_{k+1}}, \ldots, x^{e_{n+1}})\) 为 \([x]\) 关于 \(U_k\) 的非齐次坐标。

显然，\(\bigcup_{k=1}^{n} U_k = P^n(R) \)，且当 \(U_k \cap U_l = \emptyset, k \neq l \) 时，
\[
\varphi_1 \circ \varphi_k^{-1} : \varphi_k(U_k \cap U_l) \to \varphi_1(U_l \cap U_k),
\]
\(\varphi_1 \circ \varphi_k^{-1}(x^{e_1}, \ldots, x^{e_{k-1}}, x^{e_{k+1}}, \ldots, x^{e_{n+1}}) = \varphi_1([x]) = (x^{e_1}, \ldots, x^{e_{k-1}}, x^{e_{k+1}}, \ldots, x^{e_{n+1}}) \)

其中
\[
\begin{cases}
 x^{e_k} = \frac{x^k}{x^{e_k}}, & k \neq l, k, \\
 x^{e_k} = \frac{x^k}{x^{e_k}} = 1, & k = l, k.
\end{cases}
\]

为有理函数，因而它是 \(C^\infty \) 函数。由定理 1 可知，\(\mathcal{O}' = \{(U_k, \varphi_k) \mid k=1, \ldots, n+1\} \) 确定了 \(P^n(R) \) 上的一个 \(C^\infty \) 微分构造 \(\mathcal{O} \)，使 \((P^n(R), \mathcal{O}) \) 成为 \(C^\infty \) 流形。

通过计算得到 Jacobi 行列式
\[
J_{\tau' \circ \varphi_k}^{-1} = \frac{\partial (x^{e_1}, \ldots, x^{e_{k-1}}, x^{e_{k+1}}, \ldots, x^{e_{n+1}})}{\partial (x^{e_1}, \ldots, x^{e_{k-1}}, x^{e_{k+1}}, \ldots, x^{e_{n+1}})}
\]
\[= (-1)^{k+1} \frac{1}{(x^{e_1})^{n+1}}.\]

当 \(n \) 为奇数时，\((x^{e_k})^{n+1} > 0 \)。如果 \(k \) 为奇数，相应的局部坐标不
如果 k 为偶数，相应的局部坐标只改变其中一个，即 ξ^k 变为 $-\xi^k$，而其余的不变。显然，局部坐标改变后的 Jacobi 行列式大于 0。当 n 为偶数时，由于 ξ^k 有正有负，故 $J_{\xi^k \xi^{-k}}$ 也有正有负。

我们再用另一观点来研究 $P^n(R)$. 设 $x = (x^1, \cdots, x^{n+1}), y = (y^1, \cdots, y^{n+1}) \in S^n, x = y \Leftrightarrow x = -y, [x] = \{x, -x\}, P^n(R) = S^n/\sim = \{[x] \mid x \in S^n\}$. 令

$$U_k = \{[x] \in P^n(R) \mid x^k = 0\},$$

$$\varphi_k: U_k \to \{[\xi] = (\xi^1, \cdots, \xi^n) \mid \sum_{j=1}^n (\xi^j)^2 = 1\},$$

$$\varphi_k([x]) = x^k \cdot [x^n]^{-1}(x^1, \cdots, x^{k-1}, x^{k+1}, \cdots, x^{n+1}) \equiv (\xi^1, \cdots, \xi^n) = \xi_k.$$

类似于例 3 可以证明 $\mathcal{O}_k = \{(U_k, \varphi_k) \mid k = 1, \cdots, n+1\}$ 满足定义 1 中条件(1) 和(2)，从而它确定了 $P^n(R)$ 上的一个 C^ω 微分构造。

例 5 n 维复解析流形。

如果定义 2 中，用 $C^n = \{z = (z^1, \cdots, z^n) \mid z^j \in C(复数域)\}$ 代替 R^n，复解析（函数在每一点的一个开邻域中可以展开成复的收敛幂级数）代替实解析，则称 (M, \mathcal{O}) 为 n 维复解析流形。

设 $(U_\alpha, \varphi_\alpha), \{z \}$ 和 $(U_\beta, \varphi_\beta), \{w \}$ 为局部坐标系，$U_\alpha \cap U_\beta \subseteq \mathcal{O}$，

$$\varphi_\alpha(z) = (z^1, \cdots, z^n) = z \in C^n, \varphi_\beta(w) = (w^1, \cdots, w^n) = w \in C^n, z^j = x^j + iy^j, w^j = u^j + iv^j, x^j, y^j, u^j, v^j \in R, j = 1, \cdots, n,$$ 其中 $i^2 = -1$。

于是，

$$u + iv = w = \varphi_\beta \circ \varphi_\alpha^{-1}(z) = f_{\alpha\beta}(x, y) + ig_{\alpha\beta}(x, y),$$

利用实和复幂级数的 Cauchy 收敛原理以及 $\max \{|a|, |b|\} \leq \sqrt{a^2 + b^2} = |a + ib|$ 可知 $(a, b \in R), u = f_{\alpha\beta}(x, y), v = g_{\alpha\beta}(x, y)$ 为解析的映射。如果将 $\{x^1, \cdots, x^n, y^1, \cdots, y^n\}$ 和 $\{u^1, \cdots, u^n, v^1, \cdots, v^n\}$ 分别视作 p 点的实局部坐标，则 (M, \mathcal{O}) 自然可视作 $2n$ 维实解析
流形。此外，由 Cauchy-Riemann 条件：
$$\frac{\partial u^i}{\partial x^j} = \frac{\partial v^i}{\partial y^j}, \frac{\partial u^i}{\partial y^j} = -\frac{\partial v^i}{\partial x^j}$$

我们得到 Jacobi 行列式为
$$\frac{\partial (u^1, \cdots, u^n, v^1, \cdots, v^n)}{\partial (x^1, \cdots, x^n, y^1, \cdots, y^n)}$$

$$= \det \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \det \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

$$= \det \begin{pmatrix} \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \end{pmatrix} \cdot \det \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

$$= \det \begin{pmatrix} \frac{\partial (u^1, \cdots, u^n)}{\partial (x^1, \cdots, x^n)} \cdot \det \begin{pmatrix} \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} \end{pmatrix} \cdot \det \left(\frac{\partial (u^1, \cdots, u^n)}{\partial (x^1, \cdots, x^n)} \right) \right)$$

$$= \left| \frac{\partial (u^1, \cdots, u^n)}{\partial (x^1, \cdots, x^n)} \right| > 0$$

其中

$$\mathfrak{D} = \{ (C^s, \text{Id}_{C^s}) | \text{Id}_{C^s} : C^s \to C^s, \text{Id}_{C^s}(z) = z \}$$

唯一确定了 C^s 上的一个复解析流形 (C^s, \mathfrak{D})。

考虑另一典型例子，设 $z = (z^1, \cdots, z^{n+1})$, $w = (w^1, \cdots, w^{n+1}) \in C^{n+1} - \{ 0 \}$, $z \sim w \Leftrightarrow z = \lambda w$, $\lambda \in C$, $\lambda \neq 0$. $[z] = \{ w \in C^{n+1} - \{ 0 \} | z \sim w \}$, $P^n(C) = (C^{n+1} - \{ 0 \}) / \sim = ([z] | z \in C^{n+1} - \{ 0 \})$. 类似于实射影空间可以证明 $P^n(C)$ 为 n 维复解析流形，称它为 n 维复射影空间。
射影空间。

用另一观点表示 \(P^n(C) \)，设 \(S^{2n+1} = \{ z = (z^1, \cdots, z^{n+1}) \in C^{n+1} | \sum_{j=1}^{n+1} z^j \cdot \overline{z}^j = 1 \} \)，\(z, w \in S^{2n+1} \)，\(z \sim w \Leftrightarrow z = \lambda w, \lambda \in \mathbb{C} \setminus \{ 0 \} \)。\(\{ z \} = \{ w \in S^{2n+1} | w \sim z \} \)，则 \(P^n(C) = S^{2n+1} / \sim = \{ [z] | z \in S^{2n+1} \} \)，易证它为 \(n \) 维复解析纤维流形(参阅第二章§2 例 4)。

例 6 设 \(T(m, n) = \{ X | X \text{ 为 } m \times n \text{ 实矩阵} \} = \mathbb{R}^{mn} \)，(\(X \) 中元素按 \((x_{11}, \cdots, x_{1n}, x_{21}, \cdots, x_{2n}, \cdots, x_{m1}, \cdots, x_{mn}) \) 排列，视它为 \(\mathbb{R}^{mn} \) 中的一点)，则它自然确定了一个 \(C^\infty \) 流形。下面可证 \(T(m, n) \) 的子拓扑空间 \(T(m, n; k) = \{ X \in T(m, n) | \text{rank} X = k \} \) 为一个 \(k(m+n-k) \) 维 \(C^\infty \) 流形(\(k \in \mathbb{N}, 0 < k \leq \min(m, n) \))。

事实上，设 \(X_0 \in T(m, n; k) \)，则存在可逆矩阵 \(P_0 \) 和 \(Q_0 \) 使得

\[
P_0X_0Q_0 = \begin{pmatrix} A_0 & B_0 \\ C_0 & D_0 \end{pmatrix},
\]

这里 \(A_0 \) 是 \(k \times k \) 的非奇异矩阵。记 \(A = (a_{ij}), A_0 = (a^0_{ij}), \) 则存在 \(c > 0 \)，当

\[
\max_{1 \leq i, j \leq k} |a_{ij} - a^0_{ij}| < c
\]

当 \(X \in U^+_x \)，则 \(X \in T(m, n; k) \Leftrightarrow D = CA^{-1}B \)。因为(\(I_k \) 为 \(k \times k \) 单位矩阵)

\[
\begin{pmatrix} I_k & 0 \\ -CA^{-1} & I_{m-k} \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & -CA^{-1}B + D \end{pmatrix},
\]

所以

\[
\text{rank} \begin{pmatrix} A & B \\ 0 & -CA^{-1}B + D \end{pmatrix} = \text{rank} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = k
\]

\(\Leftrightarrow -CA^{-1}B + D = 0 \Leftrightarrow D = CA^{-1}B \)。

我们取 \(U_{x_0} = U^+_x \cap T(m, n; k) \) 为 \(x_0 \in T(m, n; k) \) 的局部坐标域。
域 \((U_{x_0}, \varphi_{x_0})\) 的开集)，相应的坐标映射为
\[
\varphi_{x_0}: U_{x_0} \to \varphi_{x_0}(U) \subset \mathbb{R}^{m * (m-k)} = \mathbb{R}^{k(m-n-k)},
\]
\[
\varphi_{x_0}(X) = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix}
\]
(以 \(A, B, C\) 的 \(x\) 枚为局部坐标)，则
\[
\varphi_{x_0}^{-1}\begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = X = P_0^{-1}\begin{pmatrix} A & B \\ C & D \end{pmatrix}Q_0^{-1} = P_0^{-1}\begin{pmatrix} A & B \\ C & CA^{-1}B \end{pmatrix}Q_0^{-1}.
\]

如果 \((U_{x_0}, \varphi_{x_0})\) 和 \((U_{x_1}, \varphi_{x_1})\) 为两个局部坐标系，\(U_{x_0} \cap U_{x_1} \neq \emptyset\)，则
\[
\varphi_{x_0} \circ \varphi_{x_1}^{-1}\begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = \begin{pmatrix} A_1 & B_1 \\ C_1 & 0 \end{pmatrix},
\]
\[
P_1P_0^{-1}\begin{pmatrix} A & B \\ C & CA^{-1}B \end{pmatrix}Q_0^{-1}Q_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & C_1A_1^{-1}B_1 \end{pmatrix}.
\]

因为此等式右边 \(A_1, B_1, C_1\) 中的每个元素都是 \(A, B, C\) 的元素的有
理函数，故是 \(C^\omega\) 类的。于是，
\(\mathcal{D}' = \{(U_{x_0}, \varphi_{x_0}) | x_0 \in T(m, n; k)\}\)

唯一确定了一个 \(k(m + n - k)\) 维的 \(C^\omega\) 流形 \(T(m, n; k, \mathcal{D}')\)。特别地，\(\mathbb{R}^n\) 中的 \(m-\) 标架空间 \(T(m, n; m)\) 是 \(T(m, n) = \mathbb{R}^{m \times n}\) 中的开子
流形。

例 7 Grassmann 流形。

设 \(G_{km}\) 为 \(\mathbb{R}^{m \times n}\) 中的所有 \(m\) 维向量子空间 (通过原点的 \(m\) 维
面) 所组成的集合，我们可以使它成为一个 \(km\) 维 \(C^\omega\) 流形。

考虑 \(T(m, m+k; m)\)。如果 \(A, B \in T(m, n; m)\)，我们定义：\(A \sim B\) \iff 矩阵 \(A\) 和 \(B\) 的行向量所生成的 \(m\) 维面相同。记等价类 \([A] = \{B \in T(m, m+k; m) | A \sim B\}\)。于是 \(G_{km} = T(m, m+k; m) / \sim = \{[A] | A \in T(m, m+k; m)\}\) 为 \(T(m, m+k; m)\) 在等价关系 \(\sim\) 下的商
topology space

\[
\pi: T(m, m+k; m) \to G_{km}, \quad \pi(A) = [A]
\]
为自然投影，显然，\(\pi(A) \cdot \pi(B) \iff A = CB \)，其中 \(C \) 为 \(m \times n \) 非异矩阵。

(1) \(G_{km} \) 是局部欧的。

令 \(U_{1 \ldots m} = \{ (A = (P, Q) \in T(m, m + k; m) \mid P \text{ 为 } m \times m \text{ 非异矩阵} \} \)，因为 \(\det: T(m, m + k; m) \to R \)，\((P, Q) \mapsto \det P \) 为连续函数，
故 \(\{ \det^{-1}(R - \{0\}) \} \) 为 \(T(m, m + k; m) \) 中的开集。若 \(P \) 为 \(m \times m \) 非异矩阵且 \(\pi(P, Q) = \pi(R, S) \)，则 \((P, Q) = (CR, CS) \)，\(C \) 为 \(m \times m \) 非异矩阵。
因此，\(R = C^{-1}P \) 一定是非异的，这就证明了
\(\pi^{-1}(\pi(U_{1 \ldots m})) = \pi(U_{1 \ldots m}) \) 为 \(G_{km} \) 中的开集（根据商拓扑的定义）。

现在证明 \(\pi(U_{1 \ldots m}) \) 同胚于 \(R^{km} \)。为此，先定义
\[
\varphi_{1 \ldots m}: U_{1 \ldots m} \to R^{km}, \quad \varphi_{1 \ldots m}(P, Q) = P^{-1}Q.
\]
当 \(\pi(P, Q) = \pi(R, S) \)，则 \((P, Q) = (CR, CS) \)，\(P^{-1}Q = (CR)^{-1}(CS) : R^{-1}S \)。因此，\(\varphi \) 诱导出一个连续映射 \(\varphi_{1 \ldots m}: \pi(U_{1 \ldots m}) \to R^{km} \)，\(\varphi_{1 \ldots m}(\pi(P, Q)) = P^{-1}Q \)。作 \(\psi_{1 \ldots m}: R^{km} \to \pi(U_{1 \ldots m}) \)，\(\psi_{1 \ldots m}(Q) = \pi(I, Q) \)，其中 \(Q \) 为 \(m \times k \) 矩阵，因为对任何 \(\pi(P, Q) \in \pi(U_{1 \ldots m}) \)，
\[
\psi_{1 \ldots m} \circ \varphi_{1 \ldots m}(\pi(P, Q)) = \psi_{1 \ldots m}(P^{-1}Q) = \pi(I, P^{-1}Q) = \pi(P, Q),
\]
而对任何 \(Q \in R^{km} \)，
\[
\varphi_{1 \ldots m} \circ \psi_{1 \ldots m}(Q) = \varphi_{1 \ldots m}(\pi(I, Q)) = I^{-1}Q = Q,
\]
所以 \(\varphi_{1 \ldots m} \) 和 \(\psi_{1 \ldots m} \) 为互逆的逆射。显然，\(\pi, \varphi_{1 \ldots m}, \psi_{1 \ldots m} \) 为连续映射，故 \(\psi_{1 \ldots m} = \pi \circ \varphi_{1 \ldots m} \) 也为连续映射。

设 \(X \subset R^{km} \) 为闭集。易见，
\[
\pi^{-1}(\varphi_{1 \ldots m}(X)) = \{ (I, Q) \mid \pi(C, I, Q) = \pi(I, Q) \in \varphi_{1 \ldots m}(X), \}
\]
\(C \) 为 \(m \times m \) 非异矩阵
\[
\quad \subset \{ (I, Q) \mid Q \in X, C \text{ 为 } m \times m \text{ 非异矩阵} \}.
\]

如果 \(C_n(I, Q_n) \in \pi^{-1}(\varphi_{1 \ldots m}(X)) \) 且 \(C_n(I, Q_n) \to C_0(I, Q_0) \in U_{1 \ldots m} \)，
则 \(C_n \to C_0 \), \(C_nQ_n \to C_0Q_0 \)。于是，\(Q_0 = C_n^{-1}(C_nQ_n) \to C_0^{-1}(C_0Q_0) = Q_0 \)。

- 17 -
由于 $Q_{\circ} \subset X$ 且 $X \subset \mathbb{R}^{k_{\ast}}$ 为闭集，所以 $Q_{\circ} \subset X$ 且 $C_{0}(i_{\ast}, Q_{\circ}) \subset \pi^{-1}(\varphi^{-1}_{\ast-1}(X))$，这就证明了 $\pi^{-1}(\varphi^{-1}_{\ast-1}(X)) \subset U_{1 \cdot \cdot \cdot m}$ 为闭集。根据投影 π 的定义，$\varphi^{-1}_{\ast-1}(X) \subset \pi(U_{1 \cdot \cdot \cdot m})$ 为闭集，因而 $\varphi_{1 \cdot \cdot \cdot m}$ 为连续映射。

由上述可知，$\varphi_{1 \cdot \cdot \cdot m} : \pi(U_{1 \cdot \cdot \cdot m}) \to \mathbb{R}^{k_{m}}$ 为同胚。

类似地，可以定义 $U_{i_{1} \cdot \cdot \cdot i_{m}} = \{ A = (P_{i_{1}}, \ldots, P_{i_{m}}) \mid (P_{i_{1}}, \ldots, P_{i_{m}}) \}$ 为 $m \times m$ 非异矩阵，$i_{1} < i_{2} < \cdots < i_{m}$ 和 $\varphi_{i_{1} \cdot \cdot \cdot i_{m}}$，从而 $(\pi(U_{i_{1} \cdot \cdot \cdot i_{m}}), \varphi_{i_{1} \cdot \cdot \cdot i_{m}})$ 为 $G_{k_{m}}$ 的局部坐标系，因 $G_{k_{m}} = \bigcup_{i_{1} < \cdots < i_{m}} \pi(U_{i_{1} \cdot \cdot \cdot i_{m}})$，故 $G_{k_{m}}$ 是局部欧的。

（2）$G_{k_{m}}$ 为 T_{2} 空间。

设 $p, q \in G_{k_{m}}$，不妨设 $p \in \pi(U_{1 \cdot \cdot \cdot m})$，$O_{1} = \pi_{1 \cdot \cdot \cdot m}(p)$ 为 $\mathbb{R}^{k_{m}}$ 中 $\varphi_{1 \cdot \cdot \cdot m}(p)$ 为中心，以 $\delta > 0$ 为半径的球，使得 $q \in \varphi_{1 \cdot \cdot \cdot m}(K)$，其中 $K = O(p, \pi_{1 \cdot \cdot \cdot m}(p), \delta) \subset \mathbb{R}^{k_{m}}$。

设 $O_{1} = \varphi_{1 \cdot \cdot \cdot m}(K) \ni (P_{n}, Q_{n}) \to (P, Q) \in T_{1} \subset \mathbb{R}^{k_{m}}$，$\varphi_{1 \cdot \cdot \cdot m}(P_{n}, Q_{n}) = O_{1} \subset K$。因为 $K \subset \mathbb{R}^{k_{m}}$ 紧致，故存在子列 $\varphi_{1 \cdot \cdot \cdot m}(P_{n_{i}}, Q_{n_{i}}) = O_{1} \subset K$，即 $Q = \lim_{i \to \infty} Q_{n_{i}} = \lim_{i \to \infty} P_{n_{i}} \cdot \varphi_{1 \cdot \cdot \cdot m}(P_{n_{i}}, Q_{n_{i}}) = PR$，所以，$O_{1} = \lim_{i \to \infty} Q_{n_{i}} = \lim_{i \to \infty} P_{n_{i}} \cdot \varphi_{1 \cdot \cdot \cdot m}(P_{n_{i}}, Q_{n_{i}}) = PR$。故 $O_{1} = \lim_{i \to \infty} Q_{n_{i}} = \lim_{i \to \infty} P_{n_{i}} \cdot \varphi_{1 \cdot \cdot \cdot m}(P_{n_{i}}, Q_{n_{i}}) = PR$。这就证明了 $O_{1} = \varphi_{1 \cdot \cdot \cdot m}(K)$ 为 T_{1} 中的闭集。
设 Q 为 $m \times k$ 矩阵，A 为 $m \times (m+k)$ 矩阵，$A_{i_1 \cdots i_m}$ 表示 A 中第 i_1, \cdots, i_m 列所组成的子矩阵，$A_{i_1 \cdots i_m}$ 表示 A 中删去第 i_1, \cdots, i_m 列所组成的矩阵，令 $A_{i_1 \cdots i_m} = I, A_{i_1 \cdots i_m} = Q$。

当 $\pi(U_{i_1 \cdots i_m}) \cap \pi(U_{i_1 \cdots i_m}) = \emptyset$ 时，由

$$Q = \varphi_{i_1 \cdots i_m} \circ \varphi_{i_1 \cdots i_m}^{-1}(Q) = \varphi_{i_1 \cdots i_m}(\pi(A)) = A_{i_1 \cdots i_m} A_{i_1 \cdots i_m}^{-1}$$

可知，Q 中的元素为 Q 中元素的有理函数，故 $\varphi_{i_1 \cdots i_m} \circ \varphi_{i_1 \cdots i_m}^{-1}$ 是 C^∞ 类的。

由 (1)(2)(3) 和定理 1，$\mathcal{Q} = \{\pi(U_{i_1 \cdots i_m}), \varphi_{i_1 \cdots i_m} \mid 1 \leq i_1 < \cdots < i_m \leq m+k\}$ 唯一确定了 G_{km} 上的一个 km 维 C^∞ 流形 (G_{km}, \mathcal{Q})，称它为 Grassmann 流形。

(4) G_{km} 为 A_2 (具有可数拓扑基) 空间。

由 (1) $\pi(U_{i_1 \cdots i_m})$ 同胚于 \mathbb{R}^{km}，故 $\pi(U_{i_1 \cdots i_m})$ 为 A_2 空间，设它的可数拓扑基为 $\{V_{i_1 \cdots i_m} \mid 1 \leq l \leq N\}$。又因 $\pi(U_{i_1 \cdots i_m})$ 为 G_{km} 的开集，且 $G_{km} = \bigcup_{1 \leq l \leq N} \pi(U_{i_1 \cdots i_m})$，故 $\tau^* = \{V_{i_1 \cdots i_m} \mid 1 \leq l \leq N \}$ 为 G_{km} 的可数拓扑基，这就证明了 G_{km} 为 A_2 空间。

(5) G_{km} 为紧致集。

设 $L = \{A \in T(m, m+k) \mid A$ 的行向量模为 1 且彼此正交 $\}$，显然它是 $\mathbb{R}^{m(m+k)}$ 中的有界闭集，即为紧致集。由 Gram-Schmidt 正交化过程，对任意 $A \in T(m, m+k), m$，必存在 $B \in L$ 使 $A = CB$，其中 C 为 $m \times m$ 非奇异矩阵。于是 $\pi(L) = 0$，从 L 紧致和 π 连续可知 G_{km} 也是紧致集。
考虑另一证法也是有趣的，令 \(S = \{ A \in T(m, m + k; m) \mid \sqrt[4]{\sum_{i=1}^{m+k} a_{ii}^2} = 1 \} \)，显然，\(S \subset T(m, m + k; m) \)为有界闭集，

因而为紧致集，此外，对任何 \(\pi(A) \in G_{km} \)，\(A \in U_{i_1 \cdots i_m} \)，显然有

\[
\pi(A) = \pi\left(\frac{A}{\| A \|} \right) = \pi\left(\frac{I_n}{\| A \|} \right) = \pi(A),
\]

故 \(G_{km} \subset \pi(S) \)。另一方面，因为 \(\pi(S) \subset \pi(T(m, m + k; m)) = G_{km} \)，所以，

\(\pi(S) = G_{km} \)。它作为紧致集 \(S \) 在连续映射 \(\pi \) 下的象是紧致的。

例 8 设 \((M_i, \mathcal{D}_i) \) 为 \(n_i \) 维 \(C^r \) 流形，\(\mathcal{D}_i = \{(U_{a_i}, \varphi_{a_i}) \mid a_i \in \Gamma_i \} \)，

\(i = 1, \ldots, k \)，令

\[
\mathcal{D}' = \{ (U_{a_1} \times \cdots \times U_{a_k}, \varphi_{a_1}, \ldots, \varphi_{a_k}) \mid (U_{a_i}, \varphi_{a_i}) \in \mathcal{D}_i, \ i = 1, \ldots, k \},
\]

其中 \(U_{a_1} \times \cdots \times U_{a_k} \) 为拓扑积，而

\[
\varphi_{a_1 \cdots a_k} : U_{a_1} \times \cdots \times U_{a_k} = \varphi_{a_1}(U_{a_1}) \times \cdots \times \varphi_{a_k}(U_{a_k}) \subset \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k},
\]

\[
\varphi_{a_1 \cdots a_k}(p_1, \ldots, p_k) = (\varphi_{a_1}(p_1), \ldots, \varphi_{a_k}(p_k))
\]

为同胚映射，显然 \(\mathcal{D}' \) 满足定义 1 中条件 (1) 和 (2)，因此它唯一确定了拓扑积 \(M_1 \times \cdots \times M_k \) 上的 \(C^r \) 构造，\(\mathcal{D} = \mathcal{D}_1 \times \cdots \times \mathcal{D}_k \)，我们称

\(n_1 + \cdots + n_k \) 维 \(C^r \) 流形 \((M_1 \times \cdots \times M_k, \mathcal{D}_1 \times \cdots \times \mathcal{D}_k) \) 为 \(C^r \) 流形

\((M, \mathcal{D}_i), \ i = 1, \ldots, k \) 的 \(C^r \) 积流形。若 \(n \) 维环面 \(T^n = S^1 \times \cdots \times S^1 \) 为

\(n \) 个 \(S^1 \) 的 \(n \) 维 \(C^r \) 积流形，\(R^{n+2} = R^{n_1} \times R^{n_2} \) 为 \(R^{n_1} \) 和 \(R^{n_2} \) 的 \(C^r \)

积流形。

最后，我们证明流形上连通和道路连通是等价的。

定理 3 设 \((M, \mathcal{D}) \) 为拓扑流形，则 \(M \) 连通 \(\iff \) \(M \) 道路

连通。

证明 \((\Rightarrow)\) 对任何 \(p \in M \)，令 \(C_p = \{ q \in M \mid \text{存在 } C^0 \text{ 道路将 } p, q \text{ 相连} \} \)，设 \(q \in C_p \)，因 \(M \) 为拓扑流形，故存在 \(q \) 的局部坐标系 \((U, \cdot) \) 20 •
φ，使 $\varphi(U) = \{x \in \mathbb{R}^n | \sum_{i=1}^{n} (x'^i)^2 < 1\} \subset \mathbb{R}^n$。由于 $\varphi(U)$ 中任两点有一条直线道路相连，所以 U 中任一点必与 q 相连，从而 U 中任一点必与 p 相连和 $U \subset C_p$，这就证明了 C_p 为 M 中的开集。显然，当 $p \in M$ 时，C_p 是彼此不相交成重合的。若有 $C_p \cap C_q = \emptyset$，则 $M = C_p \cup \left(\bigcup_{x \in M \setminus \{p\}} C_x \right)$，$C_q \subset \bigcup_{x \in M \setminus \{p\}} C_x$，即 M 为两不相交的非空开集的并，这与 M 连通相矛盾，故 $C_p = M$，这就证明了 M 是道路连通的。

(\Leftarrow) (反证) 假设 M 不连通，即存在不相交的非空开集 $U, V, M = U \cap V$，设 $p \in U, q \in V$，因为 M 道路连通，故存在 C^0 道路 $\sigma : [0, 1] \to M$ 使 $\sigma(0) = p, \sigma(1) = q$ 显然 $\sigma^{-1}(U)$ 和 $\sigma^{-1}(V)$ 为 $[0, 1]$ 的两个不相交的非空开集，且 $[0, 1] = \sigma^{-1}(M) = \sigma^{-1}(U) \cup \sigma^{-1}(V)$，这与熟知的 $[0, 1]$ 连通相矛盾。□

§ 2 C^k 映射

在 §1 中已提到 C^k 映射 $f : U \to \mathbb{R}^n$，其中 U 为 \mathbb{R}^n 中的开集，$k \in \{0, 1, \ldots, \infty, \omega\}$。现在我们将它推广到流形上，并定义浸入、嵌入和微分同胚等重要概念。

定义 1 设 (M_i, \mathcal{X}_i) 为 n_i 维 C^r 流形，$i = 1, 2; k_0, r \in \{0, 1, 2, \ldots, \infty, \omega\}, k \leq r$。如果映射 $f : M_1 \to M_2$，对任意 $p \in M_1$ 和 $q = f(p)$ 的任意局部坐标系 (V, ψ)，必有 p 的局部坐标系 (U, φ)，使 $f(U) \subset V$ (等价于 f 是连续的)，且 $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$ 是 C^k 类的，即

$$\begin{cases}
y^1 = (\psi \circ f \circ \varphi^{-1})(x^1, \ldots, x^n) \\
y^n = (\psi \circ f \circ \varphi^{-1})(x^1, \ldots, x^n)
\end{cases}$$

是 C^k 类的，则称 f 为从 M_1 到 M_2 的 C^k 映射，记作 $f \in C^k(M_1, M_2)$，其中 $C^k(M_1, M_2)$ 为从 M_1 到 M_2 的 C^k 映射的全体(图 3)。
定理 1 设 \((M_i, \mathcal{O}_i)\) 为 \(n_i\) 维 \(C^k\) 流形, \(\mathcal{O}_i\) 为 \(\mathcal{O}_i\) 的基, \(i = 1, 2\)。如果映射 \(f: M_1 \to M_2\) 关于 \(\mathcal{O}_1\) 和 \(\mathcal{O}_2\) 满足定义 1 中的条件，则 \(f\) 是 \(C^k\) 类的 (\(k \leq r\))。

证明 设 \(p \in M_1, q = f(p), (V, \psi) \in \mathcal{O}_2\) 是 \(q\) 的任意局部坐标系, 取 \((V_1, \psi_1) \in \mathcal{O}_1\) 为 \(q\) 的局部坐标系, 由题设必有 \(p\) 的局部坐标系 \((U_1, \varphi_1) \in \mathcal{O}_1\) 使 \(f(U_1) \subset V_1\), 且

\[
\varphi_1 \circ f \circ \varphi_1^{-1}: \varphi_1(U_1) \to \psi_1(V_1)
\]

是 \(C^k\) 类的。于是, 存在 \(q\) 的局部坐标系 \((U, \varphi|_U) \in \mathcal{O}_1\) 使 \(U \subset U_1, f(U) \subset V_1 \cap V_1 \subset V\), 显然。

\[
\psi \circ f \circ (\varphi|_U)^{-1} = (\psi \circ \varphi_1^{-1}) \circ (\varphi_1 \circ f \circ (\varphi|_U)^{-1}) : \varphi_1(U) \to \psi(V)
\]

是 \(C^k\) 映射, 因而 \(f\) 是 \(C^k\) 类的。

引理 1 设 \((U, \varphi)\) 和 \((U_1, \varphi_1)\) 为 \(p\) 的局部坐标系, \((V, \psi)\) 和 \((V_1, \psi_1)\) 为 \(f(p)\) 的局部坐标系, 与 \((U, \varphi)\) 和 \((V, \psi)\) 相应的局部坐标分别为 \(\{x^i\}\) 和 \(\{y^j\}\), 而 \(D(\psi \circ f \circ \varphi^{-1})\varphi(p) = \left(\frac{\partial y^j}{\partial x^i}\right)_{\varphi(p)}\) 为 \(C^k\) 类映射在 \(p\) 点关于 \(\{x^i\}\) 和 \(\{y^j\}\) 的 Jacobi 矩阵, 则

\[
\text{rank} D(\psi \circ f \circ \varphi^{-1})\varphi(p) = \text{rank} D(\psi_1 \circ f \circ \varphi_1^{-1})\varphi_1(p).
\]

证明 因为
\[D(\psi_1 \circ f \circ \varphi^{-1})_{\varphi_1(p)} = D(\psi_1 \circ \varphi^{-1})_{\varphi(f(p))} \cdot D(\psi_1 \circ \varphi^{-1})_{\varphi(p)} \cdot D(\varphi \circ \varphi^{-1})_{\varphi_1(p)}, \]

而 rank \[D(\varphi \circ \varphi^{-1})_{\varphi_1(p)} = n_1, \quad \text{rank} \[D(\psi_1 \circ \varphi^{-1})_{\varphi(f(p))} = n_2, \]

所以
\[\text{rank} \[D(\psi_1 \circ f \circ \varphi^{-1})_{\varphi_1(p)} = \text{rank} \[D(\psi_1 \circ \varphi^{-1})_{\varphi(f(p))}. \]

由引理 1，我们给出

定义 2
rank \[D(\psi_1 \circ f \circ \varphi^{-1})_{\varphi_1(p)} \]（与局部坐标系选取无关）称为 \(C^k(k \geq 1) \) 映射 \(f \) 在 \(p \) 点的秩，记作
\[(\text{rank} \ f)_p = \text{rank} \[D(\psi_1 \circ f \circ \varphi^{-1})_{\varphi_1(p)}. \]

引进 \(C^k \) 映射 \(f \) 在 \(p \) 点的秩后，就可介绍 \(C^k \) 浸入、嵌入和微分同胚等概念了。

定义 3 设 \((M_i, \varnothing_i)\) 为 \(n_i \) 维 \(C^r \) 流形，\(i = 1, 2 \)，如果 \(C^k(1 \leq k \leq r) \) 映射
\[f : M_1 \to M_2 \]
对任何 \(p \in M_1 \)，有 \((\text{rank} \ f)_p = n_1 \)（因而 \(n_1 \leq n_2 \)），则称 \(f \) 为一个 \(C^k \) 浸入；如果 \(f \) 是 \(C^k \) 浸入，且
\[f : M_1 \to f(M_1) \subseteq M_2 \]
为同胚映射，则称 \(f \) 为一个 \(C^k \) 嵌入；如果 \(f \) 是 \(C^k \) 浸入，且
\[f : M_1 \to M_2 \]
为同胚映射，则称 \(f \) 为一个 \(C^k \) 微分同胚。由数学分析不难证明 \(n_1 = n_2 \)。再由反函数定理，\(f^{-1} \) 也是一个 \(C^k \) 微分同胚。

例 1 设 \(f : \mathbb{R}^n \to \left\{ x = (x^1, \ldots, x^n) \mid \sum_{i=1}^n (x^i)^2 < 1 \right\} \)
\[x \mapsto y = f(x) = \frac{x}{\sqrt{1 + \|x\|^2}}, \]
则 \(y = f^{-1}(y) = \frac{y}{\sqrt{1 - \|y\|^2}} \)。显然 \(f \) 为 \(C^\infty \) 同胚。

例 2 在 §1 例 4 中，用第二种观点，令 \(\pi : S^n \to P^n(\mathbb{R}), \pi(x) \)

25
不妨设 $x = (x^1, \cdots, x^{e+1})$, $x^e < 0, x^e \neq 0$, 于是有 $\varphi_k \circ \pi \circ (\varphi_1)^{-1}(x^1, \cdots, x^{e-1}, x^{e+1}, \cdots, x^{e+1}) = \varphi_k \circ \pi(x) = (\varphi_k \circ \pi)(x^1, \cdots, x^{e-1}, x^{e+1}, \cdots, x^{e+1}) = (\xi^1, \cdots, \xi^e)$. 由于 $x^e = -\sqrt{1 - \sum_{i=1}^{e} (x^i)^2}$

可知 ξ^1, \cdots, ξ^e 为 $x^1, \cdots, x^{e-1}, x^{e+1}, \cdots, x^{e+1}$ 的 C^1 函数，故 π 是 C^1 映射。易证 π 是局部（不是整体）C^1 微分同胚。

例 3 在 §1 例 7 中，$\pi: T_m G_{mn} \rightarrow G_{mn}$, $\pi(A) = [A]$. 由于 $A \in U_{i_1 \cdots i_n}$，则 $Q = \varphi_{i_1 \cdots i_n} \pi \circ \text{Id}_{T_m G_{mn}}(A) = \varphi_{i_1 \cdots i_n}(\pi(A)) = A_{i_1 \cdots i_n}^\prime A_{i_1 \cdots i_n}$, 显然 Q 的每个元素为 A 的元素的有理函数，故 π 是 C^1 映射。

例 4 令 $h: G_{kn} \rightarrow G_{mk}$, 它将 R^{n-k} 中过原点的 m 维向量子空间映成其正交补空间，显然 h 是一一映射。为了证明 h 是 C^1 的，我们令

$$g_{i_1 \cdots i_m}: U_{i_1 \cdots i_m} \rightarrow T_k G_{mn}$$

$$(P, Q) \rightarrow -(P^{-1}Q', I_k) \quad (A' \text{ 表示 } A \text{ 的转置})$$

显然，$g_{i_1 \cdots i_m}$ 是 C^1 的，因为

$$(P, Q)(-(P^{-1}Q', I_k))' = (P, Q)
\begin{pmatrix}
-P^{-1}Q'

I_k
\end{pmatrix} = -P(P^{-1}Q) + QI_k$$

$= -Q + Q = 0$, 所以 (P, Q) 的行向量和 A 的正交于 $-(P^{-1}Q', I_k)$ 的行向量，即是前者的正交补。又从

$$g_{i_1 \cdots i_m}(P, Q) = -(P^{-1}Q', I_k) = -((CP)^{-1}(CQ))', I_k)$$

$$= g_{i_1 \cdots i_m}(CP, CQ)$$

可知 $g_{i_1 \cdots i_m}$ 诱导出 $h|_{\pi(U_{i_1 \cdots i_m})}: \pi(U_{i_1 \cdots i_m}) \rightarrow \pi(V_{i_1 \cdots i_m, m+k})$

$\pi(I, Q) \rightarrow \pi(-Q', I_k)$, 其中 $G_{mn}, \pi, V_{i_1 \cdots i_m}$ 与 $G_{km}, \pi, U_{i_1 \cdots i_m}$ 类似定义。于是，

$$\tilde{Q} = \varphi_{m+1, \cdots, m+k} \circ h|_{\pi(U_{i_1 \cdots i_m})} \circ \varphi_i^{-1}(Q)$$

$$= \varphi_{m+1, \cdots, m+k} \circ h|_{\pi(U_{i_1 \cdots i_m})}(\pi(I_m, Q))$$

* 24 *
\[
= \varphi_{m+1, \ldots, m+k} (\mathfrak{L}(-Q', I_{k})) = I_{k}^{-1}(-Q') = -Q',
\]
因而 \(Q\) 的元素为 \(Q\) 的元素的 \(C^\infty\) 函数和 \(h\mid_{\omega_{1-m}}\) 为 \(C^\infty\) 映射。同样 \(h\mid_{\omega_{1-m}}\) 为 \(C^\infty\) 映射，这就证明了 \(h\) 为 \(C^\infty\) 映射。由于互为正交补，故 \(h^{-1}\) 也为 \(C^\infty\) 映射，从而 \(h : G_{km} \to G_{mk}\) 是 \(C^\infty\) 同胚的。

例 5 设 \(g, h : \mathbb{R}^n \to \mathbb{R}^n\) 为同胚，则 \(\mathcal{D}_g = \{(\mathbb{R}^n, g)\}\) 确定了一个 \(C^r (r \geq 1)\) 微分构造 \(\mathcal{D}_g\)，同理 \(\mathcal{D}_h = \{(\mathbb{R}^n, h)\}\) 也确定了一个 \(C^r\) 微分构造 \(\mathcal{D}_h\)。

如果 \(g \circ h^{-1} \in C^r (\mathbb{R}^n, \mathbb{R}^n)\)，则 \(\mathcal{D}_g\) 与 \(\mathcal{D}_h\) 不相容，所以，\(\mathcal{D}_g \equiv \mathcal{D}_h\)。但由 \(g \circ (g^{-1} \circ h) = 1\) 得 \(C^r (\mathbb{R}^n, \mathbb{R}^n)\)，\(\text{rank} 1 = n\) 得到 \(g^{-1} \circ h : (\mathbb{R}^n, \mathcal{D}_h) \to (\mathbb{R}^n, \mathcal{D}_g)\) 为 \(C^r\) 微分同胚。

特别如 \(g, h : \mathbb{R}^1 \to \mathbb{R}^1\)，\(g(x) = x, h(x) = x^2, y = g \circ h^{-1}(x) \equiv x^3\) 为 \(\mathbb{R}^1\) 不可导，故 \(g \circ h^{-1} \in C^r (\mathbb{R}^1, \mathbb{R}^1)\)，\(\mathcal{D}_g \equiv \mathcal{D}_h\)。

例 6 设 \(f : \mathbb{R}^1 \to \mathbb{R}^2, f(t) = (t^2, \sin t)\)，由 \(\text{rank} (2t, \pi \cos t) = 1\) 和 \(f(1) = (1, 0) = f(-1)\) 可知 \(f\) 为常数，但非单射。

在初等微分几何中，我们研究了 \(\mathbb{R}^n\) 中的大量光滑曲线。光滑曲面的例子。下面将它们推广为微分流形上的子流形和正则子流形。

定义 4 设 \((M_i, \mathcal{D}_i)\) 为 \(n_i\) 维 \(C^r (r \geq 1)\) 流形，\(i = 1, 2, M_1 \subset M_2\) \((M_1\) 的拓扑不必为 \(M_2\) 的诱导拓扑，称为 \(M_1\) 的内部拓扑)。如果包含映射 \(I : M_1 \to M_2, I(p) = p\) 为 \(C^r\) 流形，则称 \((M_1, \mathcal{D}_1)\) 为 \((M_2, \mathcal{D}_2)\) 的 \(C^r\) 子流形(简称 \(M_1\) 为 \(M_2\) 的 \(C^r\) 子流形)。如果包含映射 \(I\) 为 \(C^r\) 包含，则称 \((M_1, \mathcal{D}_1)\) 为 \((M_2, \mathcal{D}_2)\) 的 \(C^r\) 正则子流形。此时，\(I : M_1 \to M_2 \subset M_2\) 为同胚映射，即 \(M_1\) 的内部拓扑和诱导拓扑是相同的。

定理 2 设 \((M_i, \mathcal{D}_i)\) 为 \(n_i\) 维 \(C^r (r \geq 1)\) 流形，\(i = 1, 2\)。

(1) 如果 \(f : M_1 \to M_2\) 为 \(C^r\) 单映射(单射且为映射)，则

\[25\]
(f(M_1), \tilde{\mathcal{D}}_1) 为(M_2, \mathcal{D}_2) 的 C^r 子流形，其中 \tilde{\mathcal{D}}_1 = \{(f(U), \varphi \circ f^{-1}) \mid (U, \varphi) \in \mathcal{D}_1\}, f^{-1}: f(M_1) \to M_1 为 f 的逆映射。

(2) 如果 f: M_1 \to M_2 为 C^r 嵌入，则(f(M_1), \tilde{\mathcal{D}}_1) 为(M_2, \mathcal{D}_2) 的 C^r 正则子流形。

证明 (1) 设 I: f(M_1) \to M_2 为包含映射，则对任何(f(U), \varphi \circ f^{-1}) \in \tilde{\mathcal{D}}_1 和任何(V, \psi) \in \mathcal{D}_2，

\psi \circ I \circ (\varphi \circ f^{-1})^{-1} = \psi \circ I \circ (f^{-1})^{-1} \circ \varphi^{-1} = \psi \circ f \circ \varphi^{-1}

是 C^r 类的，且 rank I = rank f = n_1，所以 I 是 C^r 嵌入，从而

(f(M_1), \tilde{\mathcal{D}}_1) 为(M_2, \mathcal{D}_2) 的 C^r 子流形。

(2) 如果 f 为嵌入，显然 f(M_1) 的内部拓扑和由 M_2 得到的诱导拓扑是相同的。再由(1) 可知，(f(M_1), \tilde{\mathcal{D}}_1) 为(M_2, \mathcal{D}_2) 的 C^r 正则子流形。

为了给出正则子流形几何上的充分必要条件，我们先证明一个引理。

引理 2 设(M_i, \mathcal{D}_i) 为 n_i 维 C^r (r \geq 1) 流形，i = 1, 2，如果 f: M_1 \to M_2 为 C^r 映射且(rank f)_p = n_i (n_i \leq n_2)，则

(1) 对于 q = f(p) 的任意局部坐标系 \{y^1, \cdots, y^n\}，当 y^i 适当地交换次序后，\{y^1 \circ f, \cdots, y^n \circ f\} 为 P 的局部坐标系。

(2) 对于 P 的任意局部坐标系 \{z^1, \cdots, z^n\}，可在 q = f(p) 适当选取局部坐标系 \{z^1, \cdots, z^n\} 使得 z^i = z^i \circ f (i = 1, \cdots, n_i) 在 P 的充分小邻域内成立。

证明 (1) 在 P 点任意取定一个局部坐标系 (U, \varphi), \{x^i\}，因为(rank f)_p = n_1，所以

\[rank(\frac{\partial (y^i \circ f)}{\partial x^i})_{(p)} = n_1 \]

当 \{y^1, \cdots, y^n\} 适当交换次序后，可以是
\[
\frac{\partial (y^1 \circ f, \ldots, y^n \circ f)}{\partial (x^1, \ldots, x^n)} \bigg|_{(x^1, \ldots, x^n)} \approx 0.
\]

由 \(y^i \circ f\) 关于 \(x^1, \ldots, x^n\) 有连续偏导数及反函数定理，可推出 \((y^1 \circ f, \ldots, y^n \circ f)\) 是 \(p\) 的局部坐标系。

(2) 在 \(q = f(p)\) 点任意取定一个局部坐标系 \((V, \psi), (y^1, \ldots, y^n)\)，由 (1) 可使得 \((y^1 \circ f, \ldots, y^n \circ f)\) 成为 \(p\) 的局部坐标系，故
\[
x^i = \varphi^i(y^1 \circ f, \ldots, y^n \circ f), \quad i = 1, \ldots, n_1,
\]
其中 \(\varphi^i\) 为 \(C^r\) 函数。再设
\[
z^j = \begin{cases} \varphi^i(y^1, \ldots, y^n), & j = 1, \ldots, n_1, \\ y^j, & j = n_1 + 1, \ldots, n_2, \end{cases}
\]
则
\[
\frac{\partial (z^1, \ldots, z^{n_2})}{\partial (y^1, \ldots, y^n)} \bigg|_{(q)} = \frac{\partial (z^1, \ldots, z^{n_1})}{\partial (y^1, \ldots, y^n)} \bigg|_{(q)} = \frac{\partial (\varphi^1, \ldots, \varphi^{n_1})}{\partial (y^1, \ldots, y^n)} \bigg|_{(q)} \approx 0.
\]

由 \(z^j\) 关于 \(y^j, \ldots, y^n\) 有连续偏导数及反函数定理推出 \(\{z^j\}\) 是 \(q\) 的局部坐标系，且有 \(x^i = z^i \circ f, i = 1, \ldots, n_1\)。

定理 3 (正则子流形的充要条件) 设 \(N\) 为 \(n\) 维 \(C^r (r \geq 1)\) 流形，则

\(M\) 为 \(N\) 的 \(m\) 维 \(C^r\) 正则子流形 \(\iff M \subset N\) 为子拓扑空间，且对任意 \(p \in M\)，存在 \(N\) 的含 \(p\) 的局部坐标系 \(\{x^1, \ldots, x^n\}\) 及其局部坐标邻域 \(U\)，使得

\(M \cap U = \{q \in U | x^j(q) = 0, m + 1 \leq j \leq n\}\)。

证明 \((\Leftarrow)\) 设 \(M \subset N\) 为子拓扑空间，对任意 \(p \in M\)，\((U_p, \varphi_p), \{x^1, \ldots, x^n\}\) 为满足右边条件的 \(p\) 点的关于 \(N\) 的局部坐标系，记 \(R^n = \{(x^1, \ldots, x^n, 0, \ldots, 0)\} \subset \mathbb{R}^n\)，则 \(\varphi_p(M \cap U_p) = \varphi_p(U_p) \cap R^n\).

由 \(\varphi_p(U_p)\) 为 \(R^n\) 的开集，故 \(\varphi_p(M \cap U_p)\) 为 \(R^n\) 的开集。显然，
\[
\varphi_p |_{M \cap U_p} : M \cap U_p \rightarrow \varphi_p(M \cap U_p) \subset \mathbb{R}^n
\]

\(\cdot \ 27 \cdot\)
为拓扑映射，于是由 §1 定理 1，

\[\mathcal{O}'_U = \{(M \cap U_p, \varphi_p |_{M \cap U_p}) | p \in M\} \]

确定了上的一个 \(C^*\) 微分构造 \(\mathcal{O}_U\)。事实上，显然有

\[\bigcup_{p \in M} (M \cap U_p) = M \cap \left(\bigcup_{p \in M} U_p \right) = M \cap N = M. \]

此外，当 \((M \cap U_p) \cap (M \cap U_q) \neq \emptyset\) 时，\((p, q \in M)\)，映射

\[\varphi_q |_{M \cap U_q} \circ \varphi_p |_{M \cap U_p} : \varphi_p |_{M \cap U_p} (M \cap U_p \cap U_q) \rightarrow \varphi_q |_{M \cap U_q} (M \cap U_p \cap U_q) \]

\[(x^1, \ldots, x^m, 0, \ldots, 0) \mapsto (y^1, \ldots, y^m, 0, \ldots, 0), \]

\[\begin{cases} y^1 = (\varphi_q \circ \varphi_p^{-1})_1 (x^1, \ldots, x^m, 0, \ldots, 0) \\ \vdots \\ y^m = (\varphi_q \circ \varphi_p^{-1})_m (x^1, \ldots, x^m, 0, \ldots, 0) \end{cases} \]

是 \(C^*\) 类的，同理 \(\varphi_q |_{M \cap U_q} \circ \varphi_p |_{M \cap U_p}\) 也是 \(C^*\) 类的。再由

\[\varphi_p \circ I \circ \varphi_p |_{M \cap U_p} : \varphi_p |_{M \cap U_p} (M \cap U_p) \rightarrow \varphi_p (U_p) \]

\[(x^1, \ldots, x^m, 0, \ldots, 0) \mapsto (x^1, \ldots, x^m, 0, \ldots, 0) \]

可看出包含映射 \(I: M \rightarrow N\) 为 \(C^*\) 嵌入，这就证明了 \(M\) 为 \(N\) 的 \(C^*\) 正则子流形（图 4）.

(\(\Rightarrow\)) 因为 \(M\) 为 \(N\) 的正则子流形, 所以包含映射 \(I: M \rightarrow N\) 为一个嵌入, 由引理 2, 在 \(p\) 点可取关于 \(N\) 的局部坐标系 \((U, \varphi), (x^1, \ldots, x^m)\), 使得 \(\{x^1 \circ I, \ldots, x^m \circ I\}\) 为 \(p\) 点关于 \(M\) 的局部坐标系, 设 \(\{x^1, \ldots, x^m\}\) 和 \(\{x^1 \circ I, \ldots, x^m \circ I\}\) 的局部坐标域分别为 \(U_i\) 和 \(V_i\). 因为 \(M\)
为 N 的正则子流形，所以可以取 p 点关于 N 的开邻域 U_2，使得 $U_2 \subset U_1, M \cap U_2 \subset V_1$. 显然，$\omega \circ I = g^k(x^1 \circ I, \cdots, x^n \circ I), m + 1 \leq k \leq n$ 是定义在 $M \cap U_2$ 上的 C^r 函数。这里 g^k 的定义域叙述如下：设 $\varphi: U_2 \to \mathbb{R}^m, \varphi_1(q) = (x^1(q), \cdots, x^n(q)), q \in U_2$, 其中 $(x^1(q), \cdots, x^n(q)) = q(q)$. 因此，$g^k$ 是定义在 \mathbb{R}^m 中的开集 $\varphi_1(M \cap U_2)$ 上的 C^r 函数。

容易看出，若 $q \in U_2$ 的坐标为 $\{a^1, \cdots, a^n\} = \{x^1(q), \cdots, x^n(q)\}$，则 $q \in M \cap U_2 \iff q \in U_2, a^k = g^k(a^1, \cdots, a^n), m + 1 \leq k \leq n$. 其次，在 p 点关于 N 的开邻域 $U = \varphi_1^{-1}(\varphi_1(M \cap U_2))$ 上定义 n 个 C^r 函数：

$$\begin{align*}
y^1 &= x^1 \\
\vdots \\
y^n &= x^n \\
y^{m+1} &= x^{m+1} - g^{m+1}(x^1, \cdots, x^n) \\
\vdots \\
y^n &= x^n - g^n(x^1, \cdots, x^n)
\end{align*}$$

我们令映射 $\psi: U \to \mathbb{R}^n$ 为 $\psi(q) = (y^1(q), \cdots, y^n(q)), q \in U$. 显然 $\psi: U \to \psi(U)$ 是一对一的 C^r 映射，且

$$\left. \frac{\partial(y^1, \cdots, y^n)}{\partial(x^1, \cdots, x^n)} \right|_{\varphi(q)} = \det \left(\begin{array}{cc} I_m & 0 \\ 0 & I_{n-m} \end{array} \right) = 1,$$

由反函数定理可知 φ^{-1} 也是 C^r 的，所以 φ 为 C^r 微分同胚且 $\{y^1, \cdots, y^n\}$ 是以 U 为坐标邻域的关于 N 的局部坐标系。于是，

$$\{q \in U \mid y^j(q) = 0, m + 1 \leq j \leq n\} = \{q \in U_2 \mid \varphi_1(q) \in \varphi_1(M \cap U_2), \}$$

$$= M \cap U_2 = M \cap U,$$

其中最后一个等式是因为 U_2 为 φ_1 的定义域。故 $U = \varphi_1^{-1}(\varphi_1(M \cap U_2)) \subset U_2, M \cap U \subset M \cap U_2$；另一方面，由于 $M \cap U_2 \subset U$ 可以知道 $M \cap U_2 \subset M \cap U$。从而 $M \cap U_2 = M \cap U$. 证

* 29 *
例 7 令 \(f: S^1 \times S^1 \rightarrow \mathbb{R}^3 \),
\[
f(e^{iu_1}, e^{iu_2}) = ((b + a \cos u_1) \cos u_2, (b + a \cos u_1) \sin u_2, a \sin u_1),
\]
\(0 < a < b\).
显然 \(f \) 是有确切定义的，且 \(f: S^1 \times S^1 \rightarrow f(S^1 \times S^1) \) 为同胚。下面证明 \(f \) 是 \(C^0 \) 浸入。由对称性，只要对 \(S^1 \times S^1 \) 的特殊局部坐标系
\[
((S^1 - \{e^{i\theta}\}) \times (S^1 - \{e^{i\theta}\}), \phi), \phi(e^{iu_1}, e^{iu_2}) = (u_1, u_2),
\]
\(0 < u_1, u_2 < 2\pi\) 验证即可。显然
\[\text{Id}_{\mathbb{R}^3} \circ f^{-1}(u_1, u_2) = ((b + a \cos u_1) \cos u_2, (b + a \cos u_1) \sin u_2, a \sin u_1)\]
的 Jacobi 矩阵
\[
\begin{pmatrix}
-a \sin u_1 \cos u_2 & -(b + a \cos u_1) \sin u_2 \\
-a \sin u_1 \sin u_2 & (b + a \cos u_1) \cos u_2 \\
0 & a \cos u_1
\end{pmatrix}
\]
的秩为 2，故 \(f \) 为 \(C^0 \) 浸入。由定理 2(2)，\(f(S^1 \times S^1) \) 为 \(\mathbb{R}^3 \) 中的 2 维正则子流形。

例 8 设 \(f_1: \mathbb{R}^1 \rightarrow \mathbb{R}^3 \)
\[
f_1(t) = (x(t), y(t)) = \left(\frac{t(t^2 - 1)}{t^4 + 1}, \frac{t(t^2 + 1)}{t^4 - 1}\right).
\]
显然它的象是双线 (\(x^2 + y^2 = x^2 - y^2 \))。容易验证 \(f_1 \) 为单射且
\[\text{rank} f_1 = \text{rank} (x'(t), y'(t)) = 1,\]
所以 \(f_1 \) 为 \(C^0 \) 单浸入。因为
\[
\lim_{n \to \pm\infty} f_1(n) = (0, 0) = f_1(0) \quad \text{而} \quad \lim_{n \to \pm\infty} f_1^{-1}(f_1(n)) = \lim_{n \to \pm\infty} n \equiv 0,
\]
故 \(f_1: \mathbb{R}^1 \rightarrow \mathbb{R}^1 \) 在 \((0, 0)\) 连续，从而 \(f_1: \mathbb{R}^1 \rightarrow f_1(\mathbb{R}^1) \) 不是同胚，即 \(f_1: \mathbb{R}^1 \rightarrow \mathbb{R}^2 \) 不是浸入。由定理 2(1)，\(f(\mathbb{R}^1) \) 为 \(\mathbb{R}^2 \) 的 1 维 \(C^0 \) 子流形，而作为子拓扑空间不是流形，故不是 \(C^0 \) 正则子流形 (图 5)。

类似地，\(f_2: \mathbb{R}^1 \rightarrow \mathbb{R}^2, \quad f_2(t) = (x(t), y(t)) = \left(\frac{t(t^2 + 1)}{t^4 + 1}, \frac{-t(t^2 - 1)}{t^4 + 1}\right)\) 也是 \(C^0 \) 单浸入而不是浸入。由定理 2，\(f_2(\mathbb{R}^1) \) 为 \(\mathbb{R}^2 \)。
的 1 维 C^n 子流形而不是 C^n 正则子流形 (图 6)。

例 9 设 $T^2 = S^1 \times S^1 = \{(e^{2\pi i u}, e^{2\pi i v}) | u^1, u^2 \in \mathbb{R}\}$ 为 2 维环面，它可以由边长为 1 的正方形沿对边而得到。也可将平面 \mathbb{R}^2 上的点划分等价类，使得 $(u^1, u^2) \sim (v^1, v^2) \iff (u^1 + k^1, u^2 + k^2), k^1, k^2 \in \mathbb{Z}$。

令 $\bar{\theta}: \mathbb{R}^2 \rightarrow S^1 \times S^1, \bar{\theta}(u^1, u^2) = (e^{2\pi i u^1}, e^{2\pi i u^2})$，则它导出商空间 \mathbb{R}^2/\sim 到 $S^1 \times S^1$ 上的一个同胚 $\bar{\theta}(\bar{(u^1, u^2)}) = \theta(u^1, u^2)$，其中 $\bar{(u^1, u^2)}$ 为 (u^1, u^2) 的等价类。

考虑 C^n 映射 $f: \mathbb{R}^1 \rightarrow S^1 \times S^1, f(t) = (e^{2\pi i t}, e^{2\pi i t})$。

当 α 为正无理数时，我们证明 f 为单值映射，且 $f(\mathbb{R}^1)$ 在 $S^1 \times S^1$ 中是稠密的 (图 5)。

若 f 非单值，则存在 $t_1, t_2 \in \mathbb{R}$，$t_1 \neq t_2$，而 $(e^{2\pi it_1}, e^{2\pi it_2}) = f(t_1) = f(t_2) = (e^{2\pi it_2}, e^{2\pi it_2})$，于是 $t_1 - t_2 = k, \alpha(t_1 - t_2) = l$, 其中 $k, l \in \mathbb{Z}, k \neq 0$，这就推出 $\alpha = \frac{l}{k}$ 为有理数，与假设 α 为无理数相矛盾。故 f 为单值。
设 $t_0 \in R$ 为任一点，取 $(w_1, w_2) \in R^2$ 使 $\theta(w_1, aw_2) = f(t_0)$。令 $W = \left(\frac{u_1}{2}, u_2 + \frac{1}{2}\right) \times \left(\frac{u_3}{2}, u_4 + \frac{1}{2}\right)$，则 $(\theta(W), \theta^{-1})$ 为 $f(t_0)$ 关于 $S^1 \times S^1$ 的局部坐标系。取 t_0 关于 R 的局部坐标领域 U，使得 $f(U) \subseteq \theta(W)$。于是，f 在局部坐标系中表示为 $\theta^{-1} f \circ \text{Id}_R = \theta^{-1} f : U \rightarrow W, \theta^{-1} f(t) = (\theta, \alpha t)$，从而 $(\text{rank} f)_{t_0} = \text{rank} (1, \alpha) = 1$。由 t_0 的任意性可见 f 为嵌入。

对任意 $u, v \in (0, 1)$，取 $0 < \varepsilon < \min \{v, 1 - v\}$，由下面的引理 3，存在 $m, l \in Z$，使 $|v - au - ma - l| < \varepsilon$。令 $t = u + m$，则从

$$|v - \{at\} - [at] - l| = |v - at - l| = |v - au - ma - l| < \varepsilon < \min \{v, 1 - v\}$$

得到 $u = \{t\}$ 和 $|v - \{at\}| < \varepsilon$，其中 $\{t\}$ 表示不超过 t 的最大整数，$\{t\} = t - [t]$。这就意味着 $f(R^1)$ 在 $S^1 \times S^1$ 中是稠密的。

下面证明 $f(R^1)$ 不是 1 维正则子流形因而 f 不是嵌入。假设 $f(R^1)$ 是 1 维正则子流形，则对任意 $t_0 \in R^1$，由定理 3，存在 $f(t_0)$ 关于 $S^1 \times S^1$ 的局部坐标领域 (V, ψ) 使得 $\psi(V \cap f(R^1)) = \psi(V) \cap \{(x, 0) | x \in R\}$，显然它在 $\psi(V)$ 中不是稠密的。但是由于 $f(R^1)$ 在 $S^1 \times S^1$ 中稠密，故 $\psi(V \cap f(R^1))$ 在 $\psi(V)$ 中稠密，矛盾。

当 α 为正有理数时，设 $\alpha = \frac{m}{n}$ $(m, n$ 为互质的自然数)，则

$$(e^{2\pi i t_1}, e^{2\pi i t_2}) = (e^{2\pi i t_1}, e^{2\pi i t_2}) \iff t_1 - t_2 = k, \alpha (t_1 - t_2) = \frac{m}{n}$$

$(t_1 - t_2) = l$，其中 $k, l \in Z \iff t_1 - t_2 = sn, s \in Z$。由此可见 $f(R^1)$

![图 7](image-url)
为 $S^1 \times S^1$ 上的一条封闭曲线，它作为 $S^1 \times S^1$ 的子拓扑空间同胚于 S^1。不难验证 $f(R^1)$ 为 $S^1 \times S^1$ 的紧致的 1 维正则子流形（注意 f 为单射）。

引理 3 设 a 为无理数，则对任意 $u \in R$ 和 $e > 0$，存在 $m, l \in Z$，使得 $|u - ma - l| < e$。

证明 若 $k, s \in N, k \neq s, \{ka\} = \{sa\}$，则

$$
a = \frac{(k-s)a}{k-s} = \frac{k\alpha - s\alpha + [k\alpha] - [s\alpha]}{k-s} = \frac{[k\alpha] - [s\alpha]}{k-s}
$$

为有理数，这与已知 a 为无理数相矛盾。于是，$\{ka\} = \{sa\}, k, s \in N \iff k = s$。故 $A = \{\{ka\} | k \in N\}$ 为 $(0, 1)$ 中的无限集，从而必有 A 的某点 $x \in [0, 1]$。对于任意 $n \in N$，必存在 $k, s \in N$，使 $\{ka\} > \{sa\}$ 且 $0 < \{ka\} - \{sa\} < \frac{1}{n}$，记 $m = k - s \in Z$，因为

$$
(k-s)a + [(k-s)a] = (k-s)a - \{sa\} + [k\alpha] - [s\alpha],
$$

$$
-1 < (k-s)a - \{ka\} + \{sa\} = [k\alpha] - [s\alpha] - [(k-s)a] < 1,
$$

所以 $0 < \{ma\} = (k-s)a - \{sa\} < \frac{1}{n}$。由此可知，$\{\{ma\} | m \in Z\}$ 在 $[0, 1]$ 中是稠密的。

对任意 $u \in R$ 和 $e > 0$，取 $n \in N$，使 $\frac{1}{2} < e$。根据上述结论，存在 $m \in Z$ 使 $|u - [u] - ma - [ma]| = |\{u\} - \{ma\}| < \frac{1}{n} < e$，如果令 $l = [u] + [ma]$，则 $|u - ma - l| < e$。

更一般情形，可以证明（参阅Hardy, G. H. and Wright, E. M., p. 375–393）$\alpha_1, \cdots, \alpha_n$ 整系数线性无关 $\iff \{\{t\alpha_1\}, \cdots, \{t\alpha_n\} | t \in R\}$ 在 $[0, 1]^n = \underbrace{[0, 1] \times \cdots \times [0, 1]}_{n \text{个}}$ 中稠密。

类似地，$n=2, f: R^1 \to T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{个}}, f(t) = (e^{2\pi it}, \cdots, e^{2\pi it})$。
$e^{2\pi i}t$) 为 C^r 单浸入但不是嵌入, $f(R)$ 在 T^*M 中稠密，因而它不是 1 维正则子流形。

例 10 设 M 和 N 分别为 m 维和 n 维 $C^r (r \geq 1)$ 流形，$f: M \to N$ 为 C^r 映射，则 $F: M \to M \times N, F(p) = (p, f(p))$ 为 C^r 嵌入且 f 的图形

$$\text{Gr}(f) = \{(p, f(p)) \in M \times N | p \in M\}$$

为 $m + n$ 维 C^r 积流形 $M \times N$ 的 m 维 C^r 闭正则子流形。

设 $p_0 \in M$ 为任意一点，$q_0 = f(p_0)$，取 p_0 的局部坐标系为 $(U, \varphi), \{x^i\}, q_0 = f(p_0)$ 的局部坐标系为 $(V, \psi), \{y^i\}$，则

$$(\varphi, \psi) \circ F \circ \varphi^{-1}(x) = (\varphi, \psi) \circ (x, \psi f(x)) = (\varphi(p), \psi f(p)) = (x, \psi f \circ \varphi^{-1}(x)) = (x, y),$$

因为 $f \in C^r(M, N)$，故 $F \in C^r(M, M \times N)$ 且

$$\operatorname{rank} F = \operatorname{rank} \begin{pmatrix} \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^m} \\ \vdots & \ddots & \vdots \\ \frac{\partial y^n}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^m} \end{pmatrix} = m.$$

$F: M \to F(M)$ 为同胚是明显的，因而 F 为 C^r 嵌入且 $\text{Gr}(f) = \{(p, f(p)) \in M \times N | p \in M\} = F(M)$ 为 $M \times N$ 的 m 维 C^r 正则子流形。

此外，如果 $(p_n, f(p_n)) \in M \times N, \lim_{n \to +\infty} (p_n, f(p_n)) = (p, q) \in \in M \times N$, 则由 $\lim p_n = p$ 和 f 连续可推出 $q = \lim f(p_n) = f(p)$，故 $(p, q) = (p, f(p)) \in F(M) = \text{Gr}(f)$。

下面的定理说明在 M 的值 l 的 $C^r (r \geq 1)$ 映射 $f: M_1 \to M_2$ 在某点 x 的非空逆象 $f^{-1}(x)$ 是一个 $\dim M_1 - l$ 维的 C^r 正则子流形（$\dim M_1$ 表示 M_1 的维数），由此可构造出大量正则子流形。

定理 4 设 M_i 为 n_i 维 $C^r (r \geq 1)$ 流形，$i = 1, 2$, $f: M_1 \to M_2$ 为 C^r 映射。如果对任意 $x \in M_1$ 有
\[(\text{rank } f)_p = l\] (定值)，
则对任意 \(q \in M_2\)，逆象

\[f^{-1}(q) = \{ p \in M_1 | f(p) = q \}\]

是空集或 \(M_1\) 的 \(n_1 - l\) 维 \(C^r\) 正则子流形。

证明 设 \(M = f^{-1}(q) \neq \emptyset, p \in M\)。记 \(p, q\) 关于 \(M_1, M_2\) 的局部坐标系分别为 \((U, \varphi), (x^i)\) 和 \((V, \psi), (y^j)\)。在 \(p\) 的一个开领域内，令

\[\theta^j = y^j \circ f, \quad j = 1, \ldots, n_2.\]

显然 \(\theta^1, \ldots, \theta^{n_2}\) 为 \(C^r\) 函数。由于 \(\text{rank } \left(\frac{\partial \theta^j}{\partial x^i} \right)_{p(p)} = l\)，所以可以适当改变局部坐标的次序，使

\[
\frac{\partial (\theta^1, \ldots, \theta^l)}{\partial (x^1, \ldots, x^l)}|_{p(p)} \neq 0.
\]

于是，\([\theta^1, \ldots, \theta^l, x^{i_1}, \ldots, x^{i_l}]\) 就成为 \(p\) 关于 \(M_1\) 的局部坐标系，用它代替 \((x^i)\)，则有 \(\theta^i = x^i, i = 1, \ldots, l\)。由于在点 \(p\) 的某个凸开邻域 \(U_0\) 上，\(\text{rank } \left(\frac{\partial \theta^j}{\partial x^i} \right)_{p(p)} = l\)，所以

\[0 = \frac{\partial (\theta^1, \ldots, \theta^l, \theta^j)}{\partial (x^1, \ldots, x^l, x^j)} = \det \begin{pmatrix} I_l & 0 \\ 0 & \frac{\partial \theta^j}{\partial x^i} \end{pmatrix}\]

\[i = l + 1, \ldots, n_1; j = l + 1, \ldots, n_2,\]

这就推出了 \(\theta^{i_1}, \ldots, \theta^{i_l}\) 仅是 \(x^1, \ldots, x^l\) 的函数。设 \(y^j(q) = a^j, j = 1, \ldots, n_2\)，并可假定 \(a^j = 0\) (否则用 \(y^j - a^j\) 代替 \(y^j\))，于是

\[M \cap U_0 = \{ p' \in U_0 | f(p') = q \}\]

\[= \{ p' \in U_0 | \theta^j(p') = 0, j = 1, \ldots, n_1 \}\]

\[= \{ p' \in U_0 | x^i(p') = 0, i = 1, \ldots, l \}.
\]

因此，由定理 3 可以引进 \(C^r\) 流形构造，使 \(M\) 成为 \(M_1\) 的 \(n_1 - l\) 维 \(C^r\) 正则子流形。
例11 设 \(f: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^1 \), \(f(x) = \sum_{i=1}^{n+1} (x_i)^2 \), 其中 \(x = (x^1, \ldots, x^{n+1}) \), 则 \(\text{rank}(f) = \text{rank}(2x^1, \ldots, 2x^{n+1} - 1) = 1 (x \in \mathbb{R}^{n+1} \setminus \{0\}) \), 因此, \(S^* = \{ x \in \mathbb{R}^{n+1} | f(x) = \sum_{i=1}^{n+1} (x_i)^2 = 1 \} = f^{-1}(1) \) 为 \(\mathbb{R}^{n+1} \setminus \{0\} \)（从而也为 \(\mathbb{R}^{n+1} \)）的 n 维 \(C^0 \) 正则子流形。

注1 从定理4的证明可看出，如果 \(\text{rank} f \) 在含 \(M = f^{-1}(q) \) \(\cap \mathcal{Z} \) 的某开集中为常值 \(l \)，则 \(M = f^{-1}(q) \) 仍是 \(M \) 的 \(n-l \) 维 \(C^r \) 正则子流形。但是，如果 \(\text{rank} f \) 在 \(M = f^{-1}(q) \) 上为常值 \(l \)，并不能推出它为 \(M \) 的 \(n-l \) 维 \(C^r \) 正则子流形。例如：\(f: \mathbb{R}^1 \to \mathbb{R}^1 \), \(f(x) = x^3, M = f^{-1}(0) = \{ x \in \mathbb{R}^1 | f(x) = x^3 = 0 \} = \{ 0 \}, \text{rank} f \mid M = 0 \), 但 \(M \) 不是 \(\mathbb{R}^1 \) 的 1 维 \(C^r \) 正则子流形。

§3 单位分解

流形上积分的定义、Stokes 定理和向量丛上度量的存在性定理的证明等都需要用到单位分解存在性定理，因此它是近代数学中的一个工具，下而介绍单位分解的定义和有关的定理。

定义1 设 \(\{ U_\alpha | \alpha \in \Gamma \} \) 为 \(M \) 的子族集，如果 \(A \subset \bigcup_{\alpha \in \Gamma} U_\alpha \)，则称
\(\{ U_\alpha | \alpha \in \Gamma \} \) 为 \(A \) 的一个覆盖。如果 \(\Gamma' \subset \Gamma \)，且 \(A \subset \bigcup_{\alpha \in \Gamma'} U_\alpha \)，则称 \(\{ U_\alpha | x \in \Gamma' \} \) 为 \(\{ U_\alpha | \alpha \in \Gamma \} \) 的一个子覆盖。

设 \(\{ U_\alpha | \alpha \in \Gamma \} \) 和 \(\{ V_\beta | \beta \in \Delta \} \) 为 \(A \subset M \) 的覆盖，如果对任意 \(\beta \in \Delta \)，存在 \(\alpha \in \Gamma \) 使 \(V_\beta \subset U_\alpha \)，则称 \(\{ V_\beta | \beta \in \Delta \} \) 为 \(\{ U_\alpha | \alpha \in \Gamma \} \) 的一个粗子。

设 \((M, \tau) \) 为拓扑空间，\(\{ U_\alpha | \alpha \in \Gamma \} \) 为 \(M \) 的一个子族集，如果对任意 \(p \in M \)，有 \(p \) 的一个开邻域 \(W_p \)，使除有限个 \(\alpha \) 外，\(W_p \cap U_\alpha = \emptyset \)，则称 \(\{ U_\alpha | \alpha \in \Gamma \} \) 是局部有限的。
设\((M, \tau)\)为\(T_2\)空间，如果对\(M\)的每个开覆盖\((U_\alpha | \alpha \in \Gamma)\)（\(U_\alpha\)为开集）都有局部有限的开精致\((V_\beta | \beta \in \mathcal{A})\)（\(V_\beta\)为开集），则称\((M, \tau)\)为仿紧空间。

设\((M, \tau)\)为\(T_2\)空间，如果\(G_k \in \tau\)，闭包\(\overline{G}_k\)是紧致的，且\(\overline{G}_k \subseteq G_{k+1}\)，\(k \in \mathbb{N}\)，则称\(M\)是\(\sigma\)紧的。

例1 紧致的\(T_2\)空间\((M, \tau)\)既然是\(\sigma\)紧的（取\(G_k = M\)），又是仿紧的（任何开覆盖必有有限的子开覆盖，它就是局部有限的精致）。

定理1 (1) 如果\((M, \tau)\)是\(\sigma\)紧的，则它是仿紧的。

(2) 如果\(M\)是\(n\)维拓扑流形，且又是\(A_1\)空间（即具有可数拓扑基），则它是\(\sigma\)紧的，因而也是仿紧的。

证明 (1) 设\((U_\alpha | \alpha \in \Gamma)\)为\(M\)的任何开覆盖。对每个\(k \in \mathbb{N} \cup \{0\}\)，考虑开集\((\overline{G}_{k+2} - \overline{G}_{k-1}) \cap \bigcup_{i=0}^{k} G_i = G_k = \emptyset\)。这些集合覆盖紧致集\(\overline{G}_{k+1} - G_k\)。因此，我们可以选有限的子开覆盖\((V_1^k, \ldots, V_{n,k}^k)\)。

因为\(\bigcup_{k=0}^{\infty} (\overline{G}_{k+1} - G_k) = M\)，故\((V_1^1, \ldots, V_{n,k}^k, |k = 0, 1, 2, \ldots)\)为\(M\)的开覆盖且明显地它是\((U_\alpha | \alpha \in \Gamma)\)的开精致。对于任何\(x \in M\)，设\(G_{k+1}\)是\(x\)的一个开领域，显然\(G_{k+1} \cap V_j^k = \emptyset\)。于是，\((V_1^1, \ldots, V_{n,k}^k, |k = 0, 1, 2, \ldots)\)是局部有限的。这就证明了\((M, \tau)\)是仿紧的。

(2) 对任何\(p \in M\)，取\(p\)的局部坐标领域\((W_p, \varphi_p)\)，使得\(\varphi_p(W_p) = \{x \in \mathbb{R}^n | \sum_{i=1}^{n} (x_i)^2 < 1\}\)。由拓扑流形\(M\)是\(T_2\)空间，故开集\(U_p = \varphi_p^{-1}\{x \in \mathbb{R}^n | \sum_{i=1}^{n} (x_i)^2 < 1\}\)的闭包\(\overline{U_p} = \varphi_p^{-1}\{x \in \mathbb{R}^n | \sum_{i=1}^{n} (x_i)^2 \leq \frac{1}{2}\}\)是紧致的，这就推出了\(M\)是局部紧的。
由于 M 为 A_2 空间，根据 Lindelöf 定理推出 M 的开覆盖 $\{U_p\}_{p \in M}$ 有可数的子开覆盖 $\{U_i = U_p | i = 1, 2, \cdots\}$。应用归纳定义 G_k 如下：令 $G_1 = U_1$，则 $G_k = U_k$ 是紧致的。假定 G_k 已被定义，取 $j > k$ 并使 $G_j \subset \bigcup_{i = 1}^j U_i$，令 $G_{k+1} = \bigcup_{i = 1}^j U_i$，它是子集且 $\overline{G_{k+1}} = \bigcup_{i = 1}^j U_i$ 是紧致的。显然，$G_k \subset G_{k+1}$，$\bigcup_{k = 1}^\infty G_k = \bigcup_{i = 1}^\infty U_i = M$，这就推出了 M 是 σ 紧致的。

引理 1 设 $C^n(\pi) = \{x \in \mathbb{R}^n | \langle x_i, i = 1, \cdots, n \rangle \}$，则存在 C^n 函数 $f: \mathbb{R}^n \rightarrow \mathbb{R}$，使得

$$f\big|_{C^n(\pi)} = \frac{1}{2}, \quad 0 < f|_{C^n(\pi)} \leq 1, \quad f|_{\mathbb{R}^n - C^n(\pi)} = 0.$$

证明 由 §1 引理 1 可知

$$\varphi(t) = \begin{cases} e^{-\frac{1}{t}}, & t > 0, \\ 0, & t \leq 0 \end{cases}$$

是 C^n 类的。令

$$g(t) = \frac{\varphi(t)}{\varphi(t) + \varphi(1-t)}$$

当 $0 < t < 1$ 时，$g'(t) > 0$。再令

$$h(t) = g(2t + 2) \cdot g(-2t + 2)$$

于是

$$f(x^1, \cdots, x^n) = h(x^1) \cdots h(x^n)$$

为所求的 C^n 函数（图 8）。
引理 2 设 U 为 n 维 C^r 流形 $(M, Ω)$ 的开子集 $(1 \leq r \leq ∞)$, A 为 M 的紧致子集, 且 $A \subset U$. 则存在 C^r 函数 $\psi: M \to \mathbb{R}$, 使得 $\psi|_A \geq 0$, $\psi|_{\partial A} > 0$ 且在 $M - U$ 的某个开集内为 0.

证明 对于任意 $p \in A$, 选取 p 的局部坐标系 (U_p, φ_p), 使得 $U_p \subset U$ 且 $\varphi_p(p) = 0$, $\overline{C^0(1)} \subset \varphi_p(U_p)$ (至多再作一个线性变换). 应用引理 1 中的 f, 令

$$\psi_p(q) = \begin{cases} f(\varphi_p(q)), & q \in U_p; \\ 0, & q \in M - \varphi_p^{-1}(C^0(1)). \end{cases}$$

显然, $\psi_p: M \to \mathbb{R}$ 是 C^r 类的, 且 $\psi_p(p) = f(\varphi_p(p)) = f(0) = 0$. 此外, 设 $V_p = \varphi_p^{-1}(\overline{C^0(1)})$, 因为 A 紧致, $A \subset \bigcup_{p \in A} V_p$, 所以存在 V_p, \ldots, V_{p_0}.
\[V_{\mu} \] 使 \(A \subset \bigcup_{i=1}^{k} V_{\mu_i} \). 于是, \(\psi : M \to \mathbb{R}, \psi = \psi_{\mu_1} + \cdots + \psi_{\mu_k} \) 是 \(C^r \) 类的,

\[\psi \mid_{M \neq 0}, \psi(g) = \sum_{i=1}^{k} \psi_{\mu_i}(g) > 0 \quad (g \in A), \] 且 \(\psi \) 在含 \(M - U \) 的开集

\[M - \bigcup_{i=1}^{k} U_{\mu_i} \] 内为 0.

定义 2
设 \(\{g_{\alpha} : \alpha \in \Gamma\} \) 为 \(n \) 维 \(C^r (1 \leq r \leq \infty) \) 流形 \((M, \emptyset)\) 上的一族 \(C^r \) 函数 (\(\Gamma \) 为指标集, 不必是至多可数集). 如果它满足:

1. \(g_{\alpha} \) 的支持 \(\text{Supp} g_{\alpha} = \{x \in M | g_{\alpha}(x) \neq 0\} \) 是紧致的;
2. \(\{\text{Supp} g_{\alpha} : \alpha \in \Gamma\} \) 是局域有限的;
3. \(\sum_{\alpha \in \Gamma} g_{\alpha}(x) = 1, g_{\alpha}(x) \geq 0, x \in M, \alpha \in \Gamma. \)

则称 \(\{g_{\alpha} : \alpha \in \Gamma\} \) 为 \((M, \emptyset)\) 的一个单位 (1 的) 分解.

设 \(\{U_{\alpha} : \alpha \in \Gamma\} \) 为 \(n \) 维 \(C^r (1 \leq r \leq \infty) \) 流形 \((M, \emptyset)\) 上的一个局部有限的开覆盖, \(\{g_{\alpha} : \alpha \in \Gamma\} \) 为 \((M, \emptyset)\) 的一个单位分解. 如果 \(\text{Supp} g_{\alpha} \subset U_{\alpha}, \alpha \in \Gamma \), 则称 \(\{g_{\alpha} : \alpha \in \Gamma\} \) 为从属于 \(\{U_{\alpha} : \alpha \in \Gamma\} \) 的一个单位分解.

定理 2
\(n \) 维 \(\sigma \) 紧的 \(C^r (1 \leq r \leq \infty) \) 流形 \((M, \emptyset)\) 上存在一个单位分解 \(\{g_i : i = 1, 2, \cdots \} \).

证明 因为 \((M, \emptyset)\) 是 \(\sigma \) 紧的, 故存在 \(\{G_k : k = 1, 2, \cdots\} \), 使 \(G_k \) 为开集, \(G_k \) 紧致, 且 \(G_1 \subset G_2 \subset G_3 \subset \cdots \). 对任意 \(k \) 及 \(p \in G_{k+2} - G_{k-1} \), 必有 \(p \) 的局部坐标系 \((U_{p,k}, \varphi_{p,k})\), 使 \(U_{p,k} \subset G_{k+2} - G_{k-1} \), \(G_{k+2} \subset \varphi_{p,k}(U_{p,k}) \). 选有限个 \(\{\varphi_{p,k}^{-1}(C^n(\frac{1}{2})) | i = 1, \cdots, n(k)\} \) 覆盖紧致集 \(G_{k+2} - G_k \). 类似于定理 1 (1) 证明可知 \(\{U_{p,k} : k = 1, 2, \cdots; i = 1, \cdots, n(k)\} \) 和 \(\{\varphi_{p,k}^{-1}(C^n(\frac{1}{2})) | i = 1, 2, \cdots; i = 1, \cdots, n(k)\} \) 都是

- 40 -
\(M \) 的局部有限的开覆盖. 为方便, 记前者为 \(\{(U_i, \varphi_i) \mid i = 1, 2, \ldots\} \), 并令 \(V_i = \varphi_i^{-1}(C^n(\frac{1}{2})) \), \(i = 1, 2, \ldots \). 作函数 \(\psi_i : M \to \mathbb{R} \),

\[
\psi_i(x) = \begin{cases} f \circ \varphi_i(x), & x \in U_i, \\ 0, & x \in M - \varphi_i^{-1}(C^n(1)), \end{cases}
\]

其中 \(f \) 为引理 1 中的函数. 易见 \(\psi_i \) 是 \(C^r \) 的, 且

\[
\psi_i(x) \begin{cases} > 0, & x \in V_i, \\ 0, & x \in M - \varphi_i^{-1}(C^n(1)). \end{cases}
\]

由上述构造法可知, 对任意 \(p \in M \), 存在 \(p \) 的开邻域 \(W_p \) 使除有限个 \(U \) 外, 有 \(\psi_i \mid W_p = 0 \). 因此, \(\sum_{i=1}^{\infty} \psi_i(x) \) 为 \(C^r \) 函数. 此外, 因为 \(\{V_i \mid i = 1, 2, \ldots\} \) 为 \(M \) 的一个开覆盖, 故对任意 \(p \in M \), 至少存在一个含 \(p \) 的 \(V_i \), 于是 \(\psi_i(p) > 0 \), 这就推出了 \(0 < \sum_{i=1}^{\infty} \psi_i(x) < +\infty \). 我们令

\[
g_i(x) = \frac{\psi_i(x)}{\sum_{j=1}^{\infty} \psi_j(x)} \begin{cases} > 0, & x \in V_i, \\ 0, & x \in M - \varphi_i^{-1}(C^n(1)). \end{cases}
\]

则 \(\{g_i \mid i = 1, 2, \ldots\} \) 为从属于 \(\{U_i \mid i = 1, 2, \ldots\} \) 的一个单位分解. 井

定理 3 (单位分解存在性定理)

(1) 设 \(\{U_\alpha \mid \alpha \in \Gamma \} \) 为 \(n \) 维 \(C^r (1 \leq r \leq \infty) \) 仿紧流形 \((M, \emptyset) \) 的一个局部有限的开覆盖, 且 \(U_\alpha \) 是紧致的, 则存在一个从属于 \(\{U_\alpha \mid \alpha \in \Gamma \} \) 的单位分解 \(\{g_\alpha \mid \alpha \in \Gamma \} \).

(2) \(n \) 维 \(C^r (1 \leq r \leq \infty) \) 仿紧流形 \((M, \emptyset)\) 具有单位分解.

证明 (1) 对任意 \(x \in M \), 存在 \(x \) 的一个局部坐标邻域 \(U_x \), 使得 \(U_x \subset U_\alpha \) (某个 \(\alpha \in \Gamma \)). 因为 \(M \) 仿紧, 所以 \(M \) 的开覆盖 \(\{U_x \mid x \in M\} \) 有一个局部有限的开精致 \((W_{\beta} \mid \beta \in \Delta) \). 于是, 对任意 \(\alpha \in \Gamma \), 令
\[V_a^* = \bigcup_{\overline{W}_\beta \subset U_a} W_\beta \] (如果不存在 \(W_\beta \subset U_a \)，令 \(V_a^* = \emptyset \)。因为 \(\{ W_\beta \mid \beta \in \mathcal{A} \} \)是局部有限的，故 \(V_a^* = \bigcup_{\overline{W}_\beta \subset U_a} W_\beta \subset U_a \subset U_a \)。显然，\(\{ V_a^* \mid \alpha \in \Gamma \} \)也是M的一个局部有限的开覆盖，且 \(V_a^* \)是紧致的，同理可得到M的局部有限的开覆盖 \(\{ V_\alpha \mid \alpha \in \Gamma \} \)，使得 \(V_\alpha \)是紧致的，且

\[V_a \subset V_\alpha \subset V_a^* \subset V_\alpha^* \subset U_a \subset U_a. \]

由引理2，对任意 \(\alpha \in \Gamma \)，存在M上的C^r函数 \(\psi_\alpha \geq 0 \)，且在紧致集 \(V_\alpha \)上 \(\psi_\alpha \geq 0 \)，在 \(V_a^* \)上 \(\psi_\alpha = 0 \)。因为 \(V_a \subset \text{Supp} \psi_\alpha \subset V_a^* \subset U_a \cup \{ \alpha \in \mathbb{R} \text{是局部有限的，故类似于定理2最后的证明可知} \sum_{\alpha \in \Gamma} \psi_\alpha(x) \text{是C}^r \text{类的，且} 0 < \sum_{\alpha \in \Gamma} \psi_\alpha(x) < +\infty, \]

令

\[g_\alpha(x) = \frac{\psi_\alpha(x)}{\sum_{\alpha \in \Gamma} \psi_\alpha(x)}, \]

则 \(\{ g_\alpha \mid \alpha \in \Gamma \} \)为从属于 \(\{ U_\alpha \mid \alpha \in \Gamma \} \)的一个单位分解。

（2）对任意 \(x \in M \)，由定理1 (2)，存在 \(x \)的一个坐标邻域 \(U_x \)使得 \(U_x \)是紧致的。因为M紧致，所以M的开覆盖 \(\{ U_x \mid x \in M \} \)必有一个局部有限的开精约 \(\{ U_\alpha \mid \alpha \in \Gamma \} \)。显然，\(U_a \subset U_x \) (某个 \(x \))，因而 \(U_a \)是紧致的。再由(1)，存在一个从属于 \(\{ U_\alpha \mid \alpha \in \Gamma \} \)的单位分解

\[\{ g_\alpha \mid \alpha \in \Gamma \}. \]

定理4 设 \(\{ U_\alpha \mid \alpha \in \Gamma \} \)为 \(n \)维C^r (1 \leq r \leq \infty) 紧致流形 (M, \mathbb{R}) 的一个开覆盖，则存在一个从属于它的广义单位分解

\[\{ g_\alpha \mid \alpha \in \Gamma \}: g_\alpha \in C^r(M, \mathbb{R}), \text{Supp} g_\alpha \subset U_\alpha, \{ \text{Supp} g_\alpha \mid \alpha \in \Gamma \} \text{是局部有限的，} \quad g_\alpha(x) \geq 0, \quad \sum_{\alpha \in \Gamma} g_\alpha(x) = 1, \quad x \in M, \alpha \in \Gamma. \]

注意： \(U_a \) 和 \(\text{Supp} g_\alpha \) 未必紧致。
证明 若 \(\{ U_\alpha | \alpha \in \Gamma \} \) 为 \(M \) 的开覆盖，则对任意 \(x \in M \)，存在 \(\alpha \in \Gamma \)，使 \(x \in U_\alpha \)。取 \(x \) 的开邻域 \(V_x \)，使 \(V_x \) 紧致且 \(V_x \subseteq U_\alpha \)。则 \(\{ V_x | x \in M \} \) 为 \(\{ U_\alpha | \alpha \in \Gamma \} \) 的一个开精简，因为 \((M, \otimes) \) 仿紧，所以存在 \(\{ V_x | x \in M \} \) 的（因而也是 \(\{ U_\alpha | \alpha \in \Gamma \} \) 的）局部有限的开精简 \(\{ W_\beta | \beta \in \Delta \} \)，且显然 \(W_\beta \) 紧致。取 \(\theta: \Delta \to \Gamma \)，使对任何 \(\beta \in \Delta \)，唯一对应一个 \(\theta(\beta) \in \Gamma \) 且 \(W_\beta \subseteq U_{\theta(\beta)} \)。由定理 3，存在一个从属于 \(\{ W_\beta | \beta \in \Delta \} \) 的单位分解 \(\{ \varphi_\beta | \beta \in \Delta \} \)。对任意 \(\alpha \in \Gamma \)，令 \(g_\alpha(x) = \sum_{\beta: \alpha = \theta(\beta)} \varphi_\beta(x) \)。如果 \(\alpha \in \theta(\Delta) \) 令 \(g_\alpha(x) = 0 \)，\(x \in M \)。由于 \(\{ \text{Supp} \varphi_\beta | \beta \in \Delta \} \) 局部有限，故 \(g_\alpha \in C^r(M, R) \)，\(\text{Supp} g_\alpha \subseteq \bigcup_{\beta: \alpha = \theta(\beta)} \text{Supp} \varphi_\beta \subseteq U_\alpha \) 以及 \(\{ \text{Supp} g_\alpha | \alpha \in \Gamma \} \) 也是局部有限的，此外，显然 \(\forall \alpha \in \Gamma \), \(\sum_{x \in \Gamma} g_\alpha(x) = 1 \)，\(x \in M \)，\(\alpha \in \Gamma \)。这就证明了 \(\{ g_\alpha | \alpha \in \Gamma \} \) 为从属于 \(\{ U_\alpha | \alpha \in \Gamma \} \) 的广义单位分解。

如果定理 4 中的仿紧改为 \(0 \) 紧，读者不用定理 3 的结论而直接用定理 2 和 4 的方法完成此定理的证明。

推论 1 设 \((M, \otimes) \) 为 \(n \) 维 \(C^r(1 \leq r \leq \infty) \) 仿紧流形，\(A \subseteq U \subseteq M \)，\(A \) 为闭集，\(U \) 为开集。

（1）证明：存在 \(C^r \) 函数 \(\varphi: M \to R \)，使得满足：(a) \(0 \leq \varphi(x) \leq 1 \)，\(x \in M \)；(b) \(\varphi(x) = 1 \)，\(x \in A \)；(c) \(\text{Supp} \varphi \subseteq U \)。

（2）如果 \(F: U \to R^m \) 为 \(C^r \) 映射，则存在 \(C^r \) 映射 \(G: M \to R^m \)，使得 \(G|_A = F|_A \)。

证明（1）由于 \(A \subseteq U \subseteq M \)，\(A \) 为闭集，\(U \) 为开集，故 \(\{ U, M - A \} \) 为 \(M \) 的开覆盖。因 \(M \) 仿紧，根据定理 4，存在从属于开覆盖 \(\{ U, M - A \} \) 的广义单位分解 \(\{ \varphi, \psi \} \subseteq C^r(M, R) \)，使 \(\text{Supp} \varphi \subseteq U \)，\(\text{Supp} \psi \subseteq M - A \)，\(\varphi + \psi = 1 \)，\(\varphi, \psi \geq 0 \)。于是 \(\psi|_A = 0 \)，因而 \(\varphi|_A = 1 \)，且显然 \(0 \leq \varphi \leq 1 \)。这就证明了 \(\varphi \) 为所求函数。
（2）设 \(\varphi \) 为(1)中所述函数，令

\[
G(x) = \begin{cases}
\varphi(x)F(x), & x \in U, \\
0 & x \in \text{Supp} \varphi.
\end{cases}
\]

由于 \(\varphi \in C^r(M, \mathbb{R}), 0 \leq \varphi \leq 1, \varphi|_A = 1 \)，故 \(G \in C^r(M, \mathbb{R}) \) 且 \(G|_A = F|_A \)。

推论 2 设 \(A_0 \) 和 \(A_1 \) 为 \(M \) 上的不相交的闭集，则存在一个 \(C^r \) 函数 \(\varphi : M \rightarrow \mathbb{R} \)，使得 \(0 \leq \varphi \leq 1, \varphi|_{A_0} = 0, \varphi|_{A_1} = 1 \)。

证明 由于 \(A_0 \) 和 \(A_1 \) 为 \(M \) 上的不相交的闭集，故 \(\{M - A_0, M - A_1\} \) 为 \(M \) 的开覆盖，根据定理 4，存在从属于它的广义单位分解 \(\{\varphi, \psi\} \)，使 \(\varphi, \psi \in C^r(M, \mathbb{R}), \varphi, \psi \geq 0, \varphi + \psi = 1 \)，\(\text{Supp} \varphi \subseteq M - A_0 \)，\(\text{Supp} \psi \subseteq M - A_1 \)。于是，\(0 \leq \varphi \leq 1, \varphi|_{A_0} = 0, \psi|_{A_1} = 0 \)，从而 \(\varphi|_{A_1} = 1 \)。这就证明了 \(\varphi \) 为所求函数。

利用单位分解我们还可证明 \(C^r \) 函数的延拓定理，为此，先给出下面定义：

定义 3 设 \((M, \mathcal{O}) \) 为 \(n \) 维 \(C^r(r \geq 1) \) 流形，\(A \subseteq M, f : A \rightarrow \mathbb{R} \) 为函数，如果对任意 \(p \in A \)，存在一个 \(p \) 的开邻域 \(U_p \) 和一个 \(C^r \) 函数 \(f_p : U_p \rightarrow \mathbb{R} \)，使得 \(f|_{A \cap U_p} = f_p|_{A \cap U_p} \)，则称 \(f \) 在 \(A \) 上是 \(C^r \) 的。

定理 5 设 \(A \) 为 \(n \) 维 \(C^r(1 \leq r \leq \infty) \) 仿紧流形 \((M, \mathcal{O}) \) 的闭集，则 \(A \) 上的任一 \(C^r \) 函数 \(f \) 可以延拓为 \(M \) 上的一个 \(C^r \) 函数 \(\tilde{f} \)。

证明 由于 \(f \) 在 \(A \) 上为 \(C^r \) 函数，故对任何 \(p \in A \)，存在 \(p \) 的开邻域 \(U_p \) 及 \(C^r \) 函数 \(f_p : U_p \rightarrow \mathbb{R} \)，使得 \(f_p|_{A \cap U_p} = f|_{A \cap U_p} \)。因为 \(A \) 为闭集，故 \(\{U_p | p \in A\} \cup \{M - A\} \) 为 \(M \) 的开覆盖。再由 \(M \) 仿紧，故有从属于它的广义单位分解 \(\{\varphi_p | p \in A\} \cup \{\varphi_A\} \subseteq C^r(M, \mathbb{R}) \)，其中 \(\{\text{Supp} \varphi_p | p \in A\} \)

\(\cup \{\text{Supp} \varphi_A\} \) 局部有限，\(\varphi_p \geq 0, \varphi_A \geq 0, \sum_{p \in A} \varphi_p + \varphi_A = 1 \)，且 \(\text{Supp} \varphi_p \subseteq U_p, \text{Supp} \varphi_A \subseteq M - A \)，令 \(\tilde{f}_p : M \rightarrow \mathbb{R} \)，

- 44 -
\[f_p(x) = \begin{cases} \varphi_p(x) f_p(x), & x \in U_p, \\ 0, & x \in \text{Supp} \varphi_p. \end{cases} \]

显然，\(\text{Supp} f_p \subset \text{Supp} \varphi_p \)，从而\(\{ \text{Supp} f_p | p \in A \} \)局部有限，并且\(f = \sum_{p \in A} f_p \in C^r(M, \mathbb{R}) \)，\(f \)为\(f \)的延拓。

\(R^p \)中大量的光滑曲线，\(n \)维光滑曲面是微分流形的实例，它们是\(R^p \)中的正则子流形。人们自然要问：一个\(n \)维\(C^r(r \geq 1) \)流形\((M, \mathcal{O}) \)在什么条件下能被安装在\(\text{Euclid} \)空间中？即存在一个\(C^r \)嵌入\(F : M \to R^p \)，此时\(F : M \to f(M) \)为同胚。作为\(R^p \)的子拓扑空间，\(F(M) \)（因而\(M \)）为\(A \)空间。此外，我们当然希望\(R^p \)（使流形\(M \)实现的\(\text{Euclid} \)空间）的维数\(N \)越小越好。我们关心的问题是\(N \)能小到什么程度，此时需要加什么条件？对于紧致\(n \)维\(C^r(r \geq 1) \)流形在\(\text{Euclid} \)空间中的实现有以下的定理。

定理 6（紧致流形的嵌入定理）设\((M, \mathcal{O}) \)为紧致\(n \)维\(C^r(1 \leq r \leq \infty) \)流形，则存在\(m \in \mathbb{N} \)以及一个\(C^r \)嵌入\(F : M \to R^m \times R^n \times \cdots \times R^n = R^{m(n+1)} \)。

证明 对于任何\(p \in M \)，选取\(p \)的局部坐标系\((U_p, \varphi_p) \)使得\(\varphi_p(p) = 0 \)，\(\mathcal{O}^m(1) \subset \varphi_p(U_p) \)，令\(V_p = \varphi_p^{-1} \left(\mathcal{O}^n \left(\frac{1}{2} \right) \right) \)。显然，\(\{ V_p | p \in M \} \)为\(M \)的开覆盖，由\(M \)紧致，可选出有限子覆盖\((V_{p_1}, \ldots, V_{p_m}) \)。

应用引理 1 中的函数\(f \)，设

\[f_1(x) = \begin{cases} f(\varphi_{p_1}(x)), & x \in U_{p_1}, \\ 0, & x \in M - \varphi_{p_1}^{-1} \left(\mathcal{O}^n(1) \right). \end{cases} \]

显然\(f_1 : M \to R \)是\(C^r \)的。我们定义

\[F : M \to R^m \times R^n \times \cdots \times R^n = R^{m(n+1)} \]

\(m \)个。
为
\[F(x) = (f_1(x), \cdots, f_m(x); f_1(x)\varphi_{p_1}(x), \cdots, f_m(x)\varphi_{p_m}(x)). \]
由\(f_i \) 的性质，\(f_i(x)\varphi_{p_i}(x) \) 可视作\(M \) 上的 \(C^* \) 映射，只须在 \(U_p \) 外边定义为 0。显然，\(F \in C^*(M, \mathbb{R}^{m(n+1)}) \)。下面可以证明 \(F \) 就是所要求的 \(C^* \) 嵌入。

首先证明 \(F \) 是单射。如果 \(F(p) = F(q) \)，则对任何 \(i \) 有 \(f_i(p) = f_i(q) \)，\(i = 1, \cdots, m \)。若 \(\varphi \in \varphi_{p_i}^{-1}(C^*(1)) \)，则从 \(f_i(p) \cdot \varphi_{p_i}(p) = f_i(q) \cdot \varphi_{p_i}(q) \) 和 \(f_i(p) = f_i(q) > 0 \) 推出 \(\varphi \in \varphi_{p_i}^{-1}(C^*(1)) \) 和 \(\varphi_{p_i}(p) = \varphi_{p_i}(q) \)。因为 \(\varphi_{p_i} \) 是同胚，故 \(p = q \)，从而 \(F \) 为单射。

又因 \(M \) 紧致，所以一一连续映射 \(F: M \to F(M) \subset \mathbb{R}^{m(n+1)} \) 为同胚（若 \(A \) 为紧致流形 \(M \) 的闭集，则 \(A \) 紧致，于是 \((F^{-1})^{-1}(A) = F(A) \subset F(M) \) 为紧致集，由此得到 \(F(A) \) 为闭集和 \(F^{-1} \) 连续）。

最后证明 \(\text{rank } F = n \)。对于任何 \(p \in M \)，由于 \(\{V_{p_1}, \cdots, V_{p_m}\} \) 为 \(M \) 的开覆盖，则存在 \(\lambda \in \{1, \cdots, m\} \)，使 \(q \in V_{p_\lambda} \)。我们利用局部坐标系 \((U_{p_\lambda}, \varphi_{p_\lambda}) \) 可以证明 Jacobi 矩阵
\[
D\left(\text{Id}_{\mathbb{R}^{m(n+1)}} \circ \varphi_{p_\lambda}^{-1}\right) = D(F \circ \varphi_{p_\lambda}^{-1})
\]
包含非异的 \(n \times n \) 矩阵，因而 \((\text{rank } F)_p = n \)。事实上，设 \(\varphi_{p_\lambda}(x) = (u^1, \cdots, u^n) = u \)，\(\varphi_{p_\lambda}(p) = (u^1_0, \cdots, u^n_0) = u_0 \)。因为 \(f(u) \) 在 \(u_0 \) 的一个邻域中恒为 1，所以 \(f(u_0) = 1 \)，\(\frac{\partial f}{\partial u^i}(u_0) = 0 \)。于是，
\[
\begin{align*}
\frac{\partial (f(u)u^1, \cdots, f(u)u^n)}{\partial (u^1, \cdots, u^n)} |_{u_0} & = \\
\begin{pmatrix}
\frac{\partial f}{\partial u^1}u^1 + f(u) \cdot 1 & \frac{\partial f}{\partial u^2}u^1 + f(u) \cdot 0 & \cdots & \frac{\partial f}{\partial u^n}u^1 + f(u) \cdot 0 \\
\frac{\partial f}{\partial u^1}u^2 + f(u) \cdot 0 & \frac{\partial f}{\partial u^2}u^2 + f(u) \cdot 0 & \cdots & \frac{\partial f}{\partial u^n}u^2 + f(u) \cdot 0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f}{\partial u^1}u^n + f(u) \cdot 0 & \frac{\partial f}{\partial u^2}u^n + f(u) \cdot 0 & \cdots & \frac{\partial f}{\partial u^n}u^n + f(u) \cdot 0
\end{pmatrix}
\end{align*}
\]
= det

\[
\begin{pmatrix}
\frac{\partial f}{\partial u^1}u^1 + f(u) \cdot 1 & \frac{\partial f}{\partial u^2}u^1 + f(u) \cdot 0 & \cdots & \frac{\partial f}{\partial u^n}u^1 + f(u) \cdot 0 \\
\frac{\partial f}{\partial u^1}u^2 + f(u) \cdot 0 & \frac{\partial f}{\partial u^2}u^2 + f(u) \cdot 0 & \cdots & \frac{\partial f}{\partial u^n}u^2 + f(u) \cdot 0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f}{\partial u^1}u^n + f(u) \cdot 0 & \frac{\partial f}{\partial u^2}u^n + f(u) \cdot 0 & \cdots & \frac{\partial f}{\partial u^n}u^n + f(u) \cdot 0
\end{pmatrix}
\]

\[\cdot 46 \cdot \]
关于紧致\(n \)维\(C^r(1 \leq r \leq \infty) \)流形的嵌入定理证明比较简单，
但流形实现的 Euclid 空间\(\mathbb{R}^s \)的维数\(N = m(n+1) \)可能很高。下面我们不加证明地介绍 Whitney 嵌入定理(参阅[Bröcher, Th.
and Jänich, K. , p71] 和[Sternberg, S. , p68])。

定理 7 (Whitney 嵌入定理) 如果\((M, \mathcal{O}) \)为\(n \)维\(C^r \)流形
\((1 \leq r \leq \infty) \)且又是\(A \)空间，则存在\(C^r \)嵌入\(F: M \to \mathbb{R}^{2n+1} \)，且\(F(M) \)
为\(\mathbb{R}^{2n+1} \)中的闭子集。

在§ 1 和本节已分别引进了微分流形和仿紧的概念，同时已
经知道，一个\(C^r \)流形\((0 \leq r \leq \omega) \)自然是一个\(C^k \)流形\((0 \leq k \leq r) \)。反
之，从 Whitney 的一些结果即得（参阅[Whitney, H.]1 和[Whit-
ney, H.]2）：任何一个仿紧的\(C^k \)流形\((k \geq 1) \)都具有一个与其上已
给的\(C^k \) 构造\(C^k \)相容的\(C^r \)构造\((k \leq r \leq \omega) \)，并且在相差到一个\(C^\omega \)
微分同胚意义下是唯一的。但是，一个\(C^\omega \)流形（拓扑流形）上不一
定具有\(C^1 \)构造（参阅[Kervaire, M.])。此外，在同一个\(C^\omega \)流形（拓
扑流形）上可以有不微分同胚的微分构造。Milnor 于 1956 年发
表一篇文章给出了一个与 7 维标准球面同胚，但不微分同胚的微
分流形（Milnor 怪球，参阅[Milnor, J. W.]1）时引起了人们巨
大的惊讶。更进一步，Kervaire 和 Milnor 于 1962 年证明了\(S^7 \)上
共有 28 种不微分同胚的微分构造（参阅 [Kervaire, M. and
Milnor, J. W.]）。

• 47 •
第二章 向量丛和切丛

本章§3 中为建立 C^∞ 映射 $f: M_1 \to M_2$ 在 $p \in M_1$ 处的微分或 Jacobi 映射 $f_* p$, 必须在一点处线性化，即引进切向量和切空间的概念。切向量的引进可采用近代观点或不变观点或映射观点；也可采用古典观点或坐标观点，将 M 上的切空间按一定方式使其成为切丛。在引入切丛之前，§2 先介绍了近代数学中应用广泛并且极其重要的向量丛或更一般的纤维丛的概念。向量丛或纤维丛中，两个相交的平凡丛国卡之间由给定的拓扑群或 C' 群或 $C'(r \geq 1)$ Lie 群相粘贴在一起，而 §1 阐述的即是这种既有拓扑或流形构造又有与拓扑或流形相容的抽象群构造的拓扑群、或 C' 群或 $C'(r \geq 1)$ Lie 群。§4 给出了 C^∞ 切向量场和积分曲线之间的关系，并应用 1 参数群的引理 1 证明了连通 C^∞ 流形上的齐性定理，从而它成为一个齐性空间。

§1 Lie 群

Lie 群具有两种构造，一种是流形，另一种是与流形相容的群的构造，确切定义如下。

定义 1 设集合 G 满足：(1) G 为拓扑空间；(2) G 为群；(3) 群运算是 C^0 类的，即乘法：$G \times G \to G, (a, b) \mapsto a \cdot b$ 和逆运算 $J: G \to G, a \mapsto a^{-1}$ 是 C^0 类的，则称 G 为拓扑群。

如果集合 G 满足：(1) G 为 n 维 C' 流形，$r \in \{0, 1, \cdots, \infty, \omega\}$；(2) G 为群；(3) 群运算是 C' 类的（群与流形 C' 相容），则称 G 为 n 维 C' 群。如果 $r \geq 1$, 称 G 为 n 维 C' Lie 群；如果 $r = \infty$, 称 G 为 n 维 C^∞ Lie 群或实解析 Lie 群。类似可定义 n 维复解析 Lie
群。

由 \(J \circ J(a) = J(a^{-1}) = (a^{-1})^{-1} = a \) 可知，\(J: G \to G \) 为 \(C^r \) 同胚。

从定义 1 还可以看出，\(C^r \) 群 \(G \) 为拓扑群，但拓扑群可以不是 \(C^r \) 群。例如，有理数加群 \(Q \) 是拓扑群，但它不是流形，从而不是 \(C^r \) 群。含单位元素 (即 0 元素) 的连通分支为 \(\{0\} \)，注意子群 \(\{0\} \) 不是 \(Q \) 的开集。

\(C^0 \) 群但非 \(C^r (r \geq 1) \) Lie 群的例子叙述如下：设 \(R^1 \) 为 1 维 Euclid 空间的通常 \(C^r \) 流形 \((r \geq 1) \)，\(x, y \in R^1 \)，定义 \(x \) 和 \(y \) 的加法为 \(z := x + y = \sqrt[3]{x^3 + y^3} \)，显然 \(R^1 \) 在此加法下为 \(C^0 \) 群。因为 \(z = \sqrt[3]{x^3 + y^3} \) 的一阶偏导数在 \((0, 0) \) 不连续，故它不为 \(C^r (r \geq 1) \) Lie 群。

定理 1 (1) 定义 1 中条件 (3) \(\Leftrightarrow G \times G \to G, (x, y) \mapsto x \cdot y^{-1} \) 是 \(C^r \) 类的。

(2) 定义 1 中，当 \(r \in \{1, \cdots, \infty, \omega\} \) 时，条件 (3) \(\Leftrightarrow G \times G \to G, \)
(\(x, y) \mapsto x \cdot y \) 是 \(C^r \) 类的。

证明 (1) (\(\Rightarrow \)) 因为 \((x, y) \mapsto (x, y^{-1}) \) 和 \((x, y^{-1}) \mapsto x \cdot y^{-1} \) 是 \(C^r \) 的，故 \((x, y) \mapsto x \cdot y^{-1} \) 是 \(C^r \) 类的。

(\(\Leftarrow \)) 因为 \(y \mapsto (e, y) \) 和 \((e, y) \mapsto e \cdot y^{-1} = y^{-1} \) 是 \(C^r \) 类的，故 \(y \mapsto y^{-1} \) 是 \(C^r \) 类的 (\(e \) 为 \(G \) 的单位元素)。此外，从 \((x, y) \mapsto (x, y^{-1}) \) 和
(\(x, y^{-1}) \mapsto x \cdot (y^{-1})^{-1} = x \cdot y \) 是 \(C^r \) 类的，可推出 \((x, y) \mapsto x \cdot y \) 也是 \(C^r \) 类的。

(2) (\(\Rightarrow \)) 显然。 (\(\Leftarrow \)) 只须证明 \(G \to G, x \mapsto x^{-1} \) 是 \(C^r \) 类的。为此，取 \(e \) 的一个局部坐标系，并将 \(x, y \in G \) 的坐标记为 \(x^i \) 和 \(y^i \)，则在此局部坐标系内，\((x \cdot y)^i = \varphi^i(x, y) \)，其中 \(\varphi^i \) 是 \(C^r \) 类的，且
\(\varphi^i(e, y) = y^i \)。因此，\(\left(\frac{\partial \varphi^i}{\partial y^j} \right)_{x = y = e} = \delta^i_j \) 由隐函数定理，方程组 \((x \cdot y)^i \)
\(\varphi'(x, y) = e^t \) 在 \(e \) 附近有唯一的 \(C^r \) 的解 \(y' = \theta'(x) \)。但当 \(x \cdot y = e \) 时，\(y = x^{-1} \)，故 \(x \rightarrow x^{-1} \) 在 \(e \) 是 \(C^r \) 类的。由于 \(f(x) = a^{-1} \cdot x \rightarrow (a^{-1} \cdot x)^{-1} \rightarrow (a^{-1} \cdot x)^{-1} \cdot a^{-1} = x^{-1} \)，映射 \(f(x) \rightarrow x^{-1} \) 在 \(a \) 应是 \(C^r \) 类的。

定义 2 设 \(H \) 为 \(C^r \) Lie 群 \(G \) 的子群 (\(r \geq 1 \))，给 \(H \) 一个 \(C^r \) 流形的构造。关于这个 \(C^r \) 构造，如果 \(H \) 为 \(C^r \) 流形 \(G \) 的 \(C^r \) 子流形，并且它本身也是一个 \(C^r \) 群时，则称 \(H \) 为 \(G \) 的 \(C^r \) Lie 子群。

定理 2 设 \(H \) 为 \(C^r \) Lie 群 \(G \) 的 \(C^r \) 正则子流形 (\(r \geq 1 \))，而且作为抽象群是 \(G \) 的子群，则 \(H \) 为 \(G \) 的 \(C^r \) Lie 子群。

证明 因为 \(H \times H \rightarrow G \times G, (h_1, h_2) \mapsto (h_1, h_2) \) 和 \(G \times G \rightarrow G, (h_1, h_2) \mapsto h_1 \cdot h_2 \) 都是 \(C^r \) 映射，所以 \(H \times H \rightarrow G, (h_1, h_2) \mapsto h_1 \cdot h_2 \) 为 \(C^r \) 映射。又因为 \(H \) 为 \(G \) 的 \(C^r \) 正则子流形，由第一章 §2 定理 3 可知 \(H \times H \rightarrow H, (h_1, h_2) \mapsto h_1 \cdot h_2 \) 也为 \(C^r \) 映射。同理可证 \(H \rightarrow H, h_1 \mapsto h_1^{-1} \) 为 \(C^r \) 映射。这就证明了 \(H \) 为 \(G \) 的 \(C^r \) Lie 子群。

例 1 \(\mathbb{R}^n \) 为 \(C^r \) 流形。群运算取作加法，即对 \(x = (x^1, \ldots, x^n) \) 和 \(y = (y^1, \ldots, y^n) \)，定义 \(x + y = (x^1 + y^1, \ldots, x^n + y^n) \)，单位元素 (即零元素) 为 \(0 = (0, \ldots, 0) \)，\(x \) 的逆元素 (即 \(x \) 的负元素) 为 \(-x = (-x^1, \ldots, -x^n) \)。显然，群运算是 \(C^r \) 类的。于是，\(\mathbb{R}^n \) 就成为 \(C^r \) Lie 群，称为 \(n \) 维向量群。

例 2 \(T^n = S^1 \times \cdots \times S^1 = \{ (e^{2\pi i u^1}, \ldots, e^{2\pi i u^n}) | u^j \in \mathbb{R}, j = 1, \ldots, n \} \)

\(n \) 为 \(C^r \) 流形，群的乘法运算为

\[(e^{2\pi i u^1}, \ldots, e^{2\pi i u^n}) \cdot (e^{2\pi i v^1}, \ldots, e^{2\pi i v^n}) = (e^{2\pi i (u^1 + v^1)}, \ldots, e^{2\pi i (u^n + v^n)}) \]

单位元素为 \((e^{2\pi i 0}, \ldots, e^{2\pi i 0}) \)，\((e^{2\pi i 1}, \ldots, e^{2\pi i 1}) \) 的逆元素为 \((e^{-2\pi i 1}, \ldots, e^{-2\pi i 1}) \)。显然群运算是 \(C^r \) 类的。于是，\(T^n \) 就成为 \(C^r \) Lie 群，称为 \(n \) 维圆环群。特别地，\(T^1 = S^1 \) 为 1 维 \(C^r \) Lie 群。

由第一章 §2 例 9 和定理 3，当 \(\alpha_1, \ldots, \alpha_n \) 整数系数无关时，设
$$H = \{ (e^{2\pi i t}, \ldots, e^{2\pi i t}) \mid t \in \mathbb{R} \},$$ 易证 $H = T^n \cong H$，故 H 为 T^n 的非闭 C^∞-Lie 子群和非正则子流形，它是定理 2 的逆不成立的反例。

例 3 $S^3 = \{ (x_1, x_2, x_3, x_4) \mid x_i \in \mathbb{R}, i = 1, \ldots, 4; \sum_{i=1}^{4} x_i^2 = 1 \}$

$$= \{ x_1 + x_2 i + x_3 j + x_4 k \mid x_i \in \mathbb{R}, i = 1, \ldots, 4; \sum_{i=1}^{4} x_i^2 = 1, i^2 = j^2 = k^2 = -1, ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j \text{ 为 } C^\infty \text{ 流形。}$$

群的乘法运算为四元数广域的乘法，设 $x = x_1 + x_2 i + x_3 j + x_4 k$，

$y = y_1 + y_2 i + y_3 j + y_4 k$，则 $|x|^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2$，

$$x \cdot y = (x_1 y_1 - x_2 y_2 - x_3 y_3 - x_4 y_4) + (x_1 y_2 + x_2 y_1 + x_4 y_3 - x_3 y_4)i$$

$$+ (x_1 y_3 + x_3 y_1 + x_2 y_4 - x_4 y_2)j + (x_1 y_4 + x_2 y_3 + x_3 y_2 + x_4 y_1)$

$$k,$$

$$\|x \cdot y\| = |x| \cdot |y|.$$

$$x^{-1} = \frac{1}{\|x\|^2} (x_1 - x_2 i - x_3 j - x_4 k), x \neq 0.$$ 由此可知，如果 $x, y \in S^3$，则 $x \cdot y \in S^3, x^{-1} \in S^3$ 且 $x^{-1} = x_1 - x_2 i - x_3 j - x_4 k$。为验证 S^3 上群运算的 C^∞ 性，不失一般性可设 $x_4 > 0, y_4 < 0$，则 $x_4 = \sqrt{1 - x_1^2 - x_2^2 - x_3^2}$ 与 $y_4 = -\sqrt{1 - y_1^2 - y_2^2 - y_3^2}$. 于是，$(x \cdot y)_1$ 为 $x_1, x_2, x_3, y_1, y_2, y_3$ 的 C^∞ 函数，$(x^{-1})_1$ 为 x_1, x_2, x_3 的 C^∞ 函数，因而群运算皆为 C^∞ 类的，这就证明了 S^3 为 3 维 C^∞-Lie 群。

例 4 设 $GL(n, \mathbb{R}) = \{ A \mid A \text{ 为 } n \times n \text{ 实矩阵, } \det A \neq 0 \}$. 如果 $A = (a_{ij})$ 看作 R^n 中的点 $(a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{n1}, \ldots, a_{nn})$，因为 $A \rightarrow \det A$ 为 C^∞ 映射，故 $GL(n, \mathbb{R}) = \{ \det^{-1}(R - \{0\}) \}$ 为 R^n 中的 C^∞ 开子流形。根据矩阵的乘法，$GL(n, \mathbb{R})$ 构成一个群。显然，单位矩阵是单位矩阵 $I_n = (\delta_{ij}), \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$ A 的逆元素为
逆矩阵 A^{-1}，容易证明群运算是 C^ω 类的。事实上，设 $A=(a_{ij})$, $B=(b_{ij})\in GL(n, R)$，令 $A\cdot B=(c_{ij})$, $A^{-1}=(d_{ij})$，则由 $c_{ij}\equiv \sum_{k=1}^{n}a_{ik}b_{kj}$，故它为 a_{ik} 和 b_{kj} 的多项式函数，从而乘法运算 $(A, B)\mapsto A\cdot B$ 为 C^ω 映射。因为 $d_{ij}=a_{ij}/\det A$ 为 a_{ij} 的有理函数 $(A_{ij}$ 为 a_{ij} 的代数子式)，所以逆运算 $A\mapsto A^{-1}$ 也为 C^ω 映射。由此可知，$GL(n, R)$ 成为一个 n^2 维的 C^ω Lie 群，称它为 n 次实一般线性群。类似地，可以证明 $GL(n, C)={A | A}$ 为 $n\times n$ 复矩阵，$\det A\neq 0$ 为 n^2 维复 C^ω Lie 群，称它为 n 次复一般线性群。

例 5 设 G_i 为 C^ω 群，$r\in\{0, 1, \ldots, \infty, \omega\}$，$i=1, \ldots, n$。一方面把 $G_1\times\cdots\times G_n$ 作为 C^ω 积流形。另一方面，把 $G_1\times\cdots\times G_n$ 作为群的直积，这时 $(g_1, \ldots, g_n)\cdot (h_1, \ldots, h_n) = (g_1\cdot h_1, \ldots, g_n\cdot h_n)$. 容易验证 $G_1\times\cdots\times G_n$ 也是 C^ω 群，称为 C^ω 群 G_1, \ldots, G_n 的直积。如 n 维圆环群 $T^n=S^1\times\cdots\times S^1$ 为 n 个 1 维 C^ω Lie 群 S^1 的直积。

定义 3 设 G 为 C^ω 群，M 为 C^ω 流形，$r\in\{0, 1, \ldots, \infty, \omega\}$. 如果 C^ω 映射 $F: G\times M\to M, (g, p)\mapsto F(g, p) = gp$ 满足条件：(1) $ep = p, p\in M, e$ 为 G 的单位元素；(2) $g_1(g_2p) = (g_1\cdot g_2)p, p\in M, g_1$, $g_2\in G$，则称 G 左方 C^ω 作用于 M。

设 $g\in G$ 为一固定元素，则 $F_g: M\to M, p\mapsto F_g(p) = gp$ 为 C^ω 同胚。事实上，由 F 为 C^ω 映射，故 $F_{g^{-1}}$ 也为 C^ω 映射。又因 $F_{g^{-1}}\circ F_g = e, F_g\circ F_{g^{-1}} = e$，显然 $F_{g^{-1}} = F_g^{\omega}$。于是，$F_{g^{-1}} = F_{g^{-1}}$ 也为 C^ω 映射。有时，我们也称从 M 到 M 的 C^ω 同胚为 C^ω 变换。因此，G 左方 C^ω 作用于 M 时，称 G 为 M 的 C^ω 变换群。类似地，可以定义右方 C^ω 变换群。

如果对任意 $p\in M, F(g, p) = gp = p$ 必有 $g = e$，则称 C^ω 群 G 在 C^ω 流形 M 上的作用是有效的。
定义 4 设 G 为 \mathcal{C}^r 群，G 左方 \mathcal{C}^r 作用于 \mathcal{C}^r 流形 M，对于固定的 $p \in M$，显然，$G_p = \{g \in G \mid gp = p\}$ 为 G 的闭集，而且为 G 的子群，称它为 \mathcal{C}^r 群 G 在点 p 的逆向子群（或均等群，或固定群）。

定义 5 设 G 为 \mathcal{C}^r 群 G 左方作用在 \mathcal{C}^r 流形 M 上，对固定的 $p \in M$，称 M 中的子集 $M_p = \{gp \mid g \in G\}$ 为通过 p 点的轨道，如果只有一个轨道，换言之，如果对任意 $p, q \in M$，存在 $g \in G$，使得 $gp = q$，则称 \mathcal{C}^r 群 G 在 \mathcal{C}^r 流形 M 上的作用是 \mathcal{C}^r 可逆的（或可变迁的）。

如果 \mathcal{C}^r 群 G 左方作用在 \mathcal{C}^r 流形 M 上是 \mathcal{C}^r 可逆的，则称 M 为 G 的 \mathcal{C}^r 齐性流形，简称 \mathcal{C}^r 流形 M 为 G 齐性空间。

通常我们指的齐性空间是 \mathcal{C}^ω（或 \mathcal{C}^ω）齐性空间。这时，G 为 \mathcal{C}^ω（或 \mathcal{C}^ω）Lie 群，M 为 \mathcal{C}^ω（或 \mathcal{C}^ω）流形，作用是 \mathcal{C}^ω（或 \mathcal{C}^ω）齐的。

例 6 设 $F: \text{GL}(n, R) \times R^n \rightarrow R^n, y = F(A, x) = Ax$，即

$$
\begin{pmatrix}
 y^1 \\
 \vdots \\
 y^n
\end{pmatrix} = \begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{pmatrix} \begin{pmatrix}
 x^1 \\
 \vdots \\
 x^n
\end{pmatrix}.
$$

显然，\mathcal{C}^ω Lie 群 $\text{GL}(n, R)$ 左方 \mathcal{C}^ω 作用于 \mathcal{C}^ω 流形 R^n 上，$\text{GL}(n, R)$ 就是 R^n 的线性变换群。

设 $\{e_i \mid i = 1, \cdots, n\}$ 为 R^n 的标准规范正交基，$(e_1, \cdots, e_n) = I_n$（单位矩阵）。如果对任意 $x \in R^n$，有 $Ax = x$，则 $A = AI_n = (Ae_1, \cdots, Ae_n) = (e_1, \cdots, e_n) = I_n$，故 $\text{GL}(n, R)$ 左方 \mathcal{C}^ω 有效作用于 R^n，但显然，不存在 $A \in \text{GL}(n, R)$，使 $Ae_1 = e_1$，故 R^n 在 $\text{GL}(n, R)$ 下不是可逆的，因而它在 $\text{GL}(n, R)$ 下不是齐性空间。

更一般地，我们考虑 R^n 上的仿射变换群 $\text{GL}(n, R) = \{(A, a) \mid A \in \text{GL}(n, R), a \in R^n\}$，关于乘法 $(A, a) \cdot (B, b) = (AB, Ab + a)$，易见它成为 $n^2 + n$ 维 \mathcal{C}^ω Lie 群。

设 $\tilde{F}: \tilde{\text{GL}}(n, R) \times R^n \rightarrow R^n, y = \tilde{F}(A, a, x) = (A, a)x = Ax$
+ a. 显然, $G^\circ \text{Lie}$ 群 $\widetilde{GL}(n, \mathbb{R})$ 左方 G° 作用在 \mathbb{R}^n 上。

如果对任意 $x \in \mathbb{R}^n$ 有 $Ax + a = x$, 则 $a = A0 + a = 0$, 于是类似
G° 于 $\text{GL}(n, \mathbb{R})$ 可正 $A = I_n$, 故 $(A, a) = (I_n, 0)$, 它是群 $\widetilde{GL}(n, \mathbb{R})$ 的单
位元, 这就证明了 $\widetilde{GL}(n, \mathbb{R}) G^\circ$ 有效作用于 \mathbb{R}^n。此外, 对任意 $x, y \in \mathbb{R}^n$,
$(I_n, y - x)x = I_n x + (y - x) = y$, 故 \mathbb{R}^n 在 $\widetilde{GL}(n, \mathbb{R})$ 下是可
逆的, 从而它在 $\widetilde{GL}(n, \mathbb{R})$ 下是齐性空间。

例 7 设 G 为 G° 群, $M = G$, $F: G \times G \rightarrow G$, $F(g, p) = g \cdot p$
(· 表示群的乘法), 易证 G° 群 G 左方 G° 有效作用于 G° 流形 G 上。
对于任意 $p, q \in M = G$, 因为 $(g \cdot p^{-1}) \cdot p = q, q \cdot p^{-1} \in G$, 故 $M = G$
下是可逆的, 从而它在 G 下是 G° 齐性空间。

定理 3 设 $G^\circ \text{Lie}$ 群 $G G^\circ$ 作用于 G° 流形 M 上 ($r \geq 1$), 则点
p 的么向子群 G_p 为 G 的 G° 正则子流形, 并且它是 G 的闭 $G^\circ \text{Lie}$
子群。

证明 对于固定的 $g \in G$, 我们定义 $L_g : G \rightarrow G$, $L_g(a) = g \cdot a, \eta_g : M \rightarrow M$, $\eta_g(q) = g q$ 和 $\theta : G \rightarrow M$, $\theta(a) = a p$ (固定 p)。于是,
$\theta \circ L_g(a) = \theta(g \cdot a) = (g \cdot a) p = g(a p) = \eta_g \circ \theta(a)$, $\theta \circ L_g = \eta_g \circ \theta$。由
于 L_g 和 η_g 分别为 G 和 M 的 G° 变换, 因此它们的 Jacobi 行列式在任何点上都为 0。这就推出了 $(\text{rank} \theta)_{g \cdot a} = (\text{rank} \theta)_a$, 即
$\text{rank} \theta$ 在 G 上为定值。根据第一章 §2 定理 4 可知, $G_p = \{ g \in G | g p = p \} = \{ g \in G | \theta(g) = p \} = \theta^{-1}(\{ p \})$ 为 G 的 G° 正则子流形。再
由定理 2, G_p 为 G 的 $G^\circ \text{Lie}$ 子群。

如果 $g_n \in G$ 且 $\lim g_n = g \in G$, 则 $g p = F(g, p) = \lim_{n \rightarrow + \infty} F(g_n, p) \lim g_n p = \lim p = p$, 皮 $g \in G_p$, 从而 G_p 为闭集。

关于单位连通分支（含单位元素 e 的连通分支）有下面的定
理。

• 34 •
定理 4 如果 G 为拓扑群，则单位连通分支 K 为 G 的闭正规子群。对于任意 $a \in G$, $K a$ 为含 a 的连通分支。

如果 G 为 C^* 流形，$r \in \{0, 1, \ldots, \infty, \omega\}$，则 K 为 G 的开 C^* 群。对于任意 $a \in G$, $K a$ 为含 a 的既开又闭的连通分支。

证明 如果 $a \in K$，因为 $G \rightarrow G \cong b \mapsto ba^{-1}$ 为同胚，故 Ka^{-1} 为连通集。又因为 $a \cdot a^{-1} \in K a^{-1}$，所以 $K a^{-1} \subseteq K$。于是，对任何 $a, b \in K, a^{-1} = e \cdot a^{-1} \in K, b \cdot a = b(a^{-1})^{-1} \in K$，这就证明了 K 为 G 的子群。

对任意 $b \in G$，类似可知 bKb^{-1} 是连通的。因为 $e = b e b^{-1} \in bKb^{-1}$，我们有 $bKb^{-1} \subseteq K$，故 K 是正规的。又因为 K 为连通分支，所以 K 为闭集。

如果 G 为 C^* 流形，则 G 是局部连通的，且存在 e 的连通的开邻域 $U \subseteq K$。对任何 $a \in K$，因 $G \rightarrow G \cong b \mapsto b \cdot a$ 为同胚，所以 $U a$ 为含 $ea = a$ 的连通开邻域，从而 $U a \subseteq K$。这就证明了 K 为 G 的开子流形和子群，以及 K 为 G 的开 C^* 子群。&

例 8 设 $SY(n, R)$ 为 $n \times n$ 对称矩阵的全体，用自然的方法可以将它视作 $R^{\frac{n(n+1)}{2}}$。显然 $f : GL(n, R) \rightarrow SY(n, R), f(A) = AA'$ 为 C^* 映射，其中 A' 为 A 的转置矩阵。

对任意 $A \in GL(n, R)$，定义 $R_A : GL(n, R) \rightarrow GL(n, R), R_A(B) = BA$，易见 R_A 为 C^* 部分同胚，且对所有 $A \in O(n) = \{ A \in GL(n, R) | AA' = I_n \} = f^{-1}(I_n), f o R_A = f$。于是对任何 $A \in O(n)$，$(rank f)_A = (rank f)_{R_A(I_n)} = (rank f)_{I_n}(定值)$，下面可证此值为 $\frac{n(n+1)}{2}$，根据第一章 §2 定理 4，$O(n) = f^{-1}(I_n)$ 为 R^n 的 $n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$ 维 C^* 正则子流形。

设 $A = (a_{ij})$，则 $f^{ij}(A) = (AA')_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk}$ 和

下
当 $A = I_n$ 时，$\frac{\partial f_{ij}}{\partial x_{ij}} = 1, \frac{\partial f_{ii}}{\partial x_{ii}} = 2$，其它全为 0。相应的 Jacobi 矩阵表示为

$$ \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} & 1 & 1 & \cdots & 1 \\
 a_{21} & a_{22} & \cdots & a_{2n} & 1 & 1 & \cdots & 1 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn} & 1 & 1 & \cdots & 1 \\
 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
 \end{pmatrix} $$

显然由上述矩阵可看出 $(\text{rank } f)_{I_n} = \frac{n(n+1)}{2}$.

我们也可利用定理 3 证明上述结论。为此，设 $G = M = \text{GL}(n, R), F : \text{GL}(n, R) \times \text{GL}(n, R) \to \text{GL}(n, R), F(A, B) = AB A'$，易证 $G = \text{GL}(n, R)$ 左方 C^α 作用在 $M = \text{GL}(n, R)$ 上。在定理 3 中，令 $p = I_n, \theta : \text{GL}(n, R) \to \text{GL}(n, R), \theta(A) = F(A, I_n) = A I_n A' = AA'$，于是 I_n 的连向子群 $\text{GL}(n, R)_{I_n} = \{ A \in \text{GL}(n, R) | I_n = F(A, I_n) = AA' \} = O(n)$ 为 $\text{GL}(n, R)$ 的 $n^2 - \text{rank } \theta = n^2 - \frac{n(n+1)}{2}$ 维 C^α 正则子流形，称 $O(n)$ 为 n 阶正交群或直交群，它是 $\text{GL}(n, R)$ 的 C^αLie 子群。

设 $A(m) \in O(n)$，$\lim_{m \to 0} A(m) = A(0)$，则 $A(0) A(0)' = \lim_{m \to 0} A(m)$.
\[A(m)' = \lim_{n \to \infty} I_n = I_n, \quad A(0) \in O(n), \text{ 从而 } O(n) \text{ 为闭集，又因 } \|A\| = \sqrt{\sum_{i,j=1}^{n} a_{ij}^2} = \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}^2 \right)} = \sqrt{n}, \quad A \in O(n), \text{ 故 } O(n) \text{ 为 } \mathbb{R}^{n^2} \text{ 中的有界集；这就证明了 } O(n) \text{ 为紧致集。}

我们知道，由线性代数知识可知，对任意 } \begin{align*}
A \in O(n)^+ &= \{ B \in O(n) | \det B = 1 \}, \text{ 必存在 } P \in O(n) \text{ 使得}
\begin{pmatrix}
1 \\
\vdots \\
1
\end{pmatrix} \\
A &= P \begin{pmatrix}
\cos \theta_1 & \sin \theta_1 \\
-\sin \theta_1 & \cos \theta_1 \\
& \ddots \\
& & \cos \theta_k & \sin \theta_k \\
& & -\sin \theta_k & \cos \theta_k
\end{pmatrix}P^{-1}.
\end{align*}

令 } \varphi : [0, 1] \to O(n),
\begin{align*}
\varphi(t) &= P \begin{pmatrix}
\cos t \theta_1 & \sin t \theta_1 \\
-\sin t \theta_1 & \cos t \theta_1 \\
& \ddots \\
& & \cos t \theta_k & \sin t \theta_k \\
& & -\sin t \theta_k & \cos t \theta_k
\end{pmatrix}P^{-1},
\end{align*}

则 } \varphi \text{ 为 } O(n)^+ \text{ 中连结 } \varphi(0) = I_n \text{ 和 } \varphi(1) = A \text{ 的一条道路，于是 } O(n)^+ \text{ 是道路连通的。对任何 } A \in O(n)^-, \text{ 则 } JA \in O(n)^+, \text{ 其中 } J =
\begin{pmatrix}
-1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{pmatrix} \in O(n)^-. \text{ 令 } \varphi \text{ 为 } O(n)^- \text{ 中连结 } I_n \text{ 和 } JA \text{ 的一条道路，

\[.57 .\]
路，明显地，$J \varphi$ 为 $O(n)^-$ 中连结 J 和 $J A = A$ 的一条道路，所以 $O(n)^-$ 也是道路连通的。假设存在道路 $\varphi: [0, 1] \to O(n)$，使 $\varphi(0) \in O(n)^+$, $\varphi(1) \in O(n)^-$, 则 $\det \varphi(0) = 1, \det \varphi(1) = -1$，根据连续函数的 0 值定理，存在 $\xi \in (0, 1)$ 使 $\det \varphi(\xi) = 0$，这与 $\det \varphi(\xi) \cdot \pm 1$ 相矛盾。所以连结 $O(n)^+$ 的点和 $O(n)^-$ 的点的道路是不存在的。这就证明了 $O(n)$ 有两个道路连通分支。根据第一章 § 1 定理 3，对于流形，道路连通分支和连通分支是相同的，故 $O(n)$ 也恰有两个连通分支 $O(n)^+$ 和 $O(n)^-$，其中 $O(n)^+$ 为单位连通分支。

考虑 $A \in \text{GL}(n, \mathbb{R})$，记 $A = (A_1, \cdots, A_n)$，其中 A_1, \cdots, A_n 为线性无关的向量，由 Gram-Schmidt 正交化过程得到

\[
\begin{align*}
B_1 &= A_1 \\
B_2 &= \lambda_2 A_1 \cdot A_2 \\
& \quad \cdots \\
B_n &= \lambda_n A_1 + \cdots + \lambda_{n-1} A_{n-1} \cdot A_n
\end{align*}
\]

为 n 个正交向量。令

\[
B_k(t) = \frac{t (\lambda_{k+1} A_{k+1} + \cdots + \lambda_{n-1} A_{n-1}) + A_k}{1 + t \| \lambda_{k+1} A_{k+1} + \cdots + \lambda_{n-1} A_{n-1} \cdot A_k \|},
\]

则 $B(0) = (B_1(0), \cdots, B_n(0)) = (A_1, \cdots, A_n) = A, \quad B(1) = (B_1(1), \cdots, B_n(1)) = \left(\frac{B_1}{\| B_1 \|}, \cdots, \frac{B_n}{\| B_n \|}\right) \in O(n)$. 如果 $A \in \text{GL}(n, \mathbb{R})^+ = \{B \in \text{GL}(n, \mathbb{R}) \mid \det B > 0\}$，根据 0 值定理，$B(1) \in O(n)^+$. 由此得到 $\text{GL}(n, \mathbb{R})^+$ 为道路连通集，同理可知 $\text{GL}(n, \mathbb{R})^-$ 也为道路连通集，而由 0 值定理知 $\text{GL}(n, \mathbb{R})$ 不连通，所以 $\text{GL}(n, \mathbb{R})$ 恰有两个道路连通分支，也恰有两个连通分支。

注 1 我们也可用下面的方法证明 $\text{GL}^+(n, \mathbb{R})$ 是连通的。对于任何 $A \in \text{GL}^+(n, \mathbb{R})$，设 $a_1 + i b_1, \cdots, a_i + i b_i, \lambda_{i+1} > 0, \cdots, \lambda_n > 0$ 为它的所有的特征值。由线性代数知识，存在 $P \in O(n)$，使得

\[58\]
则有 $GL^+(n, \mathbb{R})$ 中的道路将 A 与
\[
B = P \left(\begin{array}{cccc}
\cos \theta_1 & \sin \theta_1 & & \\
-\sin \theta_1 & \cos \theta_1 & & \\
& & \ddots & \\
& & & \cos \theta_j & \sin \theta_j \\
& & & -\sin \theta_j & \cos \theta_j \\
& & & & \ddots & \ddots \\
& & & & & \ddots & \\
& & & & & & \lambda_{j+1} \\
& & & & & & \vdots \\
& & & & & & \lambda_n
\end{array} \right) P^{-1}
\]
相连。而经
\[
P \left(\begin{array}{cccc}
\cos \theta_1 t & \sin \theta_1 t & & \\
-\sin \theta_1 t & \cos \theta_1 t & & \\
& & \ddots & \\
& & & \cos \theta_j t & \sin \theta_j t \\
& & & -\sin \theta_j t & \cos \theta_j t \\
& & & & \ddots & \ddots \\
& & & & & \ddots & \\
& & & & & & 1 \\
& & & & & & \vdots \\
& & & & & & \vdots \\
& & & & & & 1
\end{array} \right) P^{-1}
\]
B 与 $P I_n P^{-1} = I_n$ 在 $GL^+(n, \mathbb{R})$ 中相连。这就证明了 $GL^+(n, \mathbb{R})$ 是道路连通的。
与$\widetilde{\text{GL}}(n, R)$相类似，我们定义 $\widetilde{O}(n) = \{ (A, a) \mid A \in O(n), \ a \in R^n \}$. 易见 $\widetilde{O}(n)$为$\widetilde{\text{GL}}(n, R)$的 $\frac{n(n-1)}{2}+n$ 维 C^1-Lie 子群，称 $\widetilde{O}(n)$为运动群或 R^n 的同尺变换群，可以证明它是 R^n 中保持距离或保持内积的一一映射的全体.

设 $F: O(n) \times R^n \to R^n$, $y = F(A, x) = Ax$. 完全类似 $\text{GL}(n, R)$, C^1-Lie 群 $O(n)$ 左方 O^c 有效作用于 C^c 流形 R^n, 但 R^n 在 $O(n)$ 下不是可逆的，因而它在 $O(n)$ 下不是齐性空间。再设 $\widetilde{F}: \widetilde{O}(n) \times R^n \to R^n$, $y = \widetilde{F}(\widetilde{(A, a)}, x) = (A, a)x = Ax+a$, 类似于 $\widetilde{\text{GL}}(n, R)$, C^1-Lie 群 $\widetilde{O}(n)$ 左方 C^c 有效作用在 C^c 流形 R^n 上，且 R^n 在 $\widetilde{O}(n)$ 下是可逆的，从而它在 $\widetilde{O}(n)$ 下是齐性空间。

例 9 设 $F: O(n) \times S^{n-1} \to S^{n-1}$, $F(A, x) = Ax$. 易证 $\frac{n(n-1)}{2}$ 维 C^1-Lie 群 $O(n)C^c$ 有效作用在 $n-1$ 维 C^c 流形 S^{n-1} 上。对于任何 $x, y \in S^{n-1}$，如果 $x \equiv y$，作 xOy 平面内的规范正交基 $e_1 = x, e_2$，于是 $y = \cos \theta \cdot e_1 + \sin \theta \cdot e_2$. 将 (e_1, e_2) 扩充为 (e_1, \cdots, e_{n})，使它为 R^n 中的规范正交基。于是，当 $n \geq 2$ 时，令

$$A = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\vdots & \ddots & \ddots \\
0 & \cdots & 0 & 1
\end{pmatrix},$$

则 $A \in O(n)$，且 $Ax = y$. 这就证明了 S^{n-1} 在 $O(n)$ 下是可逆的，从而 S^{n-1} 在 $O(n)$ 下是齐性空间。当 $n = 1$ 时，$S^{n-1} = S^0 = \{-1, 1\}$, $O(n) = O(1) = \{-1, 1\}$. 如果取 $A = -1$, $x = -1$, $y = 1$, 则 $Ax = y$ 故 S^0 在 $O(1)$ 下也是齐性空间.
§ 2 纤维丛和向量丛

为了在 C^r 流形上引进切丛、张量丛和外形式丛，我们需要先介绍
近数数中极其重要的更一般的纤维丛和向量丛的概念。

定义 1 设 $r \in \{0, 1, \ldots, \infty, \omega\}$, E, M 和 F 为 C^r 流形，G 为 C^r
群，它 C^r 有效作用在 F 上，$\pi : E \to M$ 为 C^r 满映射，且是局部平凡的，
也就是存在 M 的开覆盖 $\{ U_\alpha | \alpha \in \Gamma \}$ 和相应的 C^r 同胚族 $\{ \psi_\alpha | \alpha \in \Gamma \}$，使得对每个 $\alpha \in \Gamma$，图表

$$
\begin{array}{c}
\xymatrix{
E |_{U_\alpha} \ar[r]^-{\pi^{-1}(U_\alpha)} \ar[rd]_{\pi_1 \alpha} & U_\alpha \times F \\
U_\alpha \ar[u]_{\psi_\alpha} &
}
\end{array}
$$

是可交换的，即 $\pi = \pi_1 \circ \psi_\alpha$，其中 $\pi_1(x, \alpha) = x$。明显，$\psi_{\alpha} = \psi_\alpha |_{x:}
\pi^{-1}(\{ x \}) \to \{ x \} \times F$ 为 C^r 同胚。如果 $U_\alpha \cap U_\beta \neq \emptyset$，则 ψ_α 和 ψ_β 诱导出 C^r 同胚 $\psi_\beta \circ \psi_\alpha^{-1}$，且图表

$$
\begin{array}{c}
\xymatrix{
(U_\alpha \cap U_\beta) \times F \ar[r]^-{\phi_\alpha \circ \phi_\beta^{-1}} \ar[rd]_{\pi_1 \phi} & (U_\alpha \cap U_\beta) \times F \\
U_\alpha \cap U_\beta \ar[u]_{\psi_\alpha} &
}
\end{array}
$$

是可交换的，即 $\pi_1 \phi = \pi_1 \phi \circ \psi_\beta \circ \psi_\alpha^{-1}$。令 $\psi_{\beta} \circ \psi_{\alpha}^{-1}(x, \alpha) = (x, g_{\alpha\beta}(x) \alpha)$，
这里 $g_{\beta\alpha}(x) : F \to F$ 为 C^r 同胚。从 $(\pi^{-1}(U_\alpha), \psi_\alpha)$ 到 $(\pi^{-1}(U_\beta), \psi_\beta)$ 的
转换映射 $g_{\beta\alpha} : U_\alpha \cap U_\beta \to G$ 为 C^r 映射。则称五元组 $\Sigma = (E, M, \pi, G, F)$ 为 C^r 纤维丛，E 为丛(全)空间，M 为底空间，π 为从 E 到 M
上的投影，G 为构造群(或结构群)，F 为纤维，$E_x = \pi^{-1}(\{ x \})$ 为 x
上的纤维。有时简称 E 为纤维丛。

从上定义，立即可知 $g_{\alpha\alpha}(x) = e$ 和 $g_{\beta\alpha}(x) = g_{\beta\alpha}(x) \cdot g_{\alpha\beta}(x)$。事实
上，由 $\langle x, a \rangle = 1d_{V_\alpha, \pi, x} (x, a) = \psi_\alpha \circ \psi_\alpha^{-1} (x, a) = (x, g_{\alpha a}(x)a)$ 得到
$g_{\alpha a}(x)a = a, a \in F$，再由 GC^π 作用于 F，故 $g_{\alpha a}(x) = e$。由 $(x, g_{\beta a}(x)) = \psi_\beta \circ \psi_\beta^{-1} (x, a) = \psi_\beta \circ \psi_\beta^{-1} (x, g_{\beta a}(x)a)$ 代入 $g_{\alpha a}(x)a = g_{\beta a}(x)a = \forall a \in F$，根据 GC^π 作用于 F，有 $g_{\alpha a}(x) \cdot g_{\beta a}(x) = g_{\alpha a}(x) \cdot g_{\beta a}(x) \cdot g_{\beta a}(x)a, \forall a \in F$，根据 GC^π 作用于 F，有 $g_{\alpha a}(x) \cdot g_{\beta a}(x) = e$。于是 $g_{\gamma b}(x) \cdot g_{\beta a}(x) = g_{\gamma a}(x) \cdot g_{\beta a}(x) \cdot g_{\beta a}(x) \cdot g_{\beta a}(x) = e$。于是，

定义 1 中，$(\pi^{-1}(U_\alpha), \psi_\alpha)$ 称为局部平凡系，$\pi^{-1}(U_\alpha)$ 称为局部

平凡领域，ψ_α 称为局部平凡映射。如果 $U_\alpha \cap U_\beta = \emptyset$，或 $U_\alpha \cap U_\beta = \emptyset$ 而 $\psi_\beta \circ \psi_\beta^{-1}$ 和 $\psi_\alpha \circ \psi_\alpha^{-1}$ 为 C^π 映射，则称 $(\pi^{-1}(U_\alpha), \psi_\alpha)$ 和 $(\pi^{-1}(U_\beta), \psi_\beta)$ 是 C^π 相容的。令 $\mathcal{S} = \{(\pi^{-1}(U_\alpha), \psi_\alpha) \mid \alpha \in \Gamma\}$，类似于 C^π 形成的定义，它唯一确定了 ξ 或 E 的最大局部平凡系 $\mathcal{S} = \{(\pi^{-1}(U_\alpha), \psi_\alpha) \mid (\pi^{-1}(U_\alpha), \psi_\alpha) \text{ 与 } \mathcal{S}' C^\pi 相容}\}$。具体来说，我们指的纤维丛 ξ 或 E 就是具有最大局部平凡系 \mathcal{S} 的。而 \mathcal{S}' 只是生成 \mathcal{S} 的一个基。如果 \mathcal{S}_1 和 \mathcal{S}_2 都是基数，则 $\mathcal{S}_1 = \mathcal{S}_2 \iff \mathcal{S}_1' = \mathcal{S}_2'$ 是 C^π 相容的。因此用六元组 $\xi = \{E, M, \pi, G, F, \mathcal{S}\}$ 定义纤维丛应该更加确切一些。\mathcal{S} 中的元素 $(\pi^{-1}(U_\alpha), \psi_\alpha)$ 称为丛图像(从图片，局部平凡

系)，称 \mathcal{S} 为丛图像。

如果 M 为 n 维 C^π 形状，F 为 m 维 C^π 形状，则 E 为 $n + m$ 维 C^π 形状。

定义 1 中，如果将 C^π 形状，C^π 群，C^π 有效作用，C^π 满映射，C^π
同胚，C^π 映射分别改为拓扑空间，拓扑群，连续作用，连续映射，同胚，连续映射，则称 ξ 或 E 为拓扑纤维丛。
→ \{x\} \times \mathbb{R}^m \text{ 和 } g_{\alpha}(x) : \mathbb{R}^m \to \mathbb{R}^n \text{ 都为线性同构。则称 } C^r \text{ 纤维丛。}

\xi = \{E, M, \pi, \text{GL}(m, \mathbb{R}), \mathbb{R}^n, \mathcal{E}\} \text{ 为秩 } m \text{ 的 } C^r \text{ 实向量丛或实 } m \text{ 面丛。显然，} x \text{ 点处的纤维 } E_x = \pi^{-1}(\{x\}) \text{ 为 } m \text{ 维实向量空间。当 } m = 1 \text{ 时，称 } \xi \text{ 为实线丛。实向量丛简称向量丛，它是沿 } M \text{ 的 } m \text{ 维向量空间族，局部可视作平面集，它们是通过构造群 } \text{GL}(m, \mathbb{R}) \text{ (或 } \text{GL}(m, \mathbb{R})) \text{ 的正则 } C^r \text{Lie 子群 } H \text{ 粘起来的 (图 9)。}

例 1 设 \(\xi = \{E, M, \pi, G, F, \mathcal{E}\} \) 为 \(C^r \) 纤维丛，如果存在从图卡 \((E, \psi) \in \mathcal{E} \)，称 \(\xi \) 为平凡丛。此时 \(\psi : E = \pi^{-1}(M) \to M \times F \) 为 \(C^r \) 同胚，\(\psi |_x : E_x = \pi^{-1}(\{x\}) \to \{x\} \times F \) 也为 \(C^r \) 同胚。

设 \(\xi = \{E, M, \pi, \text{GL}(m, \mathbb{R}), \mathbb{R}^n, \mathcal{E}\} \) 为 \(C^r \) 向量丛，如果存在从图卡 \((E, \psi) \in \mathcal{E} \)，使 \(\psi : E = \pi^{-1}(M) \to M \times \mathbb{R}^n \) 为 \(C^r \) 同胚，\(\psi |_x : E_x = \pi^{-1}(\{x\}) \to \{x\} \times \mathbb{R}^n \) 为线性同构，则称 \(\xi \) 为平凡向量丛。

例 2 Möbius 带 \(E \) (将长方形带扭转 \(180^\circ \) 并粘合其两边得到的商拓扑空间，图 10)，底空间为 \(S^1 \)，投影 \(\pi : E \to S^1 \) 如图 10 所示，纤维为 [−1, 1]。取 \(U_1 = S^1 - \{p_1\}, U_2 = S^1 - \{p_2\} \)，则 \(\{U_1, U_2\} \) 为
S^1的开覆盖，用自然的方法定义同胚 $\psi_i: \pi^{-1}(U_i) \to U_i \times [-1, 1]$, $i = 1, 2$. $U_1 \cap U_2$ 由两个 S^1 的不相交的开集 V_1 和 V_2 组成，而同胚

$$(U_1 \cap U_2) \times [-1, 1] \xrightarrow{\psi_1 \psi_2^{-1}} (U_1 \cap U_2) \times [-1, 1]$$

使得（图 10）

$$\psi_2 \circ \psi_1^{-1}(x, a) = \begin{cases} (x, a), & x \in V_1, \\ (x, -a), & x \in V_2, \end{cases}$$

$$g_{21}(x) = \begin{cases} 1, & x \in V_1, \\ -1, & x \in V_2, \end{cases} g_{21}(x) \in Z_2.$$

构造群 $Z_2 = \{+1, -1\}$ 赋以离散拓扑，而 $(-1)a = a, (+1)a = -a$, 显然 Z_2 有效作用在 $[-1, 1]$ 上，于是，$\xi = \{E, S^1, \pi, Z_2, [-1, 1], \xi\}$ 为纤维丛。利用反证法可以证明 ξ 不是平凡丛。假设 ξ 为平凡丛，则存在从图卡 (E, ψ)，使 $\psi: E = \pi^{-1}(S^1) \to S^1 \times [-1, 1]$ 为同胚。设 E 的边界为 l，它是连通集，利用平面 R^2 上的 Brouwer 的区域不变性定理可知，$\psi(l) = S^1 \times \{-1\} \cup S^1 \times \{1\}$，但左边为连通集，右边为非连通集，矛盾。

如果将上述例子中的纤维改为 $(-1, 1)$，则相应的开 Möbius 带 E 仍是非平凡丛，否则存在从图卡 (E, ψ)，使 $\psi: E = \pi^{-1}(S^1) \to S^1 \times (-1, 1)$ 为同胚，因而存在同胚 $\phi: E \to T = (x^1, x^2) \in R^2, 1 < (x^1)^2 + (x^2)^2 < 4$，设 E 的中心线为 l，则 $\phi(l) \subset T$ 为一条 Jordan 曲线（S^1 的拓扑象）。根据平面 R^2 上的 Jordan 定理，此 Jordan 曲线恰好将 $R^2 - \phi(l)$ 分成两个连通的开集，一个是有界的，称
为 $\varphi(I)$ 的“内部”；另一个是无界的，称为 $\varphi(I)$ 的“外部”，于是 $\varphi(E - I) = T - \varphi(I)$ 不是连通的。但由 $E - I$ 连通，从而它的拓扑象 $\varphi(E - I)$ 连通，矛盾 (图 11)。

我们将 $[0, 1] \times \mathbb{R}^1$ 的两边 $[0] \times \mathbb{R}^1$ 和 $(1) \times \mathbb{R}^1$ 中的 $(0, a)$ 和 $(1, -a)$ 相粘合得到的高空间 E 仍称为 Möbius 带。此时，S^1 视作 $[0, 1]$ 中粘合 $[0]$ 和 (1) 所得到的高空间。令 $\eta: [0, 1] \to \eta([0, 1]) \cong S^1$ 为从 $[0, 1]$ 到高空间的自然投影，$\eta(x) = [x]$，$\eta(0) = \eta(1) = [0] = [1]$ ($[x]$ 表示 x 的等价类)。$\pi: E \to \eta([0, 1]) \cong S^1$，$
\pi([x, a]) = [x]$ 为丛投影，令 $U_1 = \eta((0, 1))$, $U_2 = \eta\left([0, \frac{1}{2}] \cup \left(\frac{1}{2}, 1\right)\right)$，

\[\psi_1: \pi^{-1}(U_1) \to U_1 \times \mathbb{R}^1, \psi_1([x, a]) = ([x], a), \]

\[\psi_2: \pi^{-1}(U_2) \to U_2 \times \mathbb{R}^1, \]

\[\psi_2([x, a]) = \begin{cases} ([x], a), & x \in [0, \frac{1}{2}) \\ ([x], -a), & x \in (\frac{1}{2}, 1] \end{cases}. \]

于是，当 $[x] \in U_1 \cap U_2 = \eta\left((0, \frac{1}{2})\right) \cup \eta\left((\frac{1}{2}, 1)\right) = V_1 \cup V_2$ 时，有
\[\psi_2 \circ \psi_1^{-1}([x], a) = \begin{cases} ([x], a), & [x] \in \eta\left(\left(0, \frac{1}{2}\right)\right) = V_1, \\ ([x], -a), & [x] \in \eta\left(\left(\frac{1}{2}, 1\right)\right) = V_2, \end{cases} \]

\[g_{21}([x]) = \begin{cases} 1, & [x] \in V_1, \\ -1, & [x] \in V_2, \end{cases} g_{21}([x]) \in \text{GL}(1, \mathbb{R}). \]

易证 \(\xi = \{E, S^1, x, \text{GL}(1, \mathbb{R}), \mathbb{R}^1, \mathbb{S}\} \) 为秩 1 的 \(C^* \) 实线丛。同上述纤维为 \((-1, 1)\) 的证明，它也不是平凡向量丛。此情况简证如下：假设 \(\xi \) 为平凡向量丛，则存在同胚 \(\psi: E \to S^1 \times \mathbb{R}^1 \), \(\psi_{|E} = \pi^{-1}(\{x\}) \to \{x\} \times \mathbb{R}^1 \) 为线性同构，故 \(\psi(l) = S^1 \times \{0\} \), 其中 \(l \) 为 \(E \) 的中心线。因为 \(E - l \) 连通，所以它的拓扑象 \(\psi(E - l) = S^1 \times (\mathbb{R}^1 - \{0\}) \) 也连通，这与 \(S^1 \times \{\mathbb{R}^1 - \{0\}\} \) 不连通相矛盾（图 12）。

例 3 \(\xi = \{S^2, \mathbb{P}^n(\mathbb{R}), \pi, \mathbb{Z}_2, \mathbb{S}\} \) 为 \(C^* \) 纤维丛，其中 \(\pi: S^n \to \mathbb{P}^n(\mathbb{R}), \pi(x) = [x] \)（参阅第一章 § 1 例 4），而局部平凡化叙述如下：令 \(U_i = \{[x] \in \mathbb{P}^n(\mathbb{R}) | x^i = 0\}, \)

\[\psi_i: \pi^{-1}(U_i) \to U_i \times \mathbb{Z}_2, \mathbb{Z}_2 = \{1, -1\} \] 为乘法群，

\[\psi_i(x) = \begin{cases} ([x], 1), & x \in U_i, \\ ([x], -1), & x \in U_i, \end{cases} \]

66
于是，\(\psi_1^{-1}(\{x\}, \lambda) = \lambda \cdot \text{Sgn} \cdot x\), \(\lambda \in \mathbb{Z}_2\), 从而 \(\psi_2 \circ \psi_1^{-1}(\{x\}, \lambda) = \psi_2(\lambda \cdot \text{Sgn} \cdot x) = (\{x\}, \lambda \cdot \text{Sgn} \cdot \text{Sgn} \cdot x)\), \(g_3(\{x\}) = \text{Sgn} \cdot \text{Sgn} \cdot x\), \(g_3 : U \cap U_j \to \mathbb{Z}_2\) 视作 \(C^\infty\) 类的。

例 4 令 \(\xi = (S^{2n+2}, P_n(G), \pi, S^1, S^1, \xi)\) 为 \(C^\infty\) 纤维丛，其中

\[S^{2n+1} = \{z = (z^1, \cdots, z^{n+1}) \in C^{n+1} \mid \sum_{j=1}^{n+1} z^j \cdot \overline{z}^j = 1\}\] (参阅第一章 §1 例 5). 局部平凡化叙述如下: 设

\[
\pi : S^{2n+1} \to P_n(G), \pi(z^1, \cdots, z^{n+1}) = [(z^1, \cdots, z^{n+1})], U_j = \{(z^1, \cdots, z^{n+1}) \in S^{2n+1} \mid z^j \neq 0\}, V_j = \pi(U_j), \text{ 令}
\]

\[
\varphi_j : V_j = \pi(U_j) \to C^n,
\]

\[
\varphi_j([z^1, \cdots, z^{n+1}]) = \left(\frac{z^1}{z^j}, \cdots, \frac{z^j}{z^j}, \cdots, \frac{z^{n+1}}{z^j}\right)
\]

\[= (\xi^1, \cdots, \xi^j, \cdots, \xi^{n+1}),\]

\[
\psi_j^{-1} : V_j \times S^1 \to \pi^{-1}(V_j) = U_j,
\]

\[
\psi_j^{-1}\left([\left(\frac{z^1}{z^j}, \cdots, \frac{z^{n+1}}{z^j}\right), \lambda]\right) = \psi_1^{-1}\left([\left(\frac{z^1}{z^j}, \cdots, \frac{z^j}{z^j}, \cdots, \frac{z^{n+1}}{z^j}\right), \lambda]\right)
\]

\[= \psi_j^{-1}\left([\left(\xi^1, \cdots, \xi^{j-1}, 1, \xi^{j+1}, \cdots, \xi^{n+1}\right), \lambda]\right)
\]

\[= \psi_j^{-1}\left([\left(\xi^1, \cdots, \xi^{j-1}, 1, \xi^{j+1}, \cdots, \xi^{n+1}\right), \lambda]\right)
\]

\[
= \lambda \left(\frac{\sqrt{1 + \sum_{k=1}^{j-1} |\xi|^2}}{\sqrt{1 + \sum_{k=1}^{j} |\xi|^2}}\right) \cdots \left(\frac{\sqrt{1 + \sum_{k=j}^{n+1} |\xi|^2}}{\sqrt{1 + \sum_{k=j}^{n+1} |\xi|^2}}\right)
\]

显然，\(\psi_1^{-1}\) 为 \(C^\infty\) 同胚，且把纤维映成纤维，故为局部平凡化。对 \(l \equiv j\)，不妨设 \(j < l\)，有

\[
\psi_1 \circ \psi_1^{-1}\left([\left(\xi^1, \cdots, \xi^{j-1}, 1, \xi^{j+1}, \cdots, \xi^{n+1}\right), \lambda]\right)
\]

\[= \psi_1\left(\lambda \left(\frac{\sqrt{1 + \sum_{k=1}^{j} |\xi|^2}}{\sqrt{1 + \sum_{k=1}^{j} |\xi|^2}}\right)\right)
\]
\[\psi_1 \left(\frac{1}{|j_{\xi^1}|} \sqrt{1 + \sum_{k \neq j} |j_{\xi^k}|^2 \left(\frac{1}{j_{\xi^1}}, \ldots, \frac{j_{\xi^{k-1}}}{j_{\xi^1}}, \frac{j_{\xi^{k+1}}}{j_{\xi^1}}, \ldots \right)} \right) \]

\[= \left(\left(\frac{1}{j_{\xi^1}}, \ldots, \frac{j_{\xi^{k-1}}}{j_{\xi^1}}, \frac{j_{\xi^{k+1}}}{j_{\xi^1}}, \ldots, \frac{1}{j_{\xi^1}}, \frac{j_{\xi^{k+1}}}{j_{\xi^1}}, \ldots \right) \right)^T. \]

故 \(g_{ij} \left(\left[\left(j_{\xi^1}, \ldots, j_{\xi^{k-1}}, 1, j_{\xi^{k+1}}, \ldots, j_{\xi^{n+1}} \right) \right] = \frac{j_{\xi^1}}{|j_{\xi^1}|} \in S^1 \) (\(S^1 \) 左方 \(C^\infty \) 作用在 \(S^1 \) 上，作用为乘法)。显然，\(g_{ij} : V_j \cap V_i \rightarrow S^1 \) 为 \(C^\infty \) 类的 (注意，由 \(|j_{\xi^1}| \) 的出现，它不是 \(C^\infty \) 类的！)

定义 3 设 \(\xi = \{ E, M, \pi, G, F, s \} \) 为 \(C^r \) (或拓扑) 纤维丛。如果对 \(0 \leq k \leq r \) 存在 \(C^k \) (或连续) 映射 \(\sigma : M \rightarrow E \)，使 \(\sigma (x) \in E_x, x \in M \)。

记 \(\sigma_\xi \) 为 \(\xi \) 的一个 \(C^k \) (或连续) 截面。记 \(C^k \) 截面的全体为 \(C^k (\xi) \) 或 \(C^k (E) \)。

容易证明 \(\sigma : M \rightarrow \sigma (M) \) 为 \(C^k \) 同胚 (或同胚)。

如果 \(\xi = \{ E, M, \pi, \text{GL}(m, R), R^n, s \} \) 为秩 \(m \) 的 \(C^r \) 向量丛，则它有一个特殊的 0 截面 \(\sigma_0 : M \rightarrow E, \sigma_0 (x) = 0_x \in E_x \)。于是，\(\sigma_0 : M \rightarrow \sigma_0 (M) = \{ 0_x | x \in M, 0_x 为 E_x 中的零向量 \} \) 为 \(C^r \) 同胚。由此我们将 \(M \) 和 0 截面的象视作相同 (图13)。运用微分分析中的 0 值定理和反证法，容易证明例 2 中的 1 维向量丛 Möbius 带 \(E \) 上无处
处非 0 的 C^0 截面.

设 $C^k(E) = C^k(M)$，对 $\sigma, \eta \in C^k(E), \lambda \in \mathbb{R}$，我们定义加法和数乘如下:

$$(\sigma + \eta)(x) = \sigma(x) + \eta(x),$$

$$(\lambda \sigma)(x) = \lambda \cdot \sigma(x), x \in M.$$

容易验证 $C^k(E)$ 在上述加法和数乘下形成一个 \mathbb{R} 上的向量空间。

如果 $m \geq 1$，设 $(U, \varphi), \{x^i\}$ 为 M 的局部坐标系，使 $C^m(\varphi(U), \varphi(U), \varphi)$ 为 E 的丛图卡，f 为第一章 §3 引理 1 中所述。令 $u = x^i$，可选 u_i, \ldots, u_{i+1} 使

$$\left| \begin{array}{cccc}
1 & u_1 & u_2 & \cdots \ u_i \\
\vdots & \ddots & & \\
1 & u_{i+1} & u_{i+1} & \cdots \ u_{i+1} \\
\end{array} \right| = \prod_{i'} (u_{i'} - u_i) \neq 0,$$

因此 $(x^i) f \circ \varphi(p) \varphi^{-1}(e_i)$ 使 $f \circ \varphi(p) \varphi^{-1}(e_i)$ 为 E 上整体 C^k 截面的线性无关的，故上述向量空间是无限维的。

除上述加法外，对 $\lambda \in C^k(M, \mathbb{R}), \sigma, \eta \in C^k(E)$，我们定义:

$$(\lambda \sigma)(x) = \lambda \cdot \sigma(x), x \in M.$$ 于是 $C^k(E)$ 成为 \mathbb{R} 值函数的代数上的一个模（图 14）。
下面引进两个向量丛之间的从映射，从映射覆盖，M-从映射（丛同态），M-从映射覆盖，M-从等价（丛同构）等概念。

定义 4 设 $\xi = (E, M, \pi, GL(m, \mathbb{R}), \mathbb{R}^n)$，$\xi' = (E', M', \pi', GL(m', \mathbb{R}), \mathbb{R}^{n'})$ 为 C^r 向量丛，$f : M \to M'$，$f : E \to E'$ 为 C^r 映射，且 $f_x : f|_x : E_x \to E'_x(x)$ 为线性映射，则称 $(f, f) : \xi \to \xi'$ 为 C^r 从映射。此时，图表

是可交换的，即 $\pi' \circ f = f \circ \pi$。如果 $f_x : E_x \to E'_x(x)$ 为同构（因而 $m = m'$），则称 f 为 C^r 从映射覆盖 f。如果 f 为 C^r 从映射覆盖 C^r 同胚 $f : M \to M'$，我们可以定义 $f^{-1} : E' \to E$，利用局部平凡性和 $A \mapsto A^{-1}$ ($A \in GL(m, \mathbb{R})$) 的 C^r 性，我们容易看到 f^{-1} 是 C^r 类的，于是 $f^{-1} : E \to E'$ 为 C^r 从映射覆盖 f^{-1}。

设 $(f, f) : \xi \to \xi'$ 为 C^r 从映射，如果存在 C^r 从映射 $(g, g) : \xi' \to \xi$，使得 $g \circ f = \text{Id}_x$，$f \circ g = \text{Id}_x$，$g \circ f = \text{Id}_M$，$f \circ g = \text{Id}_M$，则称 $(f, f) : \xi \to \xi'$ 为 C^r 从等价。此时，$m = m'$ 且图表

是可交换的，即 $\pi' \circ f = f \circ \pi$，$f \circ g = \text{Id}_x$，$f^{-1} = g$，$f^{-1} = g$。于是，$f : E \to E'$ 和 $f : M \to M'$ 为 C^r 同胚，$f_x : E_x \to E'_x(x)$ 为线性同构。

设 ξ 和 ξ' 分别为 C^r 向量丛 ξ 和 ξ' 的丛同胚，U, U' 为开集，$\psi : \pi^{-1}(U) \to \mathbb{R}^n$ 为 C^r 同胚，则当 $(x, a) \in (U \cap U') \times \mathbb{R}^n$ 时（其中 $(\pi^{-1}(U), \psi) \in \xi$），$\psi \circ \psi^{-1}(x, a) = (x, g_{\psi}(x)a)$ 关于

已知 70。
\((x, \alpha)\) 是 \(C^r\) 类的，因而 \(g_{\alpha \epsilon}(x) = g_{\alpha \epsilon}(x)I_m = (g_{\alpha \epsilon}(x)e_\epsilon, \ldots, g_{\alpha \epsilon}(x)e_m)\) 关于 \(x\) 是 \(C^r\) 类的。即 \(g_{\alpha \epsilon} : U_\alpha \cap U_\beta \to GL(m, \mathbb{R})\) 是 \(C^r\) 类的，这就证明了 \((\pi^{-1}(U_\beta), \psi_\beta) \in \mathcal{E}\)，从而 \(\mathcal{E}\) 包括所有的可能的 \((\pi^{-1}(U_\beta), \psi_\beta)\)。由此得到 \(\mathcal{E}' = \{((\pi^{-1}(f(U)), \psi \circ \tilde{f}^{-1}) | (\pi^{-1}(U), \psi) \in \mathcal{E}\}\)。

如果 \(M = M', f = Id_M, \tilde{f} : E \to E'\) 为 \(C^r\) 映射，且 \(f_x : E_x \to E'_x\) 为线性映射，则称 \((f, Id_M)\) 或 \(\tilde{f}\) 为 \(M - C^r\) 丛映射或 \(C^r\) 丛同态。此时，交换图表为图(1)即 \(\pi' \circ \tilde{f} = \pi\)。设 \((f, Id_M) : \xi' \to \xi\) 为 \(M - C^r\) 丛映射，如果存在 \(M - C^r\) 丛映射 \((\bar{g}, Id_M) : \xi' \to \xi\) 使得 \(\bar{g} \circ \tilde{f} = Id_g, \tilde{f} \circ \bar{g} = Id_x\)，则称 \(\tilde{f}\) 或 \((f, Id_M)\) 为 \(M - C^r\) 丛同态或 \(C^r\) 丛同构。此时，\(g = \tilde{f}^{-1}\)，且交换图表为图(2)即 \(\pi' \circ \tilde{f} = \pi\) 且 \(\pi \circ \bar{g} = \pi'\)。此外，如果 \(\tilde{f}\) 为 \(C^r\) 丛映射覆盖 \(Id_M\)，则易得 \(\tilde{f}\) 为 \(C^r\) 丛同构。

例1 中，\(\xi\) 为 \(C^r\) 平凡向量丛 \(\leftrightarrow\) 存在 \(C^r\) 丛同构 \(f : E \to M \times \mathbb{R}^m\)（留作习题）。

为考虑一个向量丛被包含在另一个向量丛内，我们将定义丛的限制和子丛的概念。然后，证明丛同态的秩定理，由此得到两类子丛的例子。

定义5 设 \(\xi = (E, M, \pi, GL(m, \mathbb{R}), \mathbb{R}^m)\) 为 \(C^r\) 向量丛（或拓扑向量丛），\(M_0 \subset M\) 为 \(n_0\) 维 \(C^r\)“正则”子流形，即对任何 \(p \in M_0\)，存在 \(p\) 在 \(M\) 中的局部坐标系 \((U, \varphi), \{x^n\}\) 使得 \(M_0 \cap U = \{q \in U | x^n(q) = 0, n_0 + 1 \leq j \leq n\}\) （或子拓扑空间），则 \(\xi_{M_0} = (E | _{M_0}, \pi | _{M_0}^{-1}(M_0), M_0, \pi | _{M_0}^{-1}(M_0), GL(m, \mathbb{R}), \mathbb{R}^m)\) 为 \(M_0\) 上秩 \(m\) 的 \(C^r\) 向量丛（或拓扑向量丛），称为 \(\xi\) 在 \(M_0\) 上的限制，记作 \(\xi_{M_0}\) 或 \(E | _{M_0}\)（图15）。
定义 6 设 $\xi = (E, M, \pi, \text{GL}(m, R), R^m)$ 为秩 m 的 C^r 向量丛（或拓扑向量丛），$E' \subset E$ 为子丛，使对任何 $p \in M$，存在从图卡 $(\pi^{-1}(U), \psi)$ 使得 $p \in U$，且 $\psi(\pi^{-1}(U) \cap E') = U \times R^k \subset U \times R^m$，则 $(\pi^{-1}(U) \cap E', \psi|_{\pi^{-1}(U) \cap E'})$ 为 $(\xi', M, E', GL(k, R), R^k)$ 的从图库。于是，易证 ξ' 为秩 k 的 C^r 向量丛，称 ξ' 为 ξ（或 E' 为 E）的秩 k 的 C^r 坂向量丛（或拓扑子向量叟）（图 16）。

定理 1（从同态的秩定理）设 $\xi = (E, M, \pi, \text{GL}(m, R), R^m)$ 和 $\eta = (E', M, \pi', \text{GL}(m', R), R^{m'})$ 为 C^r 向量丛，$(f, Id_m): \xi \to \eta$ 为 rank $f_x = k$（常值）的 C^r 从同态。则对任何 $x \in M$，存在 x 的关于 ξ 的丛图卡 $(\pi^{-1}(U), \psi)$ 和关于 η 的丛图卡 $(\pi'^{-1}(U), \psi')$ 使得对每个 $u \in U$ 有 $(\psi' \circ f \circ \psi^{-1})_u(v^1, \ldots, v^m) = (v^1, \ldots, v^k, 0, \ldots, 0)$。

$$
\begin{array}{ccc}
E |_U & \xrightarrow{\tilde{f}} & E' |_U \\
\downarrow \psi & & \downarrow \psi' \\
U \times R^m & \xrightarrow{\psi' \circ f \circ \psi^{-1}} & U \times R^{m'}
\end{array}
$$

$(u, (v^1, \ldots, v^m)) \mapsto (u, (v^1, \ldots, v^k, 0, \ldots, 0))$。

证明 不失一般性，对从同态 $f: U \times R^m \to U \times R^{m'}$，$(u, v) \mapsto$
\((u, f_u(v))\) 加以证明。这里 \(f_u = (f_{u1}, \ldots, f_{um}) : \mathbb{R}^m \to \mathbb{R}^n\) 为常秩 \(k\) 的线性映射，它由 \(C^r\) 依赖于 \(u\) 的矩阵所描述。在经过 \(\mathbb{R}^n\) 和 \(\mathbb{R}^m\) 中坐标的适当置换后，我们可以设矩阵 \(f_u\) 的开始 \(k\) 行和 \(k\) 列的子矩阵是非异的。于是，从同态

\[
\psi : U \times \mathbb{R}^m \to U \times \mathbb{R}^m, \quad \psi_u(v) = (f_{u1}(v), \ldots, f_{uk}(v), v^{k+1}, \ldots, v^m) \quad \text{为纤维} \ u = x \ \text{上的同构，因此不失一般性，在每个纤维上为同构(\(\psi_u\)的行列式在} \ u = x \ \text{不为} \ 0, \ \text{则它在} \ x \ \text{的附近不为} \ 0). \ \text{利用这一同态作} U \times \mathbb{R}^m \text{的新丛同图，我们得到}
\]

\[
(\tilde{f} \circ \psi^{-1})_u(v) = (v, \ldots, v^k, g_{u1}^{k+1}(v), \ldots, g_{um}(v)).
\]

因为它仍有秩 \(k\)，故 \(g_{u1}^{k+1}, \ldots, g_{um}\) 仅依赖于 \(v, \ldots, v^k\)，即矩阵表示为

\[
(\tilde{f} \circ \psi^{-1})_u = \begin{pmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
g & \cdots & 0
\end{pmatrix}
\]

我们也可写作

\[
(\tilde{f} \circ \psi^{-1})_u(v) = (v, \ldots, v^k, g_{u1}^{k+1}(v), \ldots, g_{um}(v)).
\]

另一方面，我们有丛同图 (\(x^{-1}(U), \psi\)) 使得 \(\psi : U \times \mathbb{R}^m \to U \times \mathbb{R}^m, \quad \psi_u(w) = (w, \ldots, w^k, w^{k+1} - g_{u1}^{k+1}(w, \ldots, w^k), \ldots, w^m - g_{um}(w, \ldots, w^k)), \quad \text{而}(\psi \circ \tilde{f} \circ \psi^{-1})_u(v) = (v, \ldots, v^k, 0, \ldots, 0). \quad \Box
\]

例 5 设 \(\tilde{f} : E \to E'\) 为常秩 \(\text{rank} \tilde{f}_x = k\) 的 \(C^r\) 丛同态，则由定理 1 和定义 6 立即得到

\[
\text{Kernel} \tilde{f} = \bigcup_{x \in M} \text{Kernel} \tilde{f}_x
\]

为 \(E\) 的秩为 \(m - k\) 的 \(C^r\) 子丛，而

\[
\text{Image} \tilde{f} = \bigcup_{x \in M} \text{Image} \tilde{f}_x
\]

为 \(E'\) 的秩 \(k\) 的 \(C^r\) 子丛，其中 \(\text{Kernel} \tilde{f}_x = \{a \in x^{-1}(x) | \tilde{f}_x(a) = 0\}\)。
为 f_z 的核，$\text{Image}f_z = \{ f_z(a) | a \in \pi^{-1}(x) \}$ 为 f_z 的象。

例 6 设 $\xi_i = \{ E_i, M, \pi_i, \text{GL}(m_i, R), \mathbb{R}^{m_i}, \mathcal{E}_i \}, i = 1, 2$ 为 C^r 向量丛，令

$$E_1 \oplus E_2 = \bigcup_{x \in M} E_{1,x} \oplus E_{2,x}, \oplus \text{为直和;}$$

投影 $\pi : E_1 \oplus E_2 \to M, \pi(a_x \oplus b_x) = x$；

$$\mathcal{E}' = \{ (\pi^{-1}(U_1 \cap U_2), \varphi_i \oplus \varphi_j) \mid (\pi_i^{-1}(U_i), \varphi_i) \in \mathcal{E}_i, i = 1, 2 \},$$

$$(\varphi_i \oplus \varphi_j)_x = \varphi_i \oplus \varphi_j \varphi_{2x} : E_{1,x} \oplus E_{2,x} \to \{ x \} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_2},$$

$$(\varphi_{1x} \oplus \varphi_{2x})(a_x \oplus b_x) = (x, \varphi_{1x}(a_x) \oplus \varphi_{2x}(b_x)).$$

对任何 $(\pi_i^{-1}(U_{i_a}), \varphi_{i_a}), (\pi_i^{-1}(U_{i_b}), \varphi_{i_b}) \in \mathcal{E}_i, i = 1, 2$ 有

$$(\varphi_{1a} \oplus \varphi_{2a})^{-1}(x, a \oplus b) = (\varphi_{1a}^{-1} \circ \varphi_{2a}^{-1})(x, a \oplus b)$$

$$= (x, g_{1a}(x)a \oplus g_{2a}(x)(b) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} , \begin{pmatrix} a \\ b \end{pmatrix}).$$

$$\begin{pmatrix} g_{1a}(x) \\ 0 \\ g_{2a}(x) \end{pmatrix} \in H = \left\{ \begin{pmatrix} A_1 \\ 0 \\ A_2 \end{pmatrix} \mid A_i \in \text{GL}(m_i, R), i = 1, 2 \right\}$$

$\subseteq \text{GL}(m_1 + m_2, R)$，其中 H 为 $\text{GL}(m_1 + m_2, R)$ 的 C^r Lie 子群。显然 \mathcal{E}' 唯一确定了一个最大丛图册 \mathcal{E}，而拓扑群 $\tau = (\pi^{-1}(U_1 \cap U_2) \cap \bigcup_{i = 1, 2} (\pi_i^{-1}(U_i), \varphi_i) \in \mathcal{E}_i)$ 确定了 $E_1 \oplus E_2$ 上的一个拓扑，易见使 $E_1 \oplus E_2$ 为 C^r 流形。我们称 $\xi = \xi_1 \oplus \xi_2 = \{ E_1 \oplus E_2, M, \pi, \text{GL}(m_1 + m_2, R), \mathbb{R}^{m_1 + m_2}, \mathcal{E} \}$ 为 C^r 向量丛 ξ 和 ξ_2 的 Whitney 和。注意，我们也用 H 代替 $\text{GL}(m_1 + m_2, R)$ 得到相应的 C^r 向量丛。

例 7 设 $\xi = \{ E, M, \pi, \text{GL}(m, R), \mathbb{R}^m, \mathcal{E} \}$ 为 C^r 向量丛。令

$$E^* = \bigcup_{x \in M} E_x^*,$$

其中 $E_x^* = \{ \theta \mid \theta : E_x \to \mathbb{R} \text{ 为线性函数} \}$ 为 E_x 的对偶空间；投影 $\pi^* : E^* \to M, \pi^*(x, x) = x, x \in M$；
\[\mathcal{G}^{*} = \{(\pi^{*}(U_a), \psi^{*^{-1}}_a) | (\pi^{-1}(U_a), \psi_a) \in \mathcal{G}\}, \]

其中 \(\pi^{*}(U_a) \xrightarrow{\psi^{*}} U_a \times (\mathbb{R}^m)^* = U_a \times \mathbb{R}^m \) 定义如下:

\[
\{x\} \times \mathbb{R}^m \xrightarrow{\psi^{*}} \mathcal{E}^{*} \xrightarrow{\psi^{*}_a} \{x\} \times \mathbb{R}^m
\]

这里, \((x, a) = \psi_{\alpha}^{*} |_{x} \psi_{\alpha}^{-1} |_{x}(x, a) = (x, g_{\beta\alpha}(x)a)\), 根据线性映射 \(g_{\beta\alpha}(x)\) 的共轭线性映射 \(g_{\beta\alpha}(x)^*\) 的定义 \(g_{\beta\alpha}(x)^* (b^*) (a) = b^* (g_{\beta\alpha}(x)a)\) 得到 \(g_{\beta\alpha}(x)^* = g_{\beta\alpha}(x) (g_{\beta\alpha}(x)\) 的转置矩阵)。于是,

\[
(x, a^*) = \psi^{*}_a |_{x} \psi^{*}_a^{-1} (x, b^*) = (\psi^{*}_a |_{x} \psi^{*}_a^{-1} |_{x}(x, b^*)
\]

或

\[
(x, b^*) = (x, g_{\beta\alpha}(x)^* a^*)
\]

其中 \((g_{\beta\alpha}(x)^*)^{-1} \in GL(m, \mathbb{R})\)。设 \(\mathcal{G}^{*}\) 为 \(\mathcal{G}^{*}\) 唯一确定的 \(\mathcal{E}^{*}\) 的从图册，则称

\[\xi^{*} = \{\mathcal{E}^{*}, M, \pi^{*}, GL(m, \mathbb{R}), \mathbb{R}^m, \mathcal{G}^{*}\} \]

为 \(\mathcal{G}\) 的 \(C^\infty\) 对偶丛(易见 \((g_{\beta\alpha}(x)^*)^{-1}\) 关于 \(x\) 是 \(C^\infty\) 类的).

例 8 设 \(\xi = \{F, N, \pi, GL(m, \mathbb{R}), \mathbb{R}^m, \mathcal{G}\}\) 为 \(C^\infty\) 向量丛(或拓扑向量丛), \(M\) 为 \(C^\infty\) 流形(或拓扑空间), \(f: M \rightarrow N\) 为 \(C^\infty\) 映射(或连续映射), 令

\[f^*F = \{((x, e) \in M \times F | f(x) = \pi(e)) \subset M \times F, \]

投影 \(\pi^*: f^*F \rightarrow M, \pi^*(x, e) = x\)，于是, \((\pi^*)^{-1}(x) = \{(x, e) | e \in \pi^{-1}(f(x))\}\) 以 \(\pi^{-1}(f(x))\) 上的向量构造作为它的向量构造。设

\[\mathcal{G}^{*'} = \{((\pi)^{-1}(f^{-1}(U_a)), \bar{\psi}_a) | (\pi^{-1}(U_a), \psi_a) \in \mathcal{G}\}, \]

其中 \(\bar{\psi}_{\alpha}: (f^*F) \rightarrow \{x\} \times \mathbb{R}^m\) 由 \(\psi_{\alpha} |_{f^{-1}(x)}: F_{f^{-1}(x)} \rightarrow \{f(x)\} \times \mathbb{R}^m\) 确定。易见 \(\bar{g}_{\beta\alpha}(x)a = g_{\beta\alpha}(f(x))a\)，故 \(\bar{g}_{\beta\alpha}(x) = g_{\beta\alpha}(f(x))\in GL(m, \mathbb{R})\)，且 \(g_{\beta\alpha} = g_{\beta\alpha}: f^{-1}(U_a) \cap f^{-1}(U_{\beta}) \rightarrow GL(m, \mathbb{R})\) 为 \(C^\infty\) 映射。此外,
f^*F 作为 $M \times F$ 的子集，其拓扑或流形构造是明显的。自然，E^*
唯一确定了一个 f^*F 的丛图册 E^*，我们称

$$f^*\xi = \{f^*F, M, \pi^*, \text{GL}(m, \mathbb{R}), \mathbb{R}^m, E^*\}$$

为由 f 得到的 ξ 的诱导丛。

定义 $\tilde{f}:f^*F \to F$, $\tilde{f}(x, e) = e$，不难看出，\tilde{f} 从映射覆盖 f。

诱导丛具有以下重要性质：

定理 2 (诱导丛的万有性质) 设 $\{E, M, \pi\}$, $\{F, N, \pi\}$ 为
C^∞(或拓扑)向量丛，$f: M \to N$ 为 C^∞(或连续)映射，$\{f^*F, M, \pi^*\}$
为由 f 得到的 (F, N, π) 的诱导丛，由例 8，$\tilde{f}: f^*F \to F$ 丛映射 覆盖 f, $(\phi, f):(E, M, \pi^*) \to (F, N, \pi)$ 为 C^∞(或连续)丛映射。则存在 C^∞(或连续) 丛同态 $(\bar{h}, \text{Id}_M):(E, M, \pi^*) \to \{f^*F, M, \pi^*\}$ 使 $\phi = f \circ \bar{h}$;

证明 由 $f(\pi'(v)) = \pi(\phi(v))$ 可知，$\bar{h}(v) = (\pi'(v), \phi(v))$，
$f^*F \subset M \times F$ 且 $f \circ \bar{h}(v) = f(\pi'(v), \phi(v)) = \phi(v), \bar{f} \circ \bar{h} = \phi$。并
为了定义向量丛的定向，我们先回忆一下 m 维 Euclid 空间

76
\(\mathbb{R}^n \) 中的定向。设 \(\{ e_i \mid i = 1, \ldots, m \} \) 和 \(\{ \bar{e}_i \mid i = 1, \ldots, m \} \) 为 \(\mathbb{R}^n \) 中的两个基，且

\[
\begin{pmatrix}
\bar{e}_1 \\
\vdots \\
\bar{e}_m \\
\end{pmatrix} = \begin{pmatrix}
c_{11} & \cdots & c_{1m} \\
\vdots & \ddots & \vdots \\
c_{m1} & \cdots & c_{mm} \\
\end{pmatrix}
\begin{pmatrix}
e_1 \\
\vdots \\
e_m \\
\end{pmatrix}
\]

如果 \(\det(c_{ij}) > 0 \)，则称基 \(\{ e_i \mid i = 1, \ldots, m \} \) 和 \(\{ \bar{e}_i \mid i = 1, \ldots, m \} \) 是同向的；如果 \(\det(c_{ij}) < 0 \)，则称基 \(\{ e_i \mid i = 1, \ldots, m \} \) 和 \(\{ \bar{e}_i \mid i = 1, \ldots, m \} \) 是反向的。因此，\(\mathbb{R}^n \) 恰有两个定向。有时，用 \(\{ e_1, \ldots, e_m \} \) 表示由有序基 \(\{ e_1, \ldots, e_m \} \) 所对应的定向。如果 \(\det(c_{ij}) > 0 \)，则 \(\{ e_1, \ldots, e_m \} = \{ \bar{e}_1, \ldots, \bar{e}_m \} \)；如果 \(\det(c_{ij}) < 0 \)，则 \(\{ e_1, \ldots, e_m \} = -\{ \bar{e}_1, \ldots, \bar{e}_m \} \)。为方便，约定 \(\mathbb{R}^0 = \{ 0 \} \) 也恰有两个定向 \(\{ 1, -1 \} \)。

通过对每个纤维的定向给出向量丛的定向，并且期望沿每空间的任一道路，使得定向不致突然“跳跃”，下面介绍向量丛的定向的概念。

定义 7 设 \(\xi = \{ E, M, \pi, \text{GL}(m, \mathbb{R}), \mathbb{R}^n, \mathcal{E} \} \) 为 \(C^r \)（或拓扑）向量丛，\(\mathcal{O} = \{ o_x \mid x \in M \} \)，其中 \(o_x \) 为纤维 \(E_x \) 的一个定向。如果存在 \(\mathcal{E}_1 \subset \mathcal{E} \)，使得 \(\{ U \mid (\pi^{-1}(U), \psi) \in \mathcal{E}_1 \} \) 覆盖 \(M \)，且对任何 \(x \in U \)，同构 \(\psi_x : E_x \rightarrow \mathbb{R}^n \) 将纤维 \(E_x \) 的定向 \(o_x = [a_1(x), \ldots, a_m(x)] \) 变为 \(\mathbb{R}^n \) 的固定定向 \([e_1, \ldots, e_m] \)，即 \(\psi_x(o_x) = [\psi_x(a_1(x)), \ldots, \psi_x(a_m(x))] = [e_1, \ldots, e_m] \)，则称 \(\mathcal{O} = \{ o_x \mid x \in M \} \) 为 \(\xi \) 或 \(E \) 的一个定向。显然，存在一个满足上述条件的最大子丛图册 \(\mathcal{E}_1 \)，使 \(\mathcal{E}_1 \subset \mathcal{E}_1 \subset \mathcal{E} \)。称 \(\mathcal{E}_1 \) 中的元素为与定向 \(\mathcal{O} \) 一致的从图册。

如果 \(\xi \) 有定向，则称它为可定向的；如果 \(\xi \) 不存在定向，则称它为不可定向的。

关于 \(\xi \) 的可定向和不可定向有以下定理。

\[\begin{align*}
\end{align*} \]
定理 3 设 $\xi = \{E, M, \pi, \text{GL}(m, R), R^n, \mathcal{S}\}$ 为 C^r（或拓扑）向量丛，则

ξ 可定向 \iff 存在子丛图册 $\mathcal{S} \subset \mathcal{S}$，使对任何 $(\pi^{-1}(U_a), \psi_a)$,
$(\pi^{-1}(U_b), \psi_b) \in \mathcal{S}$, $U_a \cap U_b = \emptyset$，有

$$\det g_{ab}(x) > 0, \quad x \in U_a \cap U_b,$$

且 $\{U | (\pi^{-1}(U), \psi) \in \mathcal{S}\}$ 覆盖 M.

证明 （\implies）设 $\mathcal{O} = \{o_x | x \in M\}$ 为 ξ 的定向，由定义 7，$\{U | (\pi^{-1}(U), \psi) \in \mathcal{S}'\}$ 覆盖 M，且对任何 $(\pi^{-1}(U_a), \psi_a), (\pi^{-1}(U_b), \psi_b) \in \mathcal{S}'$，由 $\mathbb{R}^m \overset{\pi^{-1}_1}{\longrightarrow} E \overset{\pi^{-1}_2}{\longrightarrow} \mathbb{R}^n$ 和 $[e_1, \ldots, e_m] \mapsto o_x \mapsto [e_1, \ldots, e_m]$ 可知，$\det g_{ab}(x) > 0, x \in U_a \cap U_b$.

(\Longleftarrow) 如果存在 $\mathcal{S} \subset \mathcal{S}$ 满足右边条件，对任何 $(\pi^{-1}(U_a), \psi_a), (\pi^{-1}(U_b), \psi_b) \in \mathcal{S}'$, $x \in U_a \cap U_b$，由 $\det g_{ab}(x) > 0$ 得到 $\psi_a^{-1} |_x$ $([e_1, \ldots, e_m]) = \psi_b^{-1} |_x ([e_1, \ldots, e_m])$，则显然地，

$$\mathcal{O} = \{o_x = \psi_a^{-1} |_x ([e_1, \ldots, e_m]) | x \in M, \text{ 存在 } (\pi^{-1}(U_a), \psi_a) \in \mathcal{S}' \}$$

使 $x \in U_a$ 为 ξ 的一个定向。

定理 4 设 M 为连通的 C^r 流形（或连通拓扑空间），$\xi = \{E, M, \pi, \text{GL}(m, R), R^n, \mathcal{S}\}$ 为 C^r（或拓扑）向量丛，如果 ξ 可定向，则它恰有两个定向。

证明 设 $\mathcal{O} = \{o_x | x \in M\}$ 为 ξ 的一个定向，\mathcal{O}' 为定义 7 中所述，则 $\mathcal{O}' = \{-o_x | x \in M\}$ 为 ξ 的另一定向，相应于 \mathcal{S}' 的子丛图册为 $\mathcal{S}' = \{[(\pi^{-1}(U), \rho x, \psi) | (\pi^{-1}(U), \psi) \in \mathcal{S}]\}$，其中 $\rho_x : U \times \mathbb{R}^n \rightarrow U \times \mathbb{R}^n, \rho_x(z, (a^1, \ldots, a^n)) = (z, (a^1, \ldots, a^{m-1}, -a^m))$。于是，$\xi$ 至少有两个定向。下面证明 ξ 至多有两个定向，即若 $\mu = \{\mu_x | x \in M\}$ 和 $\nu = \{\nu_x | x \in M\}$ 为 ξ 的任意两个定向，则必有 $\mu = \nu$ 或 $\mu = \nu^\sim$。

记 $\mathcal{S} = \{x \in M | \mu_x = \nu_x\}$。对任意 $x \in \mathcal{S}$，取含 x 的从图册
\((\pi^{-1}(U_x), \psi_a) \in \mathcal{S}, \text{和 } (\pi^{-1}(U_y), \psi_b) \in \mathcal{S}, (\mathcal{S} \text{和 } \mathcal{S}, \text{分别为 } \mu \text{ 和 } \nu \text{ 的子丛图册 })\). 由于 \(\mu_x = \nu_x\), 于是有

\[
\det g_{\mu_x}(x) > 0.
\]

由连续性, 存在 \(x\) 的开邻域 \(U \subseteq U_x \cap U_y\), 使得

\[
\det g_{\mu_x}(u) > 0, \quad u \in U.
\]

易见 \(\mu_u = \nu_u, u \in U\), 故 \(U \subseteq \mathcal{S}\), 即 \(\mathcal{S}\) 为 \(M\) 中的开集.

由于 \(M - \mathcal{S} := \{x \in M \mid \mu_x = \nu_x\} = \{x \in M \mid \mu_x = -\nu_x\}\) 和 \(\nu\) 也是 \(\xi\) 的一个定向, 再根据 \(\mathcal{S}\) 为开集的结论, \(M - \mathcal{S}\) 也为 \(M\) 的开集. 从 \(M\) 连通知 \(\mathcal{S} \cap \mathcal{S}\) 或 \(M - \mathcal{S}\). 若 \(\mathcal{S} = \emptyset\), 则有 \(\mu = \nu\); 若 \(\mathcal{S} = M\), 则有 \(\mu = \nu\).

定理 5 设 \(\mathcal{O} = \{o_x \mid x \in M\}\) 为 \(C^n\) (或拓扑) 向量丛 \(\xi = \{E, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^n, \mathcal{S}\}\) 的一个定向.

(1) 如果 \((\pi^{-1}(U), \psi) \in \mathcal{S}\), 且 \(U\) 为 \(M\) 的连通开集, \(\psi^{-1}|_{x}\) \([e_1, \cdots, e_m]\) = \(o_x\), \(x\) 为 \(U\) 内固定点, 则对任意 \(x \in U\),

\[
\psi^{-1}|_{x}\) \([e_1, \cdots, e_m]\) = o_x, \quad \text{即 } (\pi^{-1}(U), \psi) \in \mathcal{S}, \text{与 } \mathcal{O}\) 一致的从图册.

(2) 如果 \((\pi^{-1}(U_u), \psi_u), (\pi^{-1}(U_y), \psi_b) \in \mathcal{S}, U_u, U_y\) 为 \(M\) 的连通开集, 则恒有 \(\det g_{\mu_u}(x) > 0, x \in U_u \cap U_y\) 或恒有 \(\det g_{\mu_b}(x) < 0, x \in U_u \cap U_y\).

证明 (1) 显然, \(\mu = \{\mu_x = \psi^{-1}|_{x}(e_1, \cdots, e_m) \mid x \in U\}\) 为向量从 \(\pi^{-1}(U)\) 上的一个定向, 因为 \(U\) 连通, 根据定理 4, \(\mu = \{o_x \mid x \in U\} = \mathcal{O} \mid U\) 或 \(\mathcal{O} \mid \emptyset\), 又因 \(\mu = o_x\), 故 \(\mu = \mathcal{O} \mid \emptyset\).

(2) 因为 \(U_u, U_y\) 为 \(M\) 中的连通开集, 根据 (1), 从图卡 \((\pi^{-1}(U_u), \psi_u), (\pi^{-1}(U_y), \psi_b)\) 为定向从图卡或反向从图卡, 于是, 对任意 \(x \in U_u \cap U_y\) 有

- 79 -
对于 $\det g_{rs}(x) > 0$, $(\pi^{-1}(U_a), (\pi^{-1}(U_a), \psi_a)$ 以及 $(\pi^{-1}(U_b), \psi_b)$ 同为定向或反向丛图卡，

对于 $\det g_{rs}(x) < 0$, $(\pi^{-1}(U_a), (\pi^{-1}(U_b), \psi_a)$ 以及 $(\pi^{-1}(U_b), \psi_b)$ 同为定向且另一为反向丛图卡。

定义 8 设 $\xi = (E, M, \pi, GL(m, R), R^n, S)$ 为 C^r（或局部的）向量丛，$\sigma: [0, 1] \to M$ 为一条 $(C^0$ 类的) 道路，$\mu = \{\mu_{\sigma}(t) | t \in [0, 1]\}$，其中 $\mu_{\sigma}(t)$ 为纤维 $E_{\sigma(t)}$ 中的一个定向。如果对任何 $t \in [0, 1]$，存在 $\varepsilon > 0$ 和 $(\pi^{-1}(U), \psi) \in S$，使得 $\sigma((t_0 - \varepsilon, t_0 + \varepsilon) \cap [0, 1]) \subseteq U$，且

$$\mu_{\sigma(t)} = \psi^{-1}((e_i))(e_{i_1}, \ldots, e_{i_n})$$

则称 μ 为沿 σ 的连续定向。

定义 6 设 $\xi = (E, M, \pi, GL(m, R), R^n, S)$ 为 C^r（或局部道路连续的拓扑）向量丛。则

(1) ξ 不可定向；(2) 存在 $(\pi^{-1}(U_i), (\pi^{-1}(U_i), \psi_i) \in S, U_i$，道路打通，

$$i = 1, \ldots, k$$

和 $p_i \in U_i \cap U_{i+1}, p_i \notin U_i \cap U_{i+1}$，满足 $\det g_{i, i+1}(p_i) > 0$ 而 $\det g_{i, i+1}(p_i) < 0$；(3) 存在闭道路 $\sigma: [0, 1] \to M$，$\sigma(0) = \sigma(1)$ 和沿 σ 的连续定向 $\mu = \{\mu_{\sigma}(t) | t \in [0, 1]\}$，使得 $\mu_{\sigma(0)} = -\mu_{\sigma(1)}$；(4) 存在点 $p, q \in M$ 和从 p 到 q 的两条道路 $\sigma_{1}: [0, 1] \to M$ 以及沿 σ_{1} 的连续定向 $\mu_{1} = \{\mu_{1\sigma_{1}}(t) | t \in [0, 1]\}$，

$$i = 1, 2,$$

使得 $\mu_{1p} = \mu_{1\sigma_{1}(0)} = \mu_{2\sigma_{1}(0)} = \mu_{2q}$，$\mu_{1q} = \mu_{1\sigma_{1}(1)} = -\mu_{2\sigma_{1}(1)} = -\mu_{2p}$。

证明 (1) \Rightarrow (2) 设 ξ 不可定向。因为 C^r 流形 M 是局部道路连通的，故道路连通分支是 M 的开集，从而至少有 M 的一个道路连通分支 U，使得 $(\pi^{-1}(U), (\pi^{-1}(U), \psi) \in S)$ 是不可定向的。不失一般性，设 M 是道路连通的。固定 $p \in M$，对任何 $x \in M$，存在连续 p 和 x 的道路 $\sigma_{px}: [0, 1] \to M$。因 $\sigma_{px}([0, 1]) \subseteq M$ 为紧致集和 M 为局部道路连通，故存在丛图卡 $(\pi^{-1}(U_i), (\pi^{-1}(U_i), \psi_i) \in S, i = 1, \ldots, k(x))$，使得 $U_i \subseteq M$ 为道路连通，且 $\sigma_{px}([0, 1]) = \bigcup_{i=1}^{k(x)} U_i$，$p \in U_i, i \in \sigma_{px}(x) \in \sigma_{px}$。此外，有 $p_x \in \sigma_{px}$。
\((0, 1) \cap U_i \cap U_i^q, i = 1, \ldots, k(x) - 1, \) 满足 \(\det g_{i+1}^q(p^i) > 0,\) 令 \(\mathcal{C} = \{(\pi_1(U_i^q), \psi_i^q) \in \mathcal{C}^q | x \in M, i = 1, \ldots, k(x)\}.\) 从 \(\bigcup_{x \in M, i = 1}^{k(x)} U_i^q = M\) 以及 \(\xi\) 不可定向可知, 必有 \(a, b \in M\), 使 \(\det g_{i+1}^q(a) < 0,\) 其中 \(a \in U_i^q \cap U_i^q, g_{i+1}^q\) 为从图卡 \((\pi_1(U_i^q), \psi_i^q)\) 和 \((\pi_1(U_i^q), \psi_i^q)\) 的转换映射, 如果总有 \(\det g_{i+1}^q(p) > 0,\) 则 \((\pi_1(U_i^q), \psi_i^q), \ldots, (\pi_1(U_i^q), \psi_i^q), (\pi_1(U_i^q), \psi_i^q), \ldots, (\pi_1(U_i^q), \psi_i^q), p^q_{i-1}, \ldots, p^q_i, p_{i+1}, \ldots, p_{i+1})\), \(c\) 满足(2)。

(2) \(\Rightarrow\) (3) 设(2)成立, 由于 \(U_i\) 道路连通, 存在 \(M\) 中的一条道路 \(\sigma : [0, 1] = [t_1, t_{k+1}] \to M\), 使得 \(\sigma(t_i) = p_i, i = 1, \ldots, k, \sigma(0) = t_1 < t_2 < \cdots < t_k < t_{k+1} = 1, \) 且 \(\sigma([t_i, t_{i-1}]) \subset U_{i+1}, i = 1, \ldots, k - 1, \sigma([t_k, t_{k+1}]) \subset U_1\), 又因 \(\det g_{i+1}^q(p) > 0\) 而 \(\det g_{i+1}^q(p) < 0,\) 令

\[
\mu_{\sigma(t_i)} = \left\{ \psi_i^{-1} |_{\sigma(t_i)}(\{e_1, \ldots, e_m\}), i \in [t_i, t_{i-1}], i = 1, \ldots, k - 1, \psi_i^{-1} |_{\sigma(t_i)}(\{e_1, \ldots, e_m\}), i \in [t_k, t_{k+1}] \right\}.
\]

显然, \(\mu = \{ \mu_{\sigma(t_i)} | t \in [t_1, t_{k+1}] = [0, 1] \}\) 为沿 \(\sigma\) 的连续定向, 且 \(\mu_{\sigma(0)} = \mu_{\sigma(t_1)} = \psi_1^{-1} |_{\sigma(t_1)}(\{e_1, \ldots, e_m\}) = -\psi_1^{-1} |_{\sigma(t_1)}(\{e_1, \ldots, e_m\}) = -\mu_{\sigma(t_k)} = -\mu_{\sigma(t_{k+1})} = \mu_{\sigma(t_k)} = \mu_{\sigma(1)} = \mu_{\sigma(t_{k+1})} = \mu_{\sigma(t_1)} = \mu_{\sigma(0)}\)。

(3) \(\Rightarrow\) (4) 如果(3)成立, 则存在闭道路 \(\sigma : [0, 1] \to M, \sigma(0) = \sigma(1)\) 和沿 \(\sigma\) 的连续定向 \(\mu = \{ \mu_{\sigma(t)} | t \in [0, 1] \}, \mu_{\sigma(0)} = -\mu_{\sigma(1)}\). 令道路

\[
\sigma_i : [0, 1] \to M, i = 1, 2
\]

为 \(\sigma_1(t) = \sigma(1 - \frac{1}{2}t), t \in [0, 1], \sigma_2(t) = \sigma(\frac{1}{2} + \frac{1}{2}t), t \in [0, 1]\), 则

\[
\sigma_1(0) = \sigma(0) = \sigma(1) = \sigma_2(0), \sigma_1(1) = \sigma(1) = \sigma_2(1), \sigma_1 = \sigma_2, \sigma(1) = \sigma_2(1).
\]

\[\bullet \quad 8 \quad \bullet \]
\[
\mu_{1\sigma_t(t)} = \mu_{\sigma_t(1 \cdot t)}, \quad \mu_{2\sigma_t(t)} = -\mu_{\sigma_t(1 - 1 \cdot t)}.
\]

则 \(\mu_t = \{\mu_{1\sigma_t(t)} | t \in [0, 1]\}\) 为沿 \(\sigma_t\) 的连续定向，\(i = 1, 2\)，使得

\[
\mu_{1\sigma_t(0)} = \mu_{\sigma_t(0)} = -\mu_{\sigma_t(1)} = -\mu_{2\sigma_t(0)}, \quad \mu_{1\sigma_t(1)} = \mu_{\sigma_t(1)} = -\mu_{2\sigma_t(1)}.
\]

(4) \(\Rightarrow\) (1) （反证）假设 \(\xi\) 可定向，\(\mathcal{O} = \{\sigma_t | x \in M\}\) 为其定向。对

任何 \(p, q \in M\) 和连 \(p, q\) 的任两道路 \(\sigma_t : [0, 1] \to M\)，沿 \(\sigma_t\) 的连续定向

\[
\mu_t = \{\mu_{1\sigma_t(t)} | t \in [0, 1]\}, \quad \mu_{1\sigma_t(0)} = \mu_{2\sigma_t(0)} = \sigma_t(0) = 0_p.
\]

由定义 8，显然 \(S = \{t \in [0, 1] | \mu_{1\sigma_t(t)} = \sigma_t(0)\}\) 和 \(\{0, 1\} - S = \{t \in [0, 1] | \mu_{1\sigma_t(t)} = \sigma_t(1)\} = \{t \in [0, 1] | \mu_{1\sigma_t(t)} = -\sigma_t(1)\}\) 都为开集。再由 \([0, 1]\) 连通和 \(0 \in S\)，故 \(S = [0, 1]\)，从而 \(\mu_{1\sigma_t(t)} = \sigma_t(1)\)。同理，\(\mu_{2\sigma_t(1)} = -\sigma_t(1)\)，所以 \(\mu_{1\sigma_t(1)} = \sigma_t(1) = 0_p = \sigma_t(1) = \mu_{2\sigma_t(1)}\)。即 (4) 不成立，矛盾。

作为习题读者证明 (4) \(\Rightarrow\) (3)，(2) \(\Rightarrow\) (1) 等。

从定理 6 立即得到 \(\xi\) 可定向的充要条件。

定理 7 设 \(\xi = \{E, M, R, \text{GL}(m, R), R^n, \mathcal{O}\}\) 为 \(C^r\) (或局部道路连通的拓扑) 向量丛，则

(1) \(\xi\) 可定向；

\(\Leftrightarrow\) (2) 对于 \(M\) 中任何闭道路 \(\sigma : [0, 1] \to M\)，沿 \(\sigma\) 的连续定向 \(\mu = \{\mu_{\sigma(t)}, t \in [0, 1]\}\)，必有 \(\mu_{\sigma(0)} = \mu_{\sigma(1)}\)。\(\Leftrightarrow\) (3) 对于任何 \(p, q \in M\) 和连 \(p, q\) 的两条道路 \(\sigma_t : [0, 1] \to M\) 以及沿 \(\sigma_t\) 的连续定向

\[
\mu_t = \{\mu_{1\sigma_t(t)} | t \in [0, 1]\}, \quad \mu_{1\sigma_t(0)} = \mu_{2\sigma_t(0)} = \sigma_t(0) = 0_p.
\]

例 9 例 2 中，M"obius 带 \(E\) 作为秩 1 的实向量丛 \(\xi = \{E, S^1, \pi, \text{GL}(1, R), R^n\}\) 沿中心线相应的闭道路 \(\sigma : [0, 1] \to E^1\)，沿 \(\sigma(1)\) 的连续定向 \(\mu = \{\mu_{\sigma(t)} | t \in [0, 1]\}\)，必有 \(\mu_{\sigma(0)} = -\mu_{\sigma(1)}\)，故

\(\xi\) 或 \(E\) 不可定向。或如例 2 所述，由

\[g_{21}(\lfloor x \rfloor) = \begin{cases} 1, & [x] \in V_1, \\ -1, & [x] \in V_2, \end{cases}\]

82.
定理 6(2) 可知，ξ 或 E 是不可定向的。

§ 3 切 丛

为建立 n_1 维 C^∞ 流形 (M_1, \mathcal{D}_1) 到 n_2 维 C^∞ 流形 (M_2, \mathcal{D}_2) 的 C^∞ 映射 $f: M_1 \to M_2$ 在 $p \in M_1$ 的微分或 Jacobi 映射，必须将 C^∞ 流形 M_1 和 M_2 分别在 p 和 $f(p) \in M_2$ 处线性化，即在相应点处引进切空间的概念。它是 Euclid 空间中光滑曲线或曲面在其每个点处的切线或切平面的推广。为便于将 \mathbb{R}^n 中切向量推广到 C^∞ 流形上去，我们来研究方向导数的性质，并用“映射”或“算子”的观点定义切向量，这种观点就是近代数学观点，或称为不变观点。

设 U_r 为 \mathbb{R}^n 中含 p 的开集，$f: U_r \to \mathbb{R}^n$ 为 C^1 类函数，C^1 曲线 $x(t), x(0) = p, x'(0) = X_p$, 则 f 在 p 点沿 X_p 的方向导数为

$$X_pf = \frac{df(x(t))}{dt} \bigg|_{t=0} = \sum_{i=1}^n \frac{\partial f}{\partial x^i}(p) \frac{dx^i}{dt}(0)$$

$$= \left(\sum_{i=1}^n (X_px^i) \frac{\partial}{\partial x^i} \right) f,$$

特别，$X_px^i = \frac{dx^i}{dt} \bigg|_{t=0} = \frac{dx^i}{dt}(0)$. 容易看出，$(X_pf, f: U_r \to \mathbb{R}^n)$ 完全确定了 X_p. 事实上，$(X_px^j | j = 1, \cdots, n)$ 完全确定了 X_p. 此外，X_p 具有性质:

（1）若存在含 p 的开集 $U \subset U \cap U_\varnothing$, 使 $f \circ g = g \circ f$, （称 $(f, U_\varnothing) \sim (g, U_\varnothing)$），则 $X_pf = X_pg$.

（2）$X_p(f + g) = X_pf + X_pg$,

$$X_p(\lambda f) = \lambda \cdot X_pf, \quad \lambda \in \mathbb{R}, U_\varnothing = U_\varnothing;$$

（3）$X_p(fg) = g(p)X_pf + f(p)X_pg$,

$U_\varnothing = U_\varnothing \cap U_\varnothing$.

定义 1 设 (M, \mathcal{D}) 为 n 维 C^∞ 流形，$C^\infty(M) = \{(f, U_r) | p \in U_r \subset M, U_r$ 为 M 的开集，$f: U_r \to \mathbb{R}$ 为 C^∞ 函数$\}$. 如果映射 $X_p: C^\infty(M)$.

"83"
→\mathbb{R}$, $f_0 \to X_p f$, 对任意 $(f, U_f), (g, U_g) \in C^\infty(p), \lambda \in \mathbb{R}$ 满足:

1. $f_0(f, U_f) \sim (g, U_g)$, 则 $X_p f = X_p g$;

2. $X_p(f + g) = X_p f + X_p g,\quad U_{f+g} = U_f \cap U_g$; 线性

3. $X_p(f g) = g(p) X_p f + f(p) X_p g,\quad U_{f g} = U_f \cap U_g$; 乘性

定义 2 设 $T_p M = \{X_p \mid X_p$ 为 p 点处的切向量$.\}$, 如果 $X_{1p}, X_{2p} \in T_p M, \lambda \in \mathbb{R}$, 则我们在 $T_p M$ 中定义

加法 $(X_{1p} + X_{2p}) f = X_{1p} f + X_{2p} f$;

数乘 $(\lambda X_p) f = \lambda X_p f$.

易见 $X_{1p} + X_{2p}, \lambda X_p \in T_p M$, 且 $T_p M$ 关于上述加法和数乘满足向量空间的各个条件, 使之成向量空间, 称它为 p 点处的切向量空间.

定理 1 $T_p M$ 为 n 维向量空间.

证明 设 $(U, \varphi), \{x^i \mid i = 1, \cdots, n\}$ 为 p 的局部坐标系, 我们定义坐标向量

$$\frac{\partial}{\partial x^i} \bigg|_p : \mathcal{C}^\infty(p) \to \mathbb{R}, \quad \frac{\partial}{\partial x^i} \bigg|_p f = \frac{\partial(f \circ \varphi^{-1})}{\partial x^i}(\varphi(p)),$$

容易验证 $\frac{\partial}{\partial x^i} \bigg|_p$ 满足定义 1 的 (1), (2), (3), 故 $\frac{\partial}{\partial x^i} \bigg|_p \in T_p M$.

如果 $\sum_{i=1}^n \lambda^i \frac{\partial}{\partial x^i} \bigg|_p = 0^-$ (0 为零切向量, 即 $0 f \sim 0$), 则有

$$0 = 0 x^i = \left(\sum_{i=1}^n \lambda^i \frac{\partial}{\partial x^i} \bigg|_p \right) x^i = \sum_{i=1}^n \lambda^i \left(\frac{\partial}{\partial x^i} \bigg|_p x^i \right) = \sum_{i=1}^n \lambda^i \frac{\partial x^j}{\partial x^i}$$

$$= \sum_{i=1}^n \lambda^i \delta^j_i = \lambda^j, \quad j = 1, \cdots, n,$$

\pageref{0}{2022.07.15}

- 84 -
\[
\left\{ \frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right\}_p\) 是线性无关的.
\]
再证对于任何 \(X_p \in T_p M\)，有 \(X_p = \sum_{i=1}^{n} (X_p x^i) \frac{\partial}{\partial x^i} \big|_p\)。于是，
\[
\left\{ \frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right\}_p\) 为 \(T_p M\) 的一个基，从而 \(T_p M\) 为 \(n\) 维向量空间。
对任意 \((f, U) \in C^\infty(p)\)，取 \(p\) 的局部坐标系 \((U, \varphi), (x^i)\)，令 \(\varphi(p) = a, \varphi(q) = x\)，则有
\[
f(q) = f(p) + f \circ \varphi^{-1}(x) - f \circ \varphi^{-1}(a)
\]
\[
\Rightarrow \quad f(q) = f(p) + \int_0^1 \frac{d}{dt} f \circ \varphi^{-1} (a + t(x-a)) dt
\]
\[
= f(p) + \sum_{i=1}^{n} \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} (a + t(x-a)) (x^i - a^i) dt
\]
\[
= f(p) + \sum_{i=1}^{n} (x^i - a^i) \int_0^1 \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} (a + t(x-a)) dt
\]
\[
= f(p) + \sum_{i=1}^{n} (x^i - a^i) g_i(x) = f(p) + \sum_{i=1}^{n} (x^i - a^i) g_i(q),
\]
其中 \(g_i(q) = \tilde{g}_i \circ \varphi(q) = \int_0^1 \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} (a + t(x-a)) dt\).
\[
g_i(p) = \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} (a).
\]
由 \(X_p 1 = X_p (1 \cdot 1) = 1 \cdot X_p 1 + 1 \cdot X_p 1 = 2X_p 1\)
从而可得
\[
X_p \lambda = X_p (\lambda \cdot 1) = \lambda X_p 1 = 0, \lambda \in \mathbb{R},
\]
再由定义 1 中的 (2), (3) 得到
\[
X_p f = X_p (f(p) + \sum_{i=1}^{n} g_i(p) \cdot X_p (x^i - a^i) + \sum_{i=1}^{n} (a^i - a^i) X_p g_i)
\]
\[
= 0 + \sum_{i=1}^{n} (X_p x^i) \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} (a) + 0 = \left(\sum_{i=1}^{n} (X_p x^i) \frac{\partial}{\partial x^i} \big|_p \right) f,
\]

* 85 *
\[X_p = \sum_{i=1}^{n} (X_n x^i) \frac{\partial}{\partial x^i} \bigg|_p \] (图 17).

注意：由 \(M \) 和 \(f \) 的 \(C^m \) 性，\(g_i \) 也是 \(C^m \) 的，故 \(X_p g_i \) 有意义！

设 \((U_a, \varphi_a), \{x^i\}\) 和 \((U_b, \varphi_b), \{y^j\}\) 为 \(p \) 点的两个局部坐标系，

由

\[
\frac{\partial}{\partial y^j} \bigg|_p \frac{\partial}{\partial y^j} \bigg|_p = \sum_{i=1}^{n} \frac{\partial}{\partial x^i} (\varphi_a(p)) \frac{\partial}{\partial x^i} (\varphi_b(p))
\]

得到坐标基变换公式

\[
\frac{\partial}{\partial y^j} \bigg|_p = \sum_{i=1}^{n} \frac{\partial x^i}{\partial y^j} (\varphi_a(p)) \frac{\partial}{\partial x^i} \bigg|_p
\]

再由

\[
\sum_{j=1}^{n} b^j \frac{\partial}{\partial y^j} \bigg|_p = X_p = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \bigg|_p \sum_{i=1}^{n} \frac{\partial y^j}{\partial x^i} (\varphi_a(p))
\]
\[
\frac{\partial}{\partial y_j} \left|_{p} \sum_{i=1}^{n} \left(\sum_{x_i}^{p} \frac{\partial y_i}{\partial x_i} (\varphi_a (p)) a^i \right) \right|_{p} \right)
\]
得到切向量变换公式

\[
b^j = \sum_{i=1}^{n} \frac{\partial }{\partial x^i} (\varphi_a (p)) a^i
\]
和

\[
\begin{pmatrix}
 b^1 \\
 \vdots \\
 b^n
\end{pmatrix} = \begin{pmatrix}
 \frac{\partial y_1}{\partial x^i} & \cdots & \frac{\partial y_1}{\partial x^n} \\
 \vdots & \cdots & \vdots \\
 \frac{\partial y_n}{\partial x^i} & \cdots & \frac{\partial y_n}{\partial x^n}
\end{pmatrix} \begin{pmatrix}
 a^1 \\
 \vdots \\
 a^n
\end{pmatrix}
\]

其中 \(\{a^i\}\) 和 \(\{b^i\}\) 分别称为切向量 \(X_p\) 关于局部坐标系 \(\{x^i\}\) 和 \(\{y^i\}\) 的分量。由此，可用“坐标”观点定义切向量，这就是所谓的古典观点，通常在物理学中习惯于这种定义：设 \(L_p\) 为 \(p\) 点的局部坐标系的全体，如果映射 \(X_p: L_p \to \mathbb{R}^n\) 使得对任何 \(\{x^i\}\), \(\{y^i\}\)\(\in L_p\) 有 \(X_p(\{x^i\}) = \{a^i\}\), \(X_p(\{y^i\}) = \{b^i\}\) 且满足上述后一个变换公式，则称 \(X_p\) 为 \(p\) 点的一个切向量。这定义的优点在于只要求 \(M\) 为 \(C^r(r \geq \)流形。

在每一点 \(p \in M\) 有一个 \(n\) 维切空间，自然我们可以从沿 \(M\) 的这一族切空间得到一个秩 \(n\) 的向量丛，称为切丛，它又 \(2n\) 维 \(C^r\) 流形。

定义 3 设 \((M, \mathcal{O})\) 为 \(n\) 维 \(C^r\) 流形，我们定义 \(M\) 的切丛 \(\xi\) = \{(TM, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^n, \mathcal{O})\} 如下：

\[
TM = \bigcup_{p \in M} T_p M,
\]

\[
\pi: TM \to M, \quad \pi (T_p M) = \{p\}, \quad \text{即} \quad \pi (X_p) = p, \quad X_p \in T_p M.
\]

\[
\pi^{-1}(\{p\}) = T_p M \text{ 为 } p \text{ 点处的纤维.}
\]

对于任何 \((U, p), \{x^i\} \in \mathcal{O}\), 定义局部平凡化为

\[
\psi: \pi^{-1}(U) = \bigcup_{x \in U} T_x M \to U \times \mathbb{R}^n,
\]
\[\psi(X_p) = \psi \left(\sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \right)(p; a^1, \ldots, a^n), \text{而 } \psi|_p: \pi^{-1}(\{p\}) \rightarrow T_pM \times \mathbb{R}^n \] 为同构. 由 \(\psi \) 为一一映射，故从 \(U \times \mathbb{R}^n \) 的拓扑自然导出 \(\pi^{-1}(U) \) 的拓扑，使 \(\psi \) 为同胚. 显然，\(\tau^* = \{ \pi^{-1}(U) \} \) 为 \(TM \) 的拓扑基，它唯一确定了 \(TM \) 上的一个拓扑 \(\tau \). 明显地，\(TM \) 为 \(T \) 空间，\(\pi^{-1}(U) \) 为其开子集，且 \((\varphi, \text{Id}_R^n) \circ \psi: \pi^{-1}(U) \rightarrow \varphi(U) \times \mathbb{R}^n, (\varphi, \text{Id}_R^n) \circ \psi(X_p) = (\varphi(p); a^1, \ldots, a^n) = (x^1, \ldots, x^n; a^1, \ldots, a^n) \) 为同构，因而 \(TM \) 为 \(2n \) 维拓扑流形.

令 \(\Theta^* = \{ (\pi^{-1}(U), \psi) | (U, \varphi) \in \mathcal{S} \} \). 如果 \((U_a, \varphi_a), (x^i) \in \mathcal{D}, (U_\beta, \varphi_\beta), (y^i) \in \mathcal{D}\), 则当 \(p \in U_a \cap U_\beta \) 时有

\[(p; b^1, \ldots, b^n) = (p; b) = (p; g_{\beta a}(p) a) = \psi_\beta \circ \psi_a^{-1}(p; a^1, \ldots, a^n) \]

\[= \psi_\beta \left(\sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \right) = \psi_\beta \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \frac{\partial y^j}{\partial x^i} a^i \right) \frac{\partial}{\partial y^j} \right) = (p, \sum_{i=1}^{n} \frac{\partial y^1}{\partial x^i} a^i, \ldots, \sum_{i=1}^{n} \frac{\partial y^n}{\partial x^i} a^i) \]

其中

\[g_{\beta a}(p) = \begin{pmatrix} \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y^n}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^n} \end{pmatrix} \in \text{GL}(n, \mathbb{R}) \]

显然，\(g_{\beta a}: U_a \cap U_\beta \rightarrow \text{GL}(n, \mathbb{R}) \) 为 \(C^\infty \) 映射，又因为

\[(y^1, \ldots, y^n; b^1, \ldots, b^n) = ((\varphi_\beta, \text{Id}_R^n) \circ \psi_\beta) \circ ((\varphi_a, \text{Id}_R^n) \circ \psi_a)^{-1}(x^1, \ldots, x^n; a^1, \ldots, a^n) \]

\[= (\varphi_\beta \circ \varphi_a^{-1}(x^1, \ldots, x^n); \sum_{i=1}^{n} \frac{\partial y^1}{\partial x^i} a^i, \ldots, \sum_{i=1}^{n} \frac{\partial y^n}{\partial x^i} a^i) \]

(简记为 \((y; b) = (\varphi \circ \varphi_a^{-1}(x); g_{\beta a}(p) a) \)). 故 \(TM \) 为 \(2n \) 维 \(C^\infty \) 流
形，而 \((a^{-1}(U), (\varphi, \text{Id}_{R^n}) \circ \psi) | (U, \varphi) \in \mathcal{O})\) 为微分构造的基，
由 \((x', \ldots, x^n) = \varphi \circ \pi \circ ((\varphi, \text{Id}_{R^n}) \circ \psi)^{-1}(x', \ldots, x^n; a^b, \ldots, a^n)\) 和 \((\varphi, \text{Id}_{R^n}) \circ \psi \circ ((\varphi, \text{Id}_{R^n}) \circ \psi)^{-1} = \text{Id}_{\pi(U)} \times R^n\) 可知，\(\pi\) 和 \(\varphi\) 分别为 \(C^\infty\) 映射和 \(C^\infty\) 同胚。于是，由 \(\mathcal{O}\) 唯一确定了 \(T M\) 的一个丛图补 \(\delta\)，使 \(\xi\) 或 \(T M\) 成为 \(M\) 上的一个秩 \(n\) 的 \(C^\infty\) 向量丛。

例 1 令 \(U \subset \mathbb{R}^n\) 为通常的 \(C^\infty\) 开子流形。取 \((U, \varphi), (u^i) \in \mathcal{O}\)
为整体坐标系（如通常的直角坐标系 \(\{x^i\}\)），令 \(\varphi \circ \pi^{-1}(U) \rightarrow\)
\(U \times R^n, \varphi(X_p) = \varphi \left(\sum_{i=1}^{n} a^i \frac{\partial}{\partial u^i} \bigg| _p \right) = (p; a^1, \ldots, a^n), \varphi \) 为 \(C^\infty\) 同胚，
\(\varphi \circ \pi^{-1}, T_p U = \pi^{-1}(\{p\}) \rightarrow \{p\} \times R^n\) 为线性同构。于是，\(U\) 的切丛 \(TU\)
为秩 \(n\) 的 \(C^\infty\) 平凡向量丛。同理，凡是具有整体坐标系的 \(n\) 维 \(C^\infty\)
流形 \((M, \mathcal{O})\) 的切丛 \(TM\) 都是秩 \(n\) 的 \(C^\infty\) 平凡向量丛。

例 2 \(S^1\) 的切丛 \(TS^1\) 为秩 \(1\) 的 \(C^\infty\) 平凡向量丛。为此取 \(S^1\) 的
\(C^\infty\) 微分构造的基 \(\mathcal{O}' = \{U_i, \varphi_i | i = 1, 2\}\)，其中
\[U_1 = \{(\cos \theta, \sin \theta) | 0 < \theta < 2\pi\}, \varphi_1(\cos \theta, \sin \theta) = \theta,\]
\[U_2 = \{(\cos \eta, \sin \eta) | -\pi < \eta < \pi\}, \varphi_2(\cos \eta, \sin \eta) = \eta,\]
则 \(\eta = \varphi_2 \circ \varphi_1^{-1}(\theta) = \begin{cases} \theta, & 0 < \theta < \pi; \\ \theta - 2\pi, & \pi < \theta < 2\pi; \end{cases}\)
\[\frac{\partial}{\partial \eta} \bigg| _p = \frac{\partial \theta}{\partial \eta} \bigg| _{\varphi_1^{-1}(p)} : \frac{\partial}{\partial \theta} \bigg| _p,\]
\(\frac{\partial}{\partial \theta} \bigg| _p, p \in U_1 \cap U_2\)，定义 \(\psi : TS^1 \rightarrow S^1 \times R\) 使得
\[\psi(X_p) = \begin{cases} (p; a), p \in U_1, X_p = a \frac{\partial}{\partial \theta} \bigg| _p, \\ (p; b), p \in U_2, X_p = b \frac{\partial}{\partial \eta} \bigg| _p. \end{cases}\]
因为 \(\frac{\partial}{\partial \eta} \bigg| _p = \frac{\partial}{\partial \theta} \bigg| _{\varphi_1^{-1}(p)}, p \in U_1 \cap U_2\)，故 \(\psi\) 为定义明确的 \(C^\infty\) 映射，且 \(\psi\)
为 \(C^\infty\) 同胚，\(\varphi \circ \pi^{-1}\) \(p \rightarrow \{p\} \times R^n\) 为线性同构。

定义 4 设 \((M, \mathcal{O})\) 为 \(n\) 维 \(C^\infty\) 流形，\(TM\) 为其 \(C^\infty\) 切丛，\(U \subset\)
M, 则称 U 上的截面 $X: U \rightarrow TM$ ($\pi \circ X = \text{Id}_U: U \rightarrow U$) 或对任何 $p \in U$，在映射 X 下对应于 $X_p \in T_p M$ 为 U 上的切向量场；如果 X 为 C^0 (即连续) 截面，则称为 C^0 (即连续) 切向量场；如果 $U \subset M$ 为开集，称 $C^k (1 \leq k \leq \infty)$ 截面 X 为 C^k 切向量场。记 U 上的 C^k 切向量场全体为 $C^k (TU)$ 或 $C^k (TM|_U)$。

定理 2 设 (M, \mathcal{A}) 为 n 维 C^∞ 流形，则

(1) X 为 M 上的 $C^k (0 \leq k \leq \infty)$ 切向量场 \Leftrightarrow 对任何 (U, φ)，

$$\{x^i\} \in \mathcal{A}, \quad x_p = \sum_{i=1}^{n} a^i(p) \frac{\partial}{\partial x^i}, \quad p \in U, \text{有 } a^i \in C^k(U, R).$$

(2) X 为 M 上的 C^∞ 切向量场 \Leftrightarrow 对任何 $f \in C^\infty(M, R)$，有 $Xf \in C^\infty(M, R)$。

证明 (1) $X: M \rightarrow TM$ 为 C^k 截面 \Leftrightarrow 对任何 $(U, \varphi), \{x^i\} \in \mathcal{A}$，

$$(\varphi, \text{Id}_\mathbb{R}) \circ \psi \circ X \circ \varphi^{-1}: \varphi(U) \rightarrow \varphi(U) \times \mathbb{R}^n, \quad (\varphi, \text{Id}_\mathbb{R}) \circ \psi \circ X \circ \varphi^{-1}(x) = (\varphi \circ \varphi^{-1}(x), \ldots, \varphi \circ \varphi^{-1}(x))$$

是 C^k 类的 \Leftrightarrow 对任何 (U, φ)，

$$\{x^i\} \in \mathcal{A}, a^i \in C^k(U, R).$$

(2) (\Rightarrow) 对任何 $(U, \varphi), \{x^i\} \in \mathcal{A}$, 在 U 中

$$Xf = \left(\sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \right) f = \sum_{i=1}^{n} a^i \frac{\partial (f \circ \varphi^{-1})}{\partial x^i},$$

由 $f \in C^\infty(M, R), X$ 为 M 上的 C^∞ 切向量场和(1) 可知 $a^i, \frac{\partial}{\partial x^i} f \in C^\infty(U, R)$, 故 $Xf|_U \in C^\infty(U, R)$ 从而 $Xf \in C^\infty(M, R)$。

(\Leftarrow) 对任何 $p \in M$, 取 $(U, \varphi), \{x^i\} \in \mathcal{A}$, 使 $p \in U$. 由定理 1, $X = \sum_{i=1}^{n} (Xx^i) \frac{\partial}{\partial x^i}$, 利用第一章 §3 引理 1 构造 $f_i \in C^\infty(M, R)$ 使 $f_i|_V \equiv x^i|_V$，其中 $V \subset U$ 为 p 的开邻域，于是，

$$(Xx^i)|_V \equiv (Xf_i)|_V$$

是 C^∞ 类的, 故 $X|_V$, 从而 X 为 C^∞ 类的。
例 3 设\(\{x^i\} \)为通常\(C^\infty \)流形\(\mathbb{R}^n \)的直角坐标，由定义 4 或定理 2，\(\left\{ \frac{\partial}{\partial x^i} \right\}_{i=1, \ldots, n} \)为\(\mathbb{R}^n \)上的整体\(C^\infty \)坐标基向量场（图 18）。

由例 2，\(\frac{\partial}{\partial \theta} \)为\(S^1 \)上的整体\(C^\infty \)基向量场，但\(\theta \)只是局部坐标而不是整体坐标。

设\((U, \varphi), \{r, \theta\} \)为\(\mathbb{R}^2 \)的局部（极）坐标系，\(U = \mathbb{R}^2 - \{(x, 0) | x \geq 0\}, \varphi^{-1} : (0, +\infty) \times (0, 2\pi) \to U, (x, y) = (r \cos \theta, r \sin \theta) \)，由坐标基变换公式得到

\[
\begin{pmatrix}
\frac{\partial}{\partial r} \\
\frac{\partial}{\partial \theta}
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{pmatrix} \begin{pmatrix}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{pmatrix}.
\]

\(\left\{ \frac{\partial}{\partial r}, \frac{\partial}{\partial \theta} \right\} \)为\(\mathbb{R}^2 \)上的局部\(C^\infty \)坐标基向量场（图 18）。

类似可考虑\(\mathbb{R}^3 \)上的局部（球）坐标系\((U, \varphi), \{r, \theta_1, \theta_2\}, U = \mathbb{R}^3 - \{(x, 0, 0) | x \geq 0\} \cup \{(0, 0, z) | z \in \mathbb{R}\}, \varphi^{-1} : (0, +\infty) \times (0, \pi) \times (0, 2\pi) \to U, (x, y, z) = (r \sin \theta_1 \cos \theta_2, r \sin \theta_1 \sin \theta_2, r \cos \theta_1) \)，由坐标基变换公式得到

\[\quad \]

- 91 -
\[
\left(\frac{\partial}{\partial r} \right) = \left(\begin{array}{cccc}
\sin \theta_1 \cos \theta_2 & \sin \theta_1 \sin \theta_2 & \cos \theta_1
\end{array} \right)
\frac{\partial}{\partial x} = \left(\begin{array}{c}
\frac{\partial}{\partial y}
\frac{\partial}{\partial z}
\end{array} \right)
\]
\[
\frac{\partial}{\partial \theta_1} = \left(\begin{array}{cccc}
r \cos \theta_1 \cos \theta_2 & r \cos \theta_1 \sin \theta_2 - r \sin \theta_1
\end{array} \right)
\frac{\partial}{\partial x} = \left(\begin{array}{c}
\frac{\partial}{\partial y}
\frac{\partial}{\partial z}
\end{array} \right)
\]
\[
\frac{\partial}{\partial \theta_2} = \left(\begin{array}{cccc}
-r \sin \theta_1 \sin \theta_2 & r \sin \theta_1 \cos \theta_1 & 0
\end{array} \right)
\frac{\partial}{\partial x} = \left(\begin{array}{c}
\frac{\partial}{\partial y}
\frac{\partial}{\partial z}
\end{array} \right)
\]

\{ \frac{\partial}{\partial r}, \frac{\partial}{\partial \theta_1}, \frac{\partial}{\partial \theta_2} \} \text{ 为 } \mathbb{R}^3 \text{ 上的局部 } C^\infty \text{ 坐标基向量场(图 18).}

现在我们定义一个 \(C^\infty \) 映射的微分(或 Jacobi 映射), 切映射, 然后证明一些有关的性质.

定义 5 设 \((M_i, \Theta_i) \) 为 \(n_i \) 维 \(C^\infty \) 流形, \(i = 1, 2 \), \(f: M_1 \to M_2 \) 为 \(C^\infty \) 映射, \(p \in M_1 \), \(f(p) \in M_2 \), 令映射
\[
f_*: T_p M_1 \to T_{f(p)} M_2,
\]
使对任何 \((h, U_h) \in C^\infty(f(p)) \), 有 \(f_* h(X_p) h = X_p (h \circ f) \),\(X_p \in T_p M_1 \).
易见 \(f_* h(X_p) \in T_{f(p)} M_2 \), 且 \(f_* \) 为线性映射, 称 \(f_* h \) 为 \(f \) 在 \(p \) 点处的微分或 Jacobi 映射 (也记作 \(df_p \)).

特别地, 在 \(p \) 的局部坐标系 \(U_i = \{ x^j \} \) 和 \(f(p) \) 的局部坐标系 \(V_i = \{ y^j \} \) 里, 有
\[
f_* h = \left. \frac{\partial}{\partial x^i} \right|_p = \left. \frac{\partial}{\partial x^i} \right|_{f(p)} (h \circ f) = \left. \frac{\partial}{\partial x^i} \right|_{f(p)} \left(\sum_{j=1}^{n_2} \frac{\partial y^j}{\partial x^i} \left. \frac{\partial}{\partial y^j} \right|_{x(f(p))} \right) h,
\]
其中 \(y = \psi \circ f \circ \psi^{-1}(x) \). 于是,
\[
f_* h = \left. \frac{\partial}{\partial x^i} \right|_p = \left. \sum_{j=1}^{n_2} \frac{\partial y^j}{\partial x^i} \right|_{f(p)} \left. \frac{\partial}{\partial y^j} \right|_{f(p)} h,
\]
\[
\left(f_* \frac{\partial}{\partial x^1} \right)_p = \left(\begin{array}{cccc}
\frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^{n_2}}{\partial x^1}
\end{array} \right) \left(\frac{\partial}{\partial y^1} \right) \left(\begin{array}{c}
\frac{\partial}{\partial y^2}
\vdots
\frac{\partial}{\partial y^{n_2}}
\end{array} \right) \left. \frac{\partial}{\partial y^1} \right|_{f(p)}
\]

\[
\vdots
\]
\[
\left(f_* \frac{\partial}{\partial x^{n_1}} \right)_p = \left(\begin{array}{cccc}
\frac{\partial y^1}{\partial x^{n_1}} & \cdots & \frac{\partial y^{n_2}}{\partial x^{n_1}}
\end{array} \right) \left(\frac{\partial}{\partial y^1} \right) \left(\begin{array}{c}
\frac{\partial}{\partial y^2}
\vdots
\frac{\partial}{\partial y^{n_2}}
\end{array} \right) \left. \frac{\partial}{\partial y^1} \right|_{f(p)}
\]

\[
\cdot 92 \cdot
\]
我们称 \(\left(\frac{\partial y^j}{\partial x^i} \right) \) 为 \(f_{*p} \) 关于局部坐标系 \((x^i), (y^j) \) 的 Jacobi 矩阵.

设 \(X_p = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \bigg|_p \), \(f_{*p}(X_p) = \sum_{j=1}^{n} b^j \frac{\partial}{\partial y^j} \bigg|_{f(p)} \),

则

\[
\sum_{j=1}^{n} b^j \frac{\partial}{\partial y^j} \bigg|_{f(p)} = f_{*p}(X_p) = \sum_{i=1}^{n} a^i f_{*p} \left(\frac{\partial}{\partial x^i} \bigg|_p \right)
\]

\[
= \sum_{i=1}^{n} a^i \left(\sum_{j=1}^{n} \frac{\partial y^j}{\partial x^i} \bigg|_{p(p)} \right) \frac{\partial}{\partial y^j} \bigg|_p = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial y^j}{\partial x^i} \bigg|_{p(p)} a^i \right) \frac{\partial}{\partial y^j} \bigg|_{f(p)}
\]

\[
b^j = \sum_{i=1}^{n} \frac{\partial y^j}{\partial x^i} \bigg|_{p(p)} a^i,
\]

\[
\begin{pmatrix}
(b^1) \\
\vdots \\
(b^n)
\end{pmatrix} =
\begin{pmatrix}
\frac{\partial y^1}{\partial x^1} & \ldots & \frac{\partial y^1}{\partial x^n} \\
\vdots & \ddots & \vdots \\
\frac{\partial y^n}{\partial x^1} & \ldots & \frac{\partial y^n}{\partial x^n}
\end{pmatrix}
\begin{pmatrix}
a^1 \\
\vdots \\
a^n
\end{pmatrix}.
\]

定理 3 设 \(M, N, L \) 分别为 \(m, n, l \) 维 \(C^\infty \) 流形，则

（1）\((\text{id}_M)_{*p} = \text{id}_{T_p M} \);

（2）若 \(f: M \to N \) 和 \(g: N \to L \) 为 \(C^\infty \) 映射，则

\((g \circ f)_{*p} = g_{*f(p)} \circ f_{*p} \).

（3）\(f: M \to N \) 为 \(C^\infty \) 流形，且对任何 \(p \in M, f_{*p}: T_p M \to T_{f(p)} N \) 为单同态 (单射且为同态)，因而

\(f_{*p}: T_p M \to f_{*p}(T_p M) \subset T_{f(p)} N \) 为同构。

（4）若 \(f: M \to N \) 为 \(C^\infty \) 流形，且 \(f_{*p}: T_p M \to T_{f(p)} N \) 为同构。

证明 （1）对任何 \((h, U_h) \in C^\infty(p) = C^\infty(\text{id}_M(p)) \)，任何 \(X_p \in T_p M \)，因 \((\text{id}_M)_{*p}(X_p) h = X_p(h \circ \text{id}_M) = X_p h = \text{id}_{T_p M}(X_p) h \)，故

\((\text{id}_M)_{*p} = \text{id}_{T_p M} \).
(2) 对任何 \((h, U) \in C^\infty(g \circ f(p)) \)，任何 \(X \in T_x M \)，因
\[
(g \circ f) \circ (X)h = X(g \circ (g \circ f)) = f_x (h \circ g \circ f) = f_x \cdot g_x (X) (h \circ g) = (g_x \circ h \circ f)_x (X)h, \]
令 \((g \circ f)_x = (g \circ f)_x \circ f \). 故 \((g \circ f)_x = g_x \circ f \). …

(3) \(f \) 为 \(C^\infty \) 映射，即 \(f \) 为 \(C^\infty \) 映射，且对任何 \(p \in M \)，(rank\(f \))_p = m. \] 而在局部坐标系中，(rank\(f \))_p = m \iff \rank \left(\frac{\partial g_i}{\partial x^j} \right)_{x(p)} = m \iff f \circ \Delta_p

为单同态。

(4) 由(1)(2)，因为 \(f, f^{-1} \) 为 \(C^\infty \) 映射，故 \(\text{Id}_{T_p M} = (\text{Id}_M)_p \)

\[
= (f^{-1} \circ f)_x \circ f = (f^{-1})_x \circ f(p) \circ f. \]

同理 \(f \circ \Delta_p = (f^{-1})_x \circ f(p) = \text{Id}_{T_f(p)} N . \)

于是 \(f \circ \Delta_p : T_p M \to T_{f(p)} N \) 为同构。…

定义 6 设 \((M, \mathcal{O})\) 为 \(n \) 维 \(C^\infty \) 流形，\(W \subset R^n \) 为开集，则称 \(C^\infty \) 映射（不是映射的象集）\(\sigma : W \to M \) 为 \(M \) 中的一条 \(C^\infty \) 曲线。如果 \(\sigma : [a, b] \to M \) 可延拓到含 \([a, b]\) 的开集 \(W \) 上使得 \(\sigma : W \to M \) 为 \(C^\infty \) 曲线，且 \(\sigma |_{[a, b]} = \sigma \)，我们称 \(\sigma \) 为 \(C^\infty \) 曲线。有时仍记 \(\sigma \) 为 \(\sigma \)。

设 \(\sigma : (a, b) \to M \) 为 \(C^\infty \) 曲线，\((U, \varphi), (x_1, \cdots, x^n) \) 为含 \(\{\sigma(t) | t \in (a, b)\} \) 的局部坐标系（\(\sigma \) 称为曲线 \(\sigma \) 的参数，注意：允许 \(t_1 = t_2 \)，而 \(\sigma(t_1) = \sigma(t_2) \)）。对每个 \(t \in (a, b) \)，确定了一个沿 \(\sigma \) 的切向量（图 19）

\[
\sigma'(t) = \sigma_\ast \left(\frac{d}{dt} \right)|_{t} = \sum_{i=1}^{n} \frac{d}{dt} x^i \cdot \frac{\partial}{\partial x^i} \bigg|_{\sigma(t)},
\]

称 \(\sigma'(t) \) 或 \(\frac{d\sigma(t)}{dt} \) 在 \(\sigma(t) \) 切于 \(\sigma \)，\(\sigma' \) 为沿 \(\sigma \) 的切向量场。

特别，对坐标曲线 \(\sigma_i \)，即 \(\varphi \circ \sigma_i (x^i) = (x_0^i, \cdots, x^{i-1}_i, x^i_i, x^{i+1}_i, \cdots, x^n_i) \) 为参数，则沿 \(\sigma_i \) 的切向量场按上述公式应是 \(\frac{\partial}{\partial x^i} \bigg|_{\sigma_i (x^i)} \)，它是第 \(i \) 个坐标向量场限制在 \(\sigma_i \) 的象集上的值（图 20）。

现在，我们可以给出 \(C^\infty \) 映射 \(f : M_1 \to M_2 \) 的微分 \(f_* \) 的几何直
设 σ 为 M_1 上的一条 C^m 曲线，则 $f \circ \sigma$ 为 M_2 上的一条 C^m 曲线，且

$$(f \circ \sigma)'(t) = (f \circ \sigma) \cdot \left(\frac{d}{dt} \right) = f_{*} \circ \sigma \cdot \left(\frac{d}{dt} \right) = f_{*}(\sigma'(t)),$$

即 σ 的切向量 $\sigma'(t)$ 经 f_* 变为 $f \circ \sigma$ 的切向量 $(f \circ \sigma)'(t)$。

例 4 设 (M_1, \mathcal{B}_1) 为 n_1 维 C^m 流形，M_1 为 M_2 的 C^m 正则子流形。对 $p \in M_1$，选 p 关于 M_1 的局部坐标系 $\{x^i | i = 1, \ldots, n_2\}$，

$$(U, \varphi), \{x^i | i = 1, \ldots, n_1\}$$

为 p 关于 M_1 的局部坐标系，且 $M_1 \cap U = \{q \in U | x^j(q) = 0, \ n_1 - 1 \leq j \leq n_2\}$. 令 $I : M_1 \to M_2$ 为包含映射，则

$$I_{*} : T_p M_1 \to I_{*}(T_p M_1) \subset T_{I(p)} M_2$$

为同构，且
\[
\begin{pmatrix}
I_x \left(\frac{\partial}{\partial x^1} \bigg|_p \right) \\
\vdots \\
I_x \left(\frac{\partial}{\partial x^n} \bigg|_p \right)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
\vdots & \ddots \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
\frac{\partial}{\partial x^1} \bigg|_{I(p)} \\
\vdots \\
\frac{\partial}{\partial x^n} \bigg|_{I(p)}
\end{pmatrix},
\]

所以，\(I_x \left(\frac{\partial}{\partial x^i} \bigg|_p \right) = \frac{\partial}{\partial x^i} \bigg|_{I(p)} \), \(i = 1, \ldots, n \), \(I_x \left(\sum_{i=1}^n a^i \frac{\partial}{\partial x^i} \bigg|_p \right)
\]

\[
= \sum_{i=1}^n a^i I_x \left(\frac{\partial}{\partial x^i} \bigg|_p \right) = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i} \bigg|_{I(p)}.
\]

由此，我们将 \(\sum_{i=1}^n a^i \frac{\partial}{\partial x^i} \) 不作区分地视为相同的向量.

如果 \(\sigma \) 为 \(M_1 \) 上的 \(C^\infty \) 曲线，则 \(I \circ \sigma \) 为 \(M_2 \) 上的 \(C^\infty \) 曲线.

于是，

\[
(I \circ \sigma)'(t) = I_x(\sigma'(t)).
\]

例 5 设 \(f: \mathbb{R}^n \to \mathbb{R} \) 为 \(C^\infty \) 函数，\(\text{rank}\left(\frac{\partial f}{\partial x^1}, \ldots, \frac{\partial f}{\partial x^n} \right) = 1 \)，则

\(f(x^1, \ldots, x^n) = 0 \) 确定了 \(M = f^{-1}(0) \) 或它集或为 \(\mathbb{R}^n \) 中的 \(n-1 \) 维 \(C^\infty \) 正则子流形．

如果 \(M = f^{-1}(0) \) 非空，设 \(\sigma \) 为 \(M = f^{-1}(0) \) 上的 \(C^\infty \) 曲线，沿

\(I \circ \sigma \) 的切向量场 \((I \circ \sigma)'(t) = \sum_{i=1}^n \frac{d}{dt}(x^i \circ I \circ \sigma(t)) \frac{\partial}{\partial x^i} \bigg|_{I \circ \sigma(t)} \) 将关于 \(t \) 的恒等式 \(f(x^1(I \circ \sigma(t)), \ldots, x^n(I \circ \sigma(t))) = 0 \) 的两边对 \(t \) 求导得到

\[
\sum_{i=1}^n \frac{\partial f}{\partial x^i} \frac{d}{dt}(x^i \circ I \circ \sigma) = 0,
\]

即 \(M = f^{-1}(0) \) 上的切向量与法向量 \(\sum_{i=1}^n \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i} \bigg|_{I \circ \sigma(t)} \) 正交．
定理 4 设\((M_i, \mathcal{O}_i)\)为\(n\)维\(C^\infty\)流形, \(i = 1, 2, f: M_1 \to M_2\)为\(C^\infty\)映射。令切映射\(\tilde{f}: TM_1 \to TM_2\)，使\(\tilde{f} \circ \pi_{M_1} = f \circ \pi_p, p \in M_1\)，则\((\tilde{f}, f)\)为\(C^\infty\)丛映射，因而图表

\[
\begin{array}{c}
TM_1 \xrightarrow{\tilde{f}} TM_2 \\
\pi_{M_1} \downarrow \quad \downarrow \pi_{M_2}
\end{array}
\]

是可交换的，即\(f \circ \pi_{M_1} = \pi_{M_2} \circ \tilde{f}\)。其中 \(\pi_i: TM_i \to M_i\) 为丛投影，\(i = 1, 2\)。

如果\(f\)为\(C^\infty\)同胚，则\((\tilde{f}, f)\)为丛等价。

证明 对任何 \(X_p \in T_p M\)，分别取\(p\)和\(f(p)\)的局部坐标系\((U, \varphi_U), (x^1, \ldots, x^m)\)和\((V, \varphi_V), (y^1, \ldots, y^n)\)，使\(f(U) \subseteq V\)。相应的切丛的丛同胚为

\[
(x^1, \ldots, x^m) \mapsto (y^1, \ldots, y^n),
\]

其映射的丛同胚为

\[
\psi_{\tilde{f}} \circ \tilde{f} \circ \varphi^{-1}_U(X, a) = (\varphi_V \circ f \circ \varphi^{-1}_U(X), D(\varphi_V \circ f \circ \varphi^{-1}_U(X))a) = (y, b).
\]

于是，从\(f \in C^\infty(M_1, M_2)\)推出\(\tilde{f} \in C^\infty(TM_1, TM_2)\)。

图表可交换是显然的。

如果\(f\)为\(C^\infty\)同胚，在§2定义4丛等价定义中的\(g = f^{-1}\)。由定理3 (2)，\(g\)的丛同胚为

\[
\tilde{f}^{-1} = (f^{-1}) \circ \varphi^{-1}_U = \tilde{f} \circ \varphi^{-1}_U,
\]

故\((\tilde{f}, f)\)为丛等价。

定理 5 设\((M_i, \mathcal{O}_i)\)为\(n\)维\(C^\infty\)流形，\(i = 1, 2, f: M_1 \to M_2\)为\(C^\infty\)同胚，\(X\)为\(M_1\)上的\(C^\infty\)切向量场，则\(f_*X = f_*X \circ f^{-1}: M_2 \to TM_2\)。若\(g = f(p)\)，则\(f_*X \circ f^{-1}(g) = f_*X(p)\)为\(M_2\)上的\(C^\infty\)切向量场。

证明 由定理4，\(f \circ \pi_{M_1} = \pi_{M_2} \circ \tilde{f}\)可得到

\[
\pi_{M_2}(f_*X) = \pi_{M_2}(f_*X \circ f^{-1}) = f_*(\pi_{M_1} \circ X) \circ f^{-1} = \text{Id}_{M_2}.
\]

又因为\(f^{-1}\)、\(X\)和\(f\)均为\(C^\infty\)映射，因而\(f_*X\)也是\(C^\infty\)映射。
证明了 \(f \times X \) 为切丛 \(TM_2 \) 上的 \(C^\infty \) 截面或 \(M_2 \) 上的 \(C^\infty \) 切向量场。

另一证明如下：由 \(f \) 为一一映射和 \(X \) 为 \(M_1 \) 上的切向量场，故 \(f \times X ((f \times X)(p)) = f \times (X(p)) \) 为 \(M_2 \) 上的切向量场。对任何 \(h \in C^\infty (M_2, R) \)，因 \(f \in C^\infty (M_1, M_2) \)，故 \(h \circ f \in C^\infty (M_1, R) \)。根据定义 2(2) 和 \(X \) 为 \(M_1 \) 上的 \(C^\infty \) 切向量场可知 \(X((h \circ f)(p)) \) 为 \(M_2 \) 上的 \(C^\infty \) 切向量场。

例 8 设 \(f : R^2 \to R^1, u = f(x, y) = x \) 为 \(C^\infty \) 映射。\(X = y \frac{\partial}{\partial u} \) 为 \(R^2 \) 上的 \(C^\infty \) 切向量场。\(p = (0, 0), q = (0, 1), f(p) = 0 = f(q) \)，但 \(f \times (X_u) = f \times \left(\frac{\partial}{\partial x} \right) = \frac{\partial}{\partial u} \neq 0 = f \times (X_p) \)，因而 \(f \times X \) 不是 \(R^1 \) 上的切向量场。

\(C^\infty \) Lie 群上有一些特殊的 \(C^\infty \) 切向量场，称为左（或右）不变向量场，它们完全由单位元处的值唯一决定。

定义 7 设 \(G \) 为 \(n \) 维 \(C^\infty \) Lie 群，\(a \in G \)。我们称 \(L_a : G \to G, x \mapsto L_a(x) = a \cdot x \) 和 \(R_a : G \to G, x \mapsto R_a(x) = x \cdot a \) 为 \(G \) 的左移和右移。

由 § 1 定义 3，\(L_a \)（或 \(R_a \)）：\(G \to G \) 为 \(C^\infty \) 同胚，且 \(L_a^{-1} = L_{a^{-1}} \)。对任意 \(a, b \in G \)，左移 \(L_{a \cdot b} \) 将 \(a \) 映成 \(b \)。因此，\(\{L_a | a \in G\} \) 为可微作用在 \(C^\infty \) Lie 群 \(G \) 上的变换群，即 \(G \) 在变换群 \(\{L_a | a \in G\} \) 下为齐性空间。于是，从局部微分性质来看具有均匀性；在一点附近成立的某种性质，在每一点附近也成立。

定义 8 设 \(X \) 为 \(n \) 维 \(C^\infty \) Lie 群 \(G \) 上的切向量场，如果对任何 \(a, b \in G \) 有 \((L_{a^{-1}})_* X_a = X_b \)，则称 \(X \) 为左不变向量场，类似可定义右不变向量场。

定义 9（1）\(X \) 为 \(n \) 维 \(C^\infty \) Lie 群 \(G \) 上的左不变向量场 \(\Leftrightarrow \)（2）对任何 \(a \in G, X_a = (L_a)_* X_a \)，即 \(X \) 由 \(X_a \) 完全确定 \(\Leftrightarrow \)（3）对任何 \(a \in G, X = (L_a)_* X \)。
此外，左不变向量场 X 为 C^∞ 向量场。

证明 (1) \Rightarrow (3) 对任何 $a, b \in G$, 因 X 为左不变向量场，故
$$((L_a)_*X)_b = (L_a)_*a^{-1}bX_{a^{-1}b} = (L_{a^{-1}b})(L_a)_*X = X_b, \quad (L_a)_*X = X.$$

(3) \Rightarrow (2) 对任何 $a \in G$, 因 $(L_a)_*X = X$, 所以
$$X_a = ((L_a)_*X)_a = (L_a)_*eX_a.$$

(2) \Rightarrow (1) 对任何 $a, b \in G$, 因 $X_a = (L_a)_*eX_e$, 故
$$((L_{aba^{-1}})_*X)_a = (L_{aba^{-1}})_*((L_a)_*eX_e) = (L_{aba^{-1}})_*eX_e.$$
$$= (L_a)_*eX_e = X_b, \quad \text{即} \quad X \quad \text{为左不变向量场}.$$

再证 X 为 C^∞ 切向量场。显然，只须证明 X 在单位元素 e 的附近是 C^∞ 即可。为此，在点 e 的一个开邻域 W 中取一局部坐标系 (u^i). 由于 $e \cdot e = e$, 故可取 e 的两个开邻域 U 和 V, 它们相应的局部坐标系为 (u^i) 和 (v^i), 并且对任意 $u \in U, v \in V$ 有 $u \cdot v \in W$, 其中 $w^i = g_i(u^1, \ldots, u^n; v^1, \ldots, v^n)$ 是关于 (u^i) 和 (v^i) 的 C^∞ 函数。设 e 的局部坐标为 (e^1, \ldots, e^n), 则对任意 $u \in U, \quad x = L_u$ 在 $v = e$ 的

Jacobi 方程

$$\left(\frac{\partial g_i}{\partial v^j}(u^1, \ldots, u^n; e^1, \ldots, e^n)\right)$$

中的每个元素都是 (u^i) 的 C^∞ 函数，则 $X_u = (L_u)_*eX_e$ 为 C^∞ 切向量场。

定理 7 设 G 为 n 维 C^∞ Lie 群, $(X_i)_a | i = 1, \ldots, n$ 为 T_eG 的一个基, $(X_i)(X_i)_a = (L_a)_*e(X_i)_e, a \in G, i = 1, \ldots, n$ 为 G 上的整体的 C^∞ 基向量场。

证明 对任何 $a \in G$, 若 $0 = \sum_{i=1}^n \lambda_i(X_i)_a$, 则
$$0 = \sum_{i=1}^n \lambda_i(X_i)_a$$
$$= \sum_{i=1}^n \lambda_i(L_a)_*e(X_i)_e = (L_a)_*e\left(\sum_{i=1}^n \lambda_i(X_i)_e\right) \quad \text{由} \quad (L_a)_*e \quad \text{为保持}$$
构可知 \(0 = \sum_{i=1}^{n} \lambda_i (X_i) e_i\)。再由 \(\{(X_i)_e | i = 1, \ldots, n\}\) 为 \(T_a G\) 的基，有

\[\lambda_i = 0, i = 1, \ldots, n\]

这就证明了 \(\{(X_i)_e | i = 1, \ldots, n\}\) 是线性无关的，从而它是 \(T_a G\) 的基，切向量场的 \(C^\infty\) 性质由定理 6 得到。

定义 9 如果 \(n\) 维 \(C^\infty\) 流形 \((M, \mathcal{D})\) 上具有整体的 \(C^\infty\) 基向量场 \(\{X_i | i = 1, \ldots, n\}\)，则称 \((M, \mathcal{D})\) 为可平行的。

定理 8 (1) 设 \((M, \mathcal{D})\) 为 \(n\) 维 \(C^\infty\) 流形，则 \((M, \mathcal{D})\) 可平行 \(\iff T M\) 是平凡向量丛。

(2) \(C^\infty\) Lie 群 \(G\) 是可平行的，\(TG\) 是平凡向量丛。

证明 (1) \(\Leftarrow\) 设 \(T M\) 为平凡向量丛，故存在从图卡 \((T M, \psi)\)，使 \(\psi: T M = \pi^{-1}(M) \to M \times R^n\) 为 \(C^\infty\) 同胚，\(\psi|_p: \pi^{-1}(\{p\}) \to T_p M \to \{p\} \times R^n\) 为同构。易见 \(\{X_i | X_i|_p = \psi^{-1}(p, e_i), i = 1, \ldots, n\}\) 为 \(M\) 上的 \(C^\infty\) 基向量场，因而 \((M, \mathcal{D})\) 是可平行的。

(\(\Rightarrow\)) 设 \((M, \mathcal{D})\) 是可平行的，\(\{X_i | i = 1, \ldots, n\}\) 为 \(M\) 上的 \(C^\infty\) 基向量场，定义

\[T M = \pi^{-1}(M) \psi, X_p = \sum_{i=1}^{n} a^i X_i|_p \psi(X_p) = (p; a^1, \ldots, a^n)\]

显然，\(\psi\) 为一一映射，\(\psi|_p: \pi^{-1}(\{p\}) \to \{p\} \times R^n\) 为同构。

对任何 \(p_0 \in M\)，在 \(p_0\) 的局部坐标系 \((\mathcal{V}, \varphi), \{\varphi^i\}\) 中，

\[X_p = \sum_{i=1}^{n} a^i \sum_{j=1}^{n} c_j^i(p) \frac{\partial}{\partial X^j}|_p = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} c_j^i(p) a^i \right) \frac{\partial}{\partial X^j}|_p = \sum_{j=1}^{n} b^j \frac{\partial}{\partial X^j}|_p, p \in \mathcal{V}\]

设 \(C(p) = (c_j^i(p))\)，则 \(\psi^{-1}\) 在此局部坐标系中为 \((x; a) \mapsto (x; b) = (x; C(p)a)\)，它是 \(C^\infty\) 映射，而 \(\psi\) 在此局部坐标系中为 \((x; b) \mapsto \ldots\)。
$(x; a) = (x; C(p)^{-1}b)$，它也是 C^m 的。由 p_0 的任意性，ψ 和 ψ^{-1} 是 C^m 的，于是 ψ 为 C^m 同胚，由此推出 TM 为平凡向量丛。

（2）由定理 7，C^m Lie 群 G 是可平行的，再由 (1)，TG 是平凡向量丛。

例 7 由第四章 §2 例 5 可知，S^{2m} 上无处非 0 的 C^m 切向量场。进一步，由 [P. J. 希尔顿和 S. 瓦理，255 页，定理 5.8.6]，
S^{2m} 上无处非 0 的连续切向量场，根据定理 8，TS^{2m} 不是 C^m 平凡向量丛，当然 S^{2m} 也不是 C^m Lie 群。（如果用坐标观点定义切向量，
这里可理解 TS^{2m} 不是 $C^m (r \geqslant 1)$ 平凡向量丛，S^{2m} 为 C^m Lie 群。）

在 S^{2m-1} 上有处非 0 的 C^m 切向量场 $X |_x = (x_2, -x_1, x_4, -x_3, \cdots, x_{2m}, -x_{2m-1})$，$x \in S^{2m-1}$。自然要问 S^{2m-1} 是否可平行？它是否可成为 Lie 群？[Adams, J.F., 1960] 证明了一个重要结果：TS^n 为平凡向量丛 $\iff n = 1, 3, 7$。而由 §2 例 2，例 3 知 S^1, S^3 为 C^m Lie 群，当然 TS^1, TS^3 为平凡向量丛。

现在，我们来具体构造 S^1, S^3 上左不变 C^m 基向量场。

$\frac{\partial}{\partial \theta}$ 和 $X |_x = (-x^2, x^1)$ 为 S^1 上整体 C^m 基向量场，设

$S^1 = \{ x = x^1 + ix^2 \in C | (x^1)^2 + (x^2)^2 = 1 \}$，$X_\theta = \sigma'(0) = \xi$，由 $X |_x = (L_x)_* \sigma(0) = \frac{d(L_x \sigma(t))}{dt} |_{t=0} = \frac{d(x \cdot \sigma(t))}{dt} |_{t=0} = 2 \sigma'(0) = -2x \xi = -x^2 + ix^1$，故 X 为 S^1 上的左不变向量场。

设

$$
\begin{pmatrix}
 e_1 \\
 e_2 \\
 e_3 \\
 e_4
\end{pmatrix}
=
\begin{pmatrix}
 x^1 & x^2 & x^3 & x^4 \\
 -x^2 & x^1 & x^4 - x^3 \\
 -x^3 & -x^4 & x^1 & x^2 \\
 -x^4 & x^3 & -x^2 & x^1
\end{pmatrix}
\begin{pmatrix}
 \frac{\partial}{\partial x^1} \\
 \frac{\partial}{\partial x^2} \\
 \frac{\partial}{\partial x^3} \\
 \frac{\partial}{\partial x^4}
\end{pmatrix}
$$

· 101 ·
显然，在 S^8 上，$\{e_i | i = 1, 2, 3, 4\}$ 为 R^4 的 C^∞ 规范正交基向量场，其中 e_1 为 S^8 上的 C^∞ 单位法向量场，而 $\{e_i | i = 2, 3, 4\}$ 为 S^8 上的 C^∞ 规范正交的整体基切向量场。设 $S^8 = \{x = x^1 + ix^2 + jx^3 + kx^4 \in H (四元数广域) | (x^1)^2 + (x^2)^2 + (x^3)^2 - (x^4)^2 = 1\}$，类似于 S^1，xi, xj, xk 为 S^3 上的左不变 C^∞ 基切向量场。

对于 S^7，类似可验证

$$
\begin{pmatrix}
 e_1 \\
 e_2 \\
 e_3 \\
 e_4 \\
 e_5 \\
 e_6 \\
 e_7 \\
 e_8
\end{pmatrix}
=
\begin{pmatrix}
 x^1 & x^2 & x^3 & x^4 & x^5 & x^6 & x^7 & x^8 \\
 -x^2 & x^1 & -x^4 & x^3 & x^0 & x^9 & x^8 & -x^7 \\
 -x^3 & x^4 & x^1 & -x^2 & -x^7 & -x^6 & x^5 & x^8 \\
 -x^4 & -x^3 & x^2 & x^1 & -x^9 & x^7 & -x^6 & x^3 \\
 -x^5 & x^0 & x^7 & x^8 & x^1 & -x^2 & -x^3 & -x^4 \\
 -x^6 & -x^5 & x^8 & -x^7 & x^2 & x^1 & x^4 & -x^3 \\
 -x^7 & -x^8 & -x^5 & x^6 & x^3 & -x^4 & x^1 & x^2 \\
 -x^8 & x^7 & -x^6 & -x^5 & x^4 & x^3 & -x^2 & x^1
\end{pmatrix}
=
\begin{pmatrix}
 \frac{\partial}{\partial x^1} \\
 \frac{\partial}{\partial x^2} \\
 \frac{\partial}{\partial x^3} \\
 \frac{\partial}{\partial x^4} \\
 \frac{\partial}{\partial x^5} \\
 \frac{\partial}{\partial x^6} \\
 \frac{\partial}{\partial x^7} \\
 \frac{\partial}{\partial x^8}
\end{pmatrix}
$$

为 R^8 的 C^∞ 规范正交基向量场，其中 e_1 为 S^7 上的 C^∞ 单位法向量场，而 $\{e_i | i = 2, \ldots, 8\}$ 为 S^7 上的 C^∞ 规范正交的整体基切向量场，所以 S^7 是可平行的，从而 TS^7 为平行向量丛。但[徐森林和周坚]证明了：S^7 不是 C^∞ Lie 群。更进一步，S^6 为 C^∞ Lie 群（或拓扑群）$\iff n = 0, 1, 3$。类似地，[Xu Senlin and Zhou Jian]还证明了：$P^n(R) (n \geq 1)$ 可平行 $\iff n = 1, 3, 7$ 以及 $P^n(R)$ 为 C^∞ Lie 群（或拓扑群）$\iff n = 0, 1, 3$。
例 8 切从为平凡向量场但不是 Lie 群的非连通的例子是容易提出的。例如，
\[M = \{(x, 0) \mid x \in \mathbb{R}\} \cup \{(x, y) \mid x^2 + (y - 2)^2 = 1\} \]，则
\[X|_p = \begin{cases} \frac{\partial}{\partial x}, & p = (x, 0), \\ -(y-2) \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}, & p = (x, y), x^2 + (y - 2)^2 = 1. \end{cases} \]
为 \(M \) 上的整体 \(C^\infty \) 基向量场，故 \(M \) 可能是或 \(TM \) 为平凡向量丛。
如果 \(M \) 为拓扑群，\(e \in M \) 为单位元素，不妨设 \(e \in \{(x, 0) \mid x \in \mathbb{R}\} \)，任
取 \(a \in \{(x, y) \mid x^2 + (y - 2)^2 = 1\} \)，则由 \(L_a e = a \cdot e = a \)，又因 \(L_a : M \to M \)
为同胚，故将连通分支变为连通分支，于是 \(L_a((x, 0) \mid x \in \mathbb{R}) = \{(x, y) \mid x^2 + (y - 2)^2 = 1\} \)，这就推出了同胚下将非紧致集变成紧致
集，矛盾。所以 \(M \) 不是拓扑群，更不是 Lie 群。

§ 4 \(C^\infty \) 切向量场和积分曲线

定义 1 设 \((M, \mathcal{O}) \) 为 \(n \) 维 \(C^\infty \) 流形，\(U \subset M \) 为开集，\(X \) 为 \(U \) 上
的 \(C^\infty \) 切向量场，\(\sigma : (a, b) \to M \) 为 \(C^\infty \) 曲线，\(\sigma((a, b)) \subset M \)，且
\(\sigma'(t) = X_{\sigma(t)}, t \in (a, b) \)，则称 \(\sigma \) 为 \(X \) 的 \(C^\infty \) 积分曲线或流线。

定理 1 （积分曲线的局部存在性定理） 设 \(X \) 为 \(n \) 维 \(C^\infty \) 流形 \((M, \mathcal{O}) \) 的某开集上的 \(C^\infty \) 切向量场，\(p \) 为 \(X \) 的定义域中的一点，
则对任何 \(b \in \mathbb{R} \)，存在 \(e > 0 \) 和唯一的 \(C^\infty \) 曲线 \(\sigma : (b-e, b+e) \to M \)，
使得 \(\sigma(b) = p \) 和 \(\sigma \) 为 \(X \) 的 \(C^\infty \) 积分曲线（图 21）。

此外，\(\sigma C^\infty \) 依赖于初始值 \(b \) 和点 \(p \)。

证明 设 \((U, \varphi) \)，\(\{x^i\} \) 为 \(p \) 的局部坐标系，\(U \) 包含在 \(X \) 的定义
域中。令
\[X = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}, \]
则由 \(X \) 为 \(C^\infty \) 切向量场可知 \(a^i \in C^\infty(U, \mathbb{R}) \)。
\[\sigma \text{ 为过 } p \text{ 的 } C^\infty \text{ 积分曲线} \quad \iff \quad \frac{d(x^i \circ \sigma)}{dt} = a^i \circ \sigma, \quad x^i \circ \sigma(b) = x^i(p), \quad i = 1, \ldots, n, \quad \text{即} \quad \frac{d(x^i \circ \sigma)}{dt} = a^i(x^1 \circ \sigma, \ldots, x^n \circ \sigma). \]

应用常微分方程的存在和唯一性定理，存在 \(c > 0 \) 和 \(x^i \circ \sigma(t, b, p) \)，使它所确定的 \(C^\infty \) 曲线 \(\sigma \) 在指定的范围内满足所要求的性质。

从常微分方程定理进一步知道，此解 \(C^\infty \) 依赖于初始值 \(b \) 和起始点 \(p \)。

定义 2 如果 \(C^\infty \) 映射 \(h : \mathbb{R}^1 \times M \to M, h(t, p) = h_t(p) \) 满足:

1. \(h_{t+s} = h_t \circ h_s, \quad t, s \in \mathbb{R}^1; \)
2. \(h_0 = \text{Id}_M, \)

则显然有 \(h_t \circ h_{-t} = h_{t-(-t)} = h_0 = \text{Id}_M \)，同理 \(h_{-t} \circ h_t = \text{Id}_M, \) 此 \(h_t \) 为 \(M \) 上的 \(C^\infty \) 变换的 \(1 \) 参数群。

\(\mathbb{R}^1 \) 作为 \(C^\infty \text{Lie 群(关于加法)} \) 左方 \(C^\infty \) 作用在 \(M \) 上。

固定 \(p \in M \)，则 \(t \mapsto h_t(p) \) 为一条过 \(p \) 的 \(C^\infty \) 曲线，称为 \(p \) 的轨线。我们定义

\[X_p = \sum_{i=1}^n \left. \frac{dx^i(h_t(p))}{dt} \right|_{t=0} \frac{\partial}{\partial x^i} \]

(易见它与 \(p \) 的局部坐标系的选择无关)。因为 \(h \) 为 \(C^\infty \) 映射，故映射 \(p \mapsto x_p \) 定义了 \(M \) 上的一个 \(C^\infty \) 切向量场，称为 \(p \) 参数群 \(h_t \) 的切向量场。
无穷小变换。

定理 2 (1) \(\{ h_t(q) | t \in \mathbb{R}^1 \} = \{ h_s(p) | t \in \mathbb{R}^1 \} \iff q \in \{ h_t(p) | t \in \mathbb{R}^1 \} \). 因此，\(M \) 划分为彼此不相交的形如 \(\{ h_t(p) | t \in \mathbb{R}^1 \} \) 的 \(C^\infty \) 曲线。

\[
(2) \quad X_{h_t(p)} = \sum_{i=1}^{n} \frac{dx^i(h_t(p))}{dt} \left(\frac{\partial}{\partial x^i} \right)_{h_t(p)} \frac{dh_t(p)}{dt}, \quad \text{和} \quad (h_s)_* (X_{h_t(p)}) = X_{h_s(h_t(p))}.
\]

证明 (1) \(\iff \) 若 \(\{ h_t(q) | t \in \mathbb{R}^1 \} = \{ h_s(p) | t \in \mathbb{R}^1 \} \)，则 \(q = h_0(g) \in \{ h_t(p) | t \in \mathbb{R}^1 \} \)。

\(\iff \) 若 \(q \in \{ h_t(p) | t \in \mathbb{R}^1 \} \)，令 \(q = h_{10}(p) \)，则 \(h_t(q) = h_s(h_{10}(p)) = h_{t_0}(p) \)。故 \(\{ h_t(q) | t \in \mathbb{R}^1 \} \subseteq \{ h_s(p) | t \in \mathbb{R}^1 \} \)。又因 \(p = h_{-10}(q) = h_{-10}(h_{10}(p)) \)，同理可得 \(\{ h_t(q) | t \in \mathbb{R}^1 \} \supseteq \{ h_s(p) | t \in \mathbb{R}^1 \} \)。于是，\(\{ h_t(q) | t \in \mathbb{R}^1 \} = \{ h_s(p) | t \in \mathbb{R}^1 \} \)。

\[
(2) \quad X_{h_s(p)} = \sum_{i=1}^{n} \frac{dx^i(h_s(h_t(p)))}{ds} \left(\frac{\partial}{\partial x^i} \right)_{h_t(p)} \frac{dh_0(p)}{dt} = \sum_{i=1}^{n} \frac{dx^i(h_s(p))}{ds} \left(\frac{\partial}{\partial x^i} \right)_{h_t(p)} \frac{dh_t(p)}{dt}.
\]

因为 \(h_s(h_t(p)) = h_{s+t}(p) \)。且 \(h_s \) 为 \(C^\infty \) 同胚，故 \((h_s)_* (X_{h_s(p)}) \)

\[
= (h_s)_* \left(\frac{dh_s(p)}{dt} \right) = \frac{dh_{s+t}(p)}{dt} = X_{h_{s+t}(p)} - \frac{dh_{s+t}(p)}{dt} = X_{h_{s+t}(p)} - \frac{dh_{s+t}(p)}{d(\frac{ds}{dt})} = X_{h_t(p)}.
\]

例 1 \(M = (0, 1), X = \frac{\partial}{\partial x} \) 则 \(x \) 的积分曲线为 \(h_t(x) = t + x, x \in (0, 1), t + x \in (0, 1) \)。于是 \(C^\infty \) 切向量场 \(\frac{\partial}{\partial x} \) 不产生 \((0, 1) \) 上的 \(C^\infty \) 变换的整体 1 参数群。
再如 $M = (-\infty, 0) \cup (0, +\infty), X = \frac{1}{x} \frac{\partial}{\partial x}$, 由定理 2(2),

$$h_t(x) = \begin{cases} \sqrt{2t + x^2}, & x \in (0, +\infty), \\ -\sqrt{2t + x^2}, & x \in (-\infty, 0), \end{cases}$$

而 $2t + x^2 \geq 0$, 所以 C^∞ 切向量场 $\frac{1}{x} \frac{\partial}{\partial x}$ 不产生 $(0, 1)$ 上的 C^∞ 变换的整个 1 参数群。

例 1 说明 M 上的每个 C^∞ 切向量场不一定产生 M 上的 C^∞ 变换的 1 参数群，但是，局部地它是正确的。

定义 3 如果 C^∞ 映射 $h : (-\varepsilon, \varepsilon) \times V \to M, h(t, p) = h_t(p)$ $(V$ 为 C^∞ 流形 (M, \mathcal{D}) 的开集) 满足:

(1) $h_t : V \to h_t(V)$ 为 C^∞ 同胚, $t \in (-\varepsilon, \varepsilon)$;

(2) $h_0 = \text{Id}_V$;

(3) $t, s, t + s \in (-\varepsilon, \varepsilon), p, h_{t+s}(p) \in V \Rightarrow h_t \circ h_s(p) = h_{t+s}(p)$. 则称 C^∞ 局部变换 $h_t : V \to M$ 为局部 1 参数群。

定理 3 （局部 1 参数群的存在性）设 X 为 n 维 C^∞ 流形 (M, \mathcal{D}) 的 C^∞ 切向量场，$p_0 \in M$. 则存在 p_0 的一个开邻域 V 和 $\varepsilon > 0$, 使得对任何 $t \in (-\varepsilon, \varepsilon)$ 有一个 C^∞ 局部变换 $h_t : V \to M$, 且成为局部 1 参数群，它诱导出已给的切向量场 X。

如果 h_t 为 $(-\varepsilon, \varepsilon) \times V$ 上的诱导出 X 的另一个 C^∞ 局部变换的 1 参数群，则 $\tilde{h}_t = h_t$(唯一性)。

证明 设 $(U, \varphi), \{x^i\}$ 为 p_0 的局部坐标系，不妨设 $x^1(p_0) = \cdots = x^n(p_0) = 0$. 在 U 中令

$$X = \sum_{i=1}^{n} a^i(x^1, \cdots, x^n) \frac{\partial}{\partial x^i}.$$

考虑常微分方程：

106
\[
\frac{dh^i}{dt} = \alpha^i(h'(t), \ldots, h^n(t)), \quad i = 1, \ldots, n,
\]

其中 \(h^1(t), \ldots, h^n(t) \) 为未知函数, 由常微分方程的基本定理, 存在唯一的 \(C^\infty \) 函数组

\[
h^i(t; x), \quad i = 1, \ldots, n,
\]

它们对每个固定的 \(x \) 形成了微分方程的解，并满足初始条件:

\[
h^i(0; x) = x^i.
\]

令

\[
h_s(x) = (h^1(t; x), \ldots, h^n(t; x)), \quad |t| < \epsilon_1, \quad x \in V, = \{ x \mid x^i | < \delta_1 \}.
\]

如果 \(|t|, |s|, |t+s| < \epsilon_1\) 和 \(x, h_s(x) \in V \), 则

\[
g^i(t) = h^i(t+s; x)
\]

为满足初始条件 \(g^i(0) = h^i(s; x) \) 的微分方程的解。由解的唯一性定理, 必须 \(g^i(t) = h^i(t; h_s(x)) \)。这就证明了 \(h_{i+s}(x) = h_i(h_s(x)) = h_s \circ h_i(x) \).

由 \(h^i(0; x) = x^i, \quad i = 1, \ldots, n, h_0(x) = (h^1(0; x), \ldots, h^n(0; x)) = x, \) 即 \(h_0 = \text{Id}_V \). 则存在 \(\epsilon > 0 \) 和 \(\delta > 0 \) 使得当 \(|t| < \epsilon \) 时, 对于

\[V = \{ x \mid |x^i| < \delta \} \]

有 \(h_\epsilon(V) \subseteq V \).

因此, \(h_{i+s}(x) = h_s \circ h_i(x) = h_i(x) = x, \quad |t| < \epsilon, \quad x \in V \). 这就推出了当 \(|t| < \epsilon \) 时, \(h_s : V \rightarrow h_i(V) \) 为 \(\text{C}^\infty \) 同胚。所以, \(h_\epsilon \) 为定义在 \((-\epsilon, \epsilon) \times V \) 上的局部变换的局部 \(\text{C}^\infty \) 参数群, 从而 \(x \) 的构造。显然它在 \(V \) 上诱导出已给的切向量场 \(X \).

由上述证明和常微分方程解的唯一性定理可知 \(h = h_\epsilon \) 或 \(h = h_{-\epsilon} \).

定义 4 设 \(X \) 为 \(n \) 维 \(C^\infty \) 流形 \((M, \partial) \) 上的 \(C^\infty \) 切向量场, 如果存在 \(M \) 上的 \(C^\infty \) 变换的整体 \(1 \) 参数群 \(h \) (参看定义 2), 它诱导出 \(X \), 则称 \(X \) 为完备的 \(C^\infty \) 切向量场。

定理 4 设 \(X \) 为 \(n \) 维 \(C^\infty \) 流形 \((M, \partial) \) 的紧致子集, \(X \) 为 \(M \) 上的 \(C^\infty \) 切向量场, 且 \(X |_{M - \partial} = 0 \), 则 \(X \) 是完备的.
特别地，紧致 C^∞ 流形 (M, \emptyset) 上的 C^∞ 切向量场 X 是完备的。

证明 对任何 $p \in K$，由定理 3，存在 p 的开邻域 $\tilde{V}(p)$ 和 $\tilde{e}(p) > 0$，使得向量场 X 在 $(-\tilde{e}(p), \tilde{e}(p)) \times \tilde{V}(p)$ 上产生 C^∞ 局部变换的局部 1 参数群 h_t。因为 $h_0 = \text{Id}_{\tilde{V}(p)}$ 和 $h: (-\tilde{e}(p), \tilde{e}(p)) \times \tilde{V}(p) \to M$ 为 C^∞ 映射，故存在 p 的开邻域 $V(p) \subset \tilde{V}(p)$ 和 $0 < e(p) \leq \tilde{e}(p)$，使得当 $x \in V(p)$，$|s| < e(p)$ 时，$h_s(x) \in V(p)$。因为 K 紧致，开复盖 $\{ V(p) | p \in K \}$ 有有限子复盖 $\{ V(p_i) | i = 1, \ldots, h \}。令 e = \min \{ e(p_i) | i = 1, \ldots, h \}，h_t(x) = x, x \in M - K, |t| < e$。根据定理 3 后半部分的结论，$h_t$ 为 $(-e, e) \times M$ 上的 C^∞ 局部变换的局部 1 参数群。于是，当 $|t|, |s|, |t + s| < e$ 时，$h_t h_s = h_t o h_s$。如果 $n \geq 0$，令 $h_t = h_t \circ h_0 \circ \cdots \circ h_0$；如果 $n < 0$，令 $h_t = h_0 \circ h_0 \circ \cdots \circ h_0$. 不难验证

证 h_t 是定义确切的，C^∞ 类的，并且对任何 $t, s \in R$，$h_{t+s} = h_t o h_s$。这就完成了定理的证明。

例 1 说明定理 4 中 “$X |_{M - K} = 0$，K 为紧致子集” 不能省略。

作为定理 4 的一个重要应用，我们得到：连通的 C^∞ 流形为齐性空间，甚至有更强的齐性定理。为此，先引进 C^r 同伦和 C^r 同胚的概念。

定义 5 设 (M_i, Θ_i) 为 n_i 维 C^r 流形，$r \in \{0, 1, 2, \cdots, \infty, \omega\}$，$i = 1, 2, f, g: M_1 \to M_2$ 为 C^r 映射，$0 \leq k \leq r$。如果存在 C^r 映射 $F: [0, 1] \times M_1 \to M_2$ 使得 $F(0, x) = f(x), F(1, x) = g(x), x \in M_1$，则称 F 为连 f 和 g 的一个 C^r 同伦，称 $f C^r$ 同伦于 g。记作 $f \sim g$。

定义 6 设 (M_i, Θ_i) 为 n_i 维 C^r 流形，$r \in \{0, 1, 2, \cdots, \infty, \omega\}$，$i = 1, 2, f, g: M_1 \to M_2$ 为 C^r 同胚，$0 \leq k \leq r$。如果存在连 f 和 g
的 C^k 同伦 $F_1: [0, 1] \times M_1 \to M_2$ 使得对每个 $t \in [0, 1], F(t, \cdot): M_1 \to M_2, x \mapsto F(t, x)$ 为 C^k 同胚，则称 F 为连 C^k 同胚 f 和 g 的 C^k 同胚，称 $f \sim C^k$ 同胚 g。也记 $f \sim g$。

定理 5 C^k 同伦的关系是一个等价关系，
类似地，C^k 同胚的关系也是一个等价关系。

证明 只须证 C^k 同伦的情形。
对任何 C^k 映射 $f: M_1 \to M_2$，令 $F_1: [0, 1] \times M_1 \to M_2, F(t, x) = f(x)$，则 F 为连 f 和 F_1 的 C^k 同伦，因而 $f \sim F_1$。

如果 $f \sim g$, F 为连 f 和 g 的 C^k 同伦，则 $G_1: [0, 1] \times M_1 \to M_2, G_1(t, x) = F_1(1-t, x)$ 为连 g 和 f 的 C^k 同伦，因而 $g \sim F_1$。

设 $f \sim g$, F 为连 f 和 g 的一个 C^k 同伦。则 $F_1: [0, 1] \times M_1 \to M_2, F_1(t, x) = F_1(\phi(t), x)$ 为连 f 和 g 的另一 C^k 同伦，其中

$$
\lambda(t) = \begin{cases} e^{-t}, & t > 0, \\
0, & t \leq 0,
\end{cases}
$$

$$
\phi(t) = \begin{cases} \lambda(t - \frac{1}{3}), & 0 \leq t \leq \frac{1}{3}, \\
\lambda(t - \frac{1}{3}) + \lambda(\frac{2}{3} - t), & \frac{2}{3} \leq t \leq 1,
\end{cases}
$$

$$
F_1(t, x) = \begin{cases} f(x), & 0 \leq t \leq \frac{1}{3}, \\
g(x), & \frac{2}{3} \leq t \leq 1.
\end{cases}
$$

若 $f \sim g, g \sim h, F$ 和 G 分别为连 f 和 g 以及连 g 和 h 的 C^k 同伦。令 $F_1(t, x) = F(\phi(t), x), G_1(t, x) = G(\phi(t), x)$，

$$
H(t, x) = \begin{cases} F_1(2t, x), & 0 \leq t \leq \frac{1}{2}, \\
G_1(2t - 1, x), & \frac{1}{2} \leq t \leq 1,
\end{cases}
$$

• 109 •
则 H 为连 f 和 h 的 C^k 同伦，从而 $f \sim h$.

例 2 设连通 C^∞ 流形 $M = \mathbb{R}^n$ 或 S^n，则 M 上存在一个将 y 变为 z 的 C^∞ 同胚 $f: M \to M$，且 Id_M C^∞ 同胚于 f.

$M = \mathbb{R}^n$，令 $f: M \to M$, $f(x) = x + (z - y)$, $F: [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$, $F(t, x) = x + t(z - y)$ 为连 $F(0, \cdot) = \text{Id}_{\mathbb{R}^n}$ 和 $F(1, \cdot) = f$ 的 C^∞ 同胚.

$M = S^n$，设 $y, z \in S^n$ 为任意二点，若 $y = z$ 令 $f = \text{Id}_{S^n}$, $F(t, \cdot) = \text{Id}_{S^n}(\cdot)$，若 $y \neq z$ 仿照 § 1 例 9，令 $e_1 = y, \quad \{e_1, e_2\}$ 为 yOz 平面上的标准正交基，设 $z = \cos \theta \cdot e_1 + \sin \theta \cdot e_2$, $\{e_1, \cdots, e_{n+1}\}$ 为 \mathbb{R}^{n+1} 的标准正交基，取

$$
A = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\vdots & \vdots \\
1 & 1
\end{pmatrix} \in \text{O}(n+1),
$$

显然，$Ay = z$。如果记

$$
A(t) = \begin{pmatrix}
\cos t \theta & -\sin t \theta \\
\sin t \theta & \cos t \theta \\
\vdots & \vdots \\
1 & 1
\end{pmatrix},
$$

$f: S^n \to S^n$, $f(x) = Ax$, $F: [0, 1] \times S^n \to S^n$, $F(t, x) = A(t)x$. 容易看出 F 为连 Id_{S^n} 和 f 的 C^∞ 同胚，且 $f(y) = z$.

为了证明连通 C^∞ 流形 M 上的齐性定理，先证下面的引理.

引理 1 对任何 $y \in \{x \in \mathbb{R}^n \mid |x| < 1\}$，存在 C^∞ 映射 $F: \mathbb{R}^1 \times \mathbb{R}^n \to \mathbb{R}^n$ 使得

(1) 对任何 $t \in \mathbb{R}^1$, $\text{Id}_{\mathbb{R}^n}$ C^∞ 同胚于 $F_t = F(t, \cdot)$.

* 110 *
(2) 当 \(x \in \mathbb{R}^n - \overline{O(0,1)} \) 时，\(F(t, x) = x, t \in \mathbb{R}^1 \)，其中 \(O(0, 1) \) 为以 \(O \) 为中心，1 为半径的开单位球；
(3) \(F(0, \cdot) = \text{Id}_{\mathbb{R}^n} \)
(4) 存在 \(t_0 \in \mathbb{R}^1 \)，使 \(F_{t_0}(0) = F(t_0, 0) = y \)。

证明 设 \(\lambda(t) = \begin{cases} \frac{t}{2}, t > 0, \\ 0, t \leq 0, \end{cases} \) 显然 \(\lambda \in C^\infty(\mathbb{R}, \mathbb{R}) \)。令 \(\varphi(x) = \lambda(1 - \|x\|^2) = \begin{cases} >0, 当 \|x\| < 1, 其中 \|x\| = \sqrt{\sum_{i=1}^{n}(x_i^2)}, 则 \varphi \in C^\infty(\mathbb{R}^n, \mathbb{R}) \end{cases} \)

取定任一单位向量 \(e \in S^{n-1} \)，考虑 \(\mathbb{R}^n \) 上的 \(C^\infty \) 切向量场 \(X \) 使 \(X|_e = \varphi(e)e \)，由于 \(X|_{\mathbb{R}^n - \overline{O(0,1)}} = 0 \)。根据定理 4，\(X \) 是完备的，故存在 \(\mathbb{R}^n \) 上的 \(C^\infty \) 变换的整体 1 参数群 \(F_t \)，使 \(F : \mathbb{R}^1 \times \mathbb{R}^n \rightarrow \mathbb{R}^n, F_t(x) = F(t, x) \) 为 \(C^\infty \) 映射，\(\frac{dF_t(x)}{dt} = [X]_{F_t(x)} = \varphi(F_t(x)) e \) 且满足：
(1) 由 (a)(b) 知 \(F_t, F_t^{-1} = F_{-t} : \mathbb{R}^n \rightarrow \mathbb{R}^n \) 为 \(C^\infty \) 同胚，又因 \(F(st, x) \) 为连 \(F_0 = \text{Id}_{\mathbb{R}^n} \) 和 \(F_t \) 的 \(C^\infty \) 同胚，故 \(F_t = \text{Id}_{\mathbb{R}^n}C^\infty \) 同胚于 \(F_t \)。
(2) 设 \(x \in \mathbb{R}^n - \overline{O(0,1)} \)，则存在 \(e \geq 0 \)，对任何 \(t \in (-e, e) \) 有 \(F_t(x) \in \mathbb{R}^n - \overline{O(0,1)} \)，此时，\(\frac{dF_t(x)}{dt} = \varphi(F_t(x)) = 0 \)，\(F_t(x) = F_0(x) = x \)。由此不难看出，对任何 \(t \in \mathbb{R}^1 \)，\(F_t(x) = F(t, x) = x \)。
(3) 由 (6) 直接得证。
(4) 取 \(c = \frac{y}{\|y\|} (y \neq 0) \)，则存在 \(t_0 \in \mathbb{R}^1 \) 使 \(F_{t_0}(0) = F(t_0, 0) = y \)。如果 \(y = 0 \)，则取 \(F(t, x) = x, t \in \mathbb{R}^1, x \in \mathbb{R}^n \)。

定理 6（齐性定理）设 \(y, z \) 为 \(n \) 维 \(C^\infty \) 连通流形 \((M, \omega)\) 的
任意二点，则存在 C^∞ 同胚 $F: [0, 1] \times M \to M$，使 $F(0, \cdot) = \text{Id}_M$。

C^∞ 同胚于 $F(1, \cdot) = f$，且 $f(y) = z$。

证明 如果存在一个 C^∞ 同胚 $F: [0, 1] \times M \to M$ 使 $\text{Id}_y = F(0, \cdot)$，

C^∞ 同胚于 $F(1, \cdot)$，且 $F(1, y) = z$，则称 y 同胚于 z，记为 $y \sim z$。

显然，$y \sim y$，只要取 $F(t, z) = z, t \in [0, 1], z \in M$。

如果 $y \sim z$，则存在上述的 C^∞ 同胚 F，令 $G(t, z) = F_1^{-1}(z)$，

易见 $G: [0, 1] \times M \to M$ 为 C^∞ 同胚，且 $G_0(\cdot) = G(0, \cdot) = F_0^{-1}(\cdot) = \text{Id}_y(\cdot)$，

$G_1(\cdot) = G(1, \cdot) = F_1^{-1}(\cdot)$，$G(t)(z) = F_1^{-1}(z) = y$，故 $z \sim y$。

如果 $y \sim z, z \sim w$，它们相应的 C^∞ 同胚为 $F: [0, 1] \times M \to M$

和 $G: [0, 1] \times M \to M$，且 $F(0, \cdot) = \text{Id}_M, G(0, \cdot) = \text{Id}_M, F(1, y) = z, G(1, z) = G_1(z) = w$，则 $H_1(\cdot) = H(t, \cdot) = G(t, F(t, \cdot)) = G_F(\cdot), H_0(\cdot) = H(0, \cdot) = G(0, F(0, \cdot)) = F(0, \cdot) = \text{Id}_M(\cdot)$。

$H(y) = G_1, F_1(y) = G_1(z) = w$，因此 $y \sim w$。

综合上述，二个点的同胚关系是等价关系，对任何 $x \in M$，存在一个 C^∞ 同胚于 R^n 的开邻域，再由引理 1，存在 x 的邻域 U，

使 $x C^\infty$ 同胚于 V 中的任一点 y。于是，M 的每个“同胚类”都是开集，进而 M 为互不相交的开的“同胚类”之并，因为 M 连通，故只有一个同胚类，定理证毕。

引理 1 和定理 6 可以推广到更一般的

推论 1 设 A 为 n 维 C^∞ 流形 (M, \mathcal{O}) 的闭子集，(p_1, \cdots, p_m)

和 (q_1, \cdots, q_m) 为连通开子流形 $M - A$ 中的两组点集，且当 $i \neq j$ 时，

$p_i \neq p_j, q_i \neq q_j$，则存在 C^∞ 映射 $F: R^1 \times M \to M$ 使得

(1) 对任何 $t \in R^1, \text{Id}_M$ 同胚于 $F_t = F(t, \cdot)$；

(2) $F(t, x) = x, t \in R^1, x \in A$；

(3) $F(0, \cdot) = \text{Id}_M(\cdot)$；

(4) 存在 $t_0 \in R^1$ 使 $F_{t_0}(p_i) = F(t_0, p_i) = q_i, i = 1, \cdots, m$

(当 $m \geq 2$ 时，$\dim M \geq 2$)。
证明 $m=1$，由第一章 §3 定理 3，连通开子流形 $M \setminus A$ 是道路连通的，故存在道路 $\sigma : [0, 1] \to M \setminus A$ 使 $\sigma (0) = p_1, \sigma (1) = q_1$。
再从 $\sigma ([0, 1])$ 的紧致性，反复用引理 1 推出定理的结论。

当 $m \geq 2, \dim M \geq 2$ 时，应用归纳法证明，上述已证命题对 $m = 1$ 是正确的，假设命题对 $m = k$ 是正确的，则对 $\{p_1, \cdots, p_k, q_1, \cdots, q_{k+1}\}$，存在 C^∞ 映射 $F : \mathbb{R}^k \times M \to M$ 使

1. 对任何 $t \in \mathbb{R}^1, \Id M C^\infty$ 同态于 $F_{t, \cdot} = F(t, \cdot)$；
2. $F(t, x) = x, t \in \mathbb{R}^1, x \in A$；
3. $F(0, \cdot) = \Id M (\cdot)$；
4. 存在 $t_i \in \mathbb{R}^1$ 使 $F_{t_0}(p_i) = F(t_0, p_i) = q_i, i = 1, \cdots, k$。

设 $F_{t_0}(p_{k+1}) = F(t_0, p_{k+1}) = p_{k+1}$。如果 $p_{k+1} = q_{k+1}$，则命题对 $m = k + 1$ 得证。否则记 $A_i = A \cup \{p_1, \cdots, p_k, q_1, \cdots, q_i\}$ (A_1 仍为闭集，$M \setminus A_1$ 仍为连通开子流形)，则存在 C^∞ 映射 $G : \mathbb{R}^k \times M \to M$ 使

1. 对任何 $t \in \mathbb{R}^1, \Id M C^\infty$ 同态于 $G_{t, \cdot} = G(t, \cdot)$；
2. $G(t, x) = x, t \in \mathbb{R}^1, x \in A_i$；
3. $G(0, \cdot) = \Id M (\cdot)$；
4. 存在 $t_i \in \mathbb{R}^1$ 使 $G_{t_1}(p_{k+1}) = G(t_1, p_{k+1}) = q_{k+1}$。

则 $H_{t, \cdot} = H(t, \cdot) = G(t, F(t_0, \cdot)) = G(t, F(t, \cdot)) = G(t, \cdot)$ 为所求 C^∞ 映射，因此命题对 $m = k + 1$ 也是正确的。

现在我们来研究 C^∞ 切向量场 Y 关于 C^∞ 切向量场 X 的 Lie 导数，并引入 n 维 C^∞ Lie 群的 n 维 Lie 代数

定义 7 设 X 和 Y 为 n 维 C^∞ 流形 (M, \emptyset) 的开集 V 上的 C^∞ 切向量场，定义 $L_X Y = [X, Y]$ 如下：

$[X, Y], f = X_p(Y f) - Y_p(X f), p \in V$, f 为 V 上的 C^∞ 函数。由下面的引理 2，$[X, Y]$ 为 V 上的 C^∞ 切向量场，称为 X 和 Y 的交换子，或方括号在 Y 关于 X 的 Lie 导数。
引理2 \([X, Y]为V上的\(C^\infty\)切向量场。

证明 设\(f, g\in C^\infty(V, \mathbb{R}), \lambda \in \mathbb{R}\)，则
\[
[X, Y]_p(f + g) = X_p(Y(f + g)) - Y_p(X(f + g))
\]
\[
= (X_p(Yf) - Y_p(Xf)) + (X_p(Yg) - Y_p(Xg))
\]
\[
= [X, Y]_p f + [X, Y]_p g;
\]
\[
[X, Y]_p(\lambda f) = X_p(Y(\lambda f)) - Y_p(X(\lambda f))
\]
\[
= \lambda(X_p(Yf) - Y_p(Xf))
\]
\[
= \lambda[X, Y]_p f;
\]
\[
[X, Y]_p(fg) = X_p(Y(fg)) - Y_p(X(fg))
\]
\[
= X_p(fYg + gYf) - Y_p(fXg + gXF)
\]
\[
= f(p)(X_p(Yg) - Y_p(Xg)) + g(p)(X_p(Yf) - Y_p(Xf))
\]
\[
= f(p)[X, Y]_p g + g(p)[X, Y]_p f.
\]

这就证明了\([X, Y]_p \in T_p M\)。从\(\S 3\)定理2(2)推出\([X, Y]f = X(Yf) - Y(Xf)\)是\(C^\infty\)类的，再由\(\S 3\)定理2(2)推出\([X, Y]\)是\(C^\infty\)的。

定理7 设\(X, Y, Z\)为\(n\)维\(C^\infty\)流形\((M, \Theta)\)的开集\(V\)上的\(C^\infty\)切向量场, \(f, g, h\in C^\infty(V, \mathbb{R}), \lambda, \mu \in \mathbb{R}\), \((U, \varphi), \{x^i\}\)为局部坐标系，则\([\quad, \quad]\)有以下性质:

(1) \([X, Y] = -[Y, X]\)，反称性，
\[[X, X] = 0\)，幂零律；

(2) \([\lambda X + \mu Y, Z] = \lambda[X, Z] + \mu[Y, Z]\)，
\[[X, \lambda Y + \mu Z] = \lambda[X, Y] + \mu[X, Z]\)，
双线性；

(3) \([fX, gY] = f(Xg)Y - g(Yf)X + fg[X, Y]；

(4) \([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0\)

Jacobi恒等式；

(5) \[
\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0;
\]

(6) 如果 \(X = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}, Y = \sum_{j=1}^{n} b^j \frac{\partial}{\partial x^j}\)，则有
\[
[X, Y] = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(a_i \frac{\partial b^j}{\partial x^i} - b_i \frac{\partial a^j}{\partial x^i} \right) \right) \frac{\partial}{\partial x^j}.
\]

证明 (1)(2)由定义 7 立即可得。

(3) \([fX, gY]h = (fX)(gY)h - (gY)(fX)h \]
\[= (fX)(gYh) - (gY)(fXh) \]
\[= fg(XYh) - f(Xg)(Yh) - g(Yf)(Xh) \]
\[= (f(Xg)Y - g(Yf)X) + fg[X, Y]h. \]

(4) \([X, [Y, Z]]f = X[Y, Z]f - [Y, Z]Xf \]
\[= X(YZf - ZYf) - (YZXf - ZYXf) \]
\[= (XYZ - XZY - YZX + ZYX)f, \]
则由对称性得

\[[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]] = (XYZ - XZY - YZX + ZYX)f \]
\[= 0. \]

(5) \(\left[+ \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right] = \frac{\partial}{\partial x^i} \left(\frac{\partial \left(f \circ \varphi^{-1} \right)}{\partial x^j} \right) - \frac{\partial}{\partial x^j} \left(\frac{\partial \left(f \circ \varphi^{-1} \right)}{\partial x^i} \right) = \frac{\partial^2 (f \circ \varphi^{-1})}{\partial x^i \partial x^j} = 0. \]

(6) \([X, Y] = \sum_{i=1}^{n} a_i \left(\frac{\partial b^j}{\partial x^i} \right) \frac{\partial}{\partial x^j} - \sum_{i=1}^{n} b_i \left(\frac{\partial a^j}{\partial x^i} \right) \frac{\partial}{\partial x^j} \]
\[= \sum_{i=1}^{n} \sum_{j=1}^{n} \left[a_i \frac{\partial b^j}{\partial x^i} \right] \frac{\partial}{\partial x^j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \left[b_i \frac{\partial a^j}{\partial x^i} \right] \frac{\partial}{\partial x^j} \]
\[= \sum_{j=1}^{n} \sum_{i=1}^{n} \left[a_i \frac{\partial b^j}{\partial x^i} - b_i \frac{\partial a^j}{\partial x^i} \right] \frac{\partial}{\partial x^j}. \]

\[\# \]

- 115 -
注 1 利用定义 7(6)，在局部坐标系 \((U, \varphi), \{x^i\}\) 中定义
\([X, Y] = \sum_{j=1}^{2}(\sum_{i=1}^{2}(a_i \frac{\partial b^j}{\partial x^i} - b_i \frac{\partial a^j}{\partial x^i})) \frac{\partial}{\partial x^j} \). 可验证上式右边与局部坐标系的选取无关，因而在定义整体的 \(C^\infty\) 切向量场 \([X, Y]\). 用上述定义，对任何 \(C^\infty\) 函数 \(f\) 有 \([X, Y]f = X(Yf) - Y(Xf)\)，并还可证明定理 7 中的(1)\(-(5)\)（参阅岩崎长庆）.

定理 8 设 \((M_i, \mathcal{O}_i)\) 为 \(n\) 维 \(C^\infty\) 流形，\(i = 1, 2, f: M_1 \to M_2\) 为 \(C^\infty\) 微分同胚，\(X_i, X_2\) 为 \(M_1\) 上的 \(C^\infty\) 切向量场，则
\[f_*[X_i, X_2] = [f_*X_1, f_*X_2]\].

证明 设 \(h \in C^\infty(M_2, \mathbb{R})\)，则
\[[f_*X_1, f_*X_2]_{(p)} h = (f_*X_1)_{f(p)}(f_*X_2)_{f(p)} h - (f_*X_2)_{f(p)}(f_*X_1)_{f(p)} h = f_{*p}(X_1)_{p}(f_*X_2)_{p} h - f_{*p}(X_2)_{p}(f_*X_1)_{p} h = (X_1)_p (f_*X_2)_p h f - (X_2)_p (f_*X_1)_p h f = (X_1)_p (X_2)_p (h \circ f) - (X_2)_p (X_1)_p (h \circ f) = [X_1, X_2]_p (h \circ f) = f_{*p}([X_1, X_2]_p) h\]
于是，\[f_*[X_i, X_2] = [f_*X_1, f_*X_2]\].

定义 8 设 \(V\) 为域 \(F\) 上的 \(n\) 维向量空间。如果在 \(V\) 中定义的“乘法”运算
\([\cdot, \cdot]: V \times V \to V, (X, Y) \mapsto [X, Y]\),
满足：

(1) \([\lambda X + \mu Y, Z] = \lambda [X, Z] + \mu [Y, Z]\)，左分配律；
(2) \([X, Y] = -[Y, X]\)，反称性；
(3) \([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0\)，Jacobi 意式，这里 \(\lambda, \mu \in F, X, Y, Z \in V\)，则称 \((V, [\cdot, \cdot])\) 或 \(V\) 为域 \(F\) 上的 Lie 代数或 Lie 环．

注 2 从(1)和(2) 立即可推出 \([Z, \lambda X + \mu Y] = \lambda [Z, X] + \mu [Z, Y]\)，右分配律。此外，如果域 \(F\) 不是特征 2 的，则由(2)得到
\[X^2 = [X, X] = 0\].
\[[X, X] = -[X, X], 2[X, X] = 0, [X, X] = 0 \text{(幂零体)}. \]

例 3 设 \(\text{gl}(n, \mathbb{R}) = \{ A = (a_{ij}) \mid A \text{为 } n \text{ 阶实方阵} \} \)，它是实数域 \(\mathbb{R} \) 上的 \(n^2 \) 维实向量空间，令

\[[A, B] = AB - BA. \]

容易验证 (\(\text{gl}(n, \mathbb{R}), [\cdot, \cdot] \)) 或 \(\text{gl}(n, \mathbb{R}) \) 为实数域 \(\mathbb{R} \) 上的 Lie 代数，称为全线性代数.

定理 9 设 \(L(G) \) 为\(C^\infty \) Lie 群 \(G \) 上左不变向量场的全体，则 \(L(G) \) 为实数域 \(\mathbb{R} \) 上的 \(n \) 维向量空间，并且关于 Lie 导数运算

\[[\cdot, \cdot], (L(G), [\cdot, \cdot]) \] 或 \(L(G) \) 为实数域 \(\mathbb{R} \) 上的 \(n \) 维 Lie 代数（称为 \(C^\infty \) Lie 群 \(G \) 的 Lie 代数）．

证明 设 \(\lambda, \mu \in \mathbb{R}, X, Y \in L(G) \)．由定理 8 和 § 3 定理 6 得到

\[(L_a)_*(\lambda X + \mu Y) = \lambda (L_a)_*X + \mu (L_a)_*Y = \lambda X + \mu Y \quad (a \in G) \]

和

\[(L_a)_*[X, Y] = [(L_a)_*X, (L_a)_*Y] = [X, Y], \]

由此推出 \(\lambda X + \mu Y \in L(G), [X, Y] \in L(G) \)．

此外，取 \(T_0 G \) 的一个基 \(\{(X_i)_a \mid i = 1, \cdots, n\} \)，则显然 \(\{X_i\}_a = (L_a)_*(X_i)_a, a \in G, i = 1, \cdots, n \) 为 \(L(G) \) 的一个基．事实上，若 \(\sum_{i=1}^{n} \lambda_i X_i = 0, \lambda_i \in \mathbb{R} \)，则

\[0 = \left(\sum_{i=1}^{n} \lambda_i X_i \right)_a = \sum_{i=1}^{n} \lambda_i (X_i)_a \]

于是 \(\lambda_i = 0, \quad i = 1, \cdots, n \)，即 \(\{X_i \mid i = 1, \cdots, n\} \) 是线性无关的．另一方面，对任意 \(X \in L(G) \)，

\[X_a = (L_a)_*(X)_a = (L_a)_* \left(\sum_{i=1}^{n} \lambda_i (X_i)_a \right) = \sum_{i=1}^{n} \lambda_i (L_a)_*(X_i)_a = \left(\sum_{i=1}^{n} \lambda_i X_i \right)_a \]

断 \(X = \sum_{i=1}^{n} \lambda_i X_i, \lambda_i \in \mathbb{R} \)，所以 \(\{X_i \mid i = 1, \cdots, n\} \) 为 \(L(G) \) 的一个基，而 \(L(G) \) 是一个 \(n \) 维向量空间．
最后，由定理7(1)(2)(4)推出$L(G)$满足定义8中的条件(1)(2)(3)，所以它是实数域\mathbb{R}上的一个Lie代数。

例4 由第二章§1例4.4次实一般线性群$GL(n,\mathbb{R})$为n^2维C^∞Lie群(也是C^∞Lie群)。如果用

$$E_{ij} = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

表示切向量$\frac{\partial}{\partial x_{ij}}$，$x_{ij}$为$GL(n,\mathbb{R})$的整体坐标，则$C^\infty$Lie群$GL(n,\mathbb{R})$上的切向量$\sum_{i,j=1}^n a_{ij} \frac{\partial}{\partial x_{ij}}$仍可用$n$阶方阵

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

表示，但此时$\det A$可为0。

现在再来看由g所决定的左移$L_g:x \rightarrow gx = y$，这个映射的Jacobi方阵的系数是

$$\frac{\partial y_{ij}}{\partial x_{kl}} = \frac{\partial}{\partial x_{kl}} \left(\sum_{k=1}^n g_{ik} x_{kj} \right) = \begin{cases} g_{il}, & l = j \\ 0, & l \neq j \end{cases}$$

因此，在单位元素上的切向量A所决定的左不变向量场为

$$\mathbf{x}_g = \left(\sum_{k=1}^n \frac{\partial y_{ij}}{\partial x_{kl}} a_{kl} \right) = \left(\sum_{k=1}^n g_{ik} a_{kj} \right) = \left(\sum_{k=1}^n g_{ik} b_{kj} \right)$$

如果$V_g = gB = \left(\sum_{k=1}^n g_{ik} b_{kj} \right) = (\beta_{ij})$是由单位元素上另一切向量

-118-
\[
B = \begin{pmatrix}
 b_{11} & \cdots & b_{1n} \\
 \vdots & \ddots & \vdots \\
 b_{n1} & \cdots & b_{nn}
\end{pmatrix}
\]

所决定的左不变向量场，则

\[
[X, Y] = \sum_{i, j = 1}^{n} \left(\sum_{k, l = 1}^{n} \left(\alpha_{kl} \frac{\partial \beta_{ij}}{\partial u_{kl}} - \beta_{kl} \frac{\partial \alpha_{ij}}{\partial u_{kl}} \right) \right) \frac{\partial}{\partial g_{ij}}
\]

\[
= \sum_{i, j = 1}^{n} \left(\sum_{l = 1}^{n} \left(\alpha_{ii} \frac{\partial \beta_{ij}}{\partial u_{il}} - \beta_{ii} \frac{\partial \alpha_{ij}}{\partial u_{il}} \right) \right) \frac{\partial}{\partial g_{ij}}
\]

\[
= \sum_{i, j = 1}^{n} \left(\sum_{l = 1}^{n} \left(\alpha_{ii} b_{ij} - \beta_{ii} a_{ij} \right) \right) \frac{\partial}{\partial g_{ij}}
\]

令 \(g_{ij} = \delta_{ij} \) 即 \(g = I_n \)，则 \((a_{ii}) := I_n A = A, (\beta_{ii}) = (b_{ii}) \)，因而

\[
[X, Y]_{I_n} := \sum_{i, j = 1}^{n} \left(\sum_{l = 1}^{n} \left(\alpha_{ii} b_{ij} - \beta_{ii} a_{ij} \right) \right) \frac{\partial}{\partial g_{ij}} \bigg|_{I_n}
\]

这说明 \([X, Y] \) 是由方阵 \(AB, BA \) 所决定的左不变向量场。例 3 和上面的计算表明，\(GL(n, \mathbb{R}) \) 的 Lie 代数 \(\mathfrak{gl}(n, \mathbb{R}) \) 与全线性代数是同构的。

注 3 设 \(C^\infty \) 曲线 \(x(t), x(0) = I_n \)，切向量 \(x'(0) = A \)，则由 \(A \) 决定的左不变向量场 \(X_x = (Lg)_{I_n} A = \frac{d}{dt} (gx(t)) \big|_{t=0} = gx'(0) = gA \).

定义方阵的指数映射 \(A \mapsto e^A = \exp A = I + \sum_{m=1}^{\infty} \frac{A^m}{m!} \)，使我们可以具体给出由 \(A \) 所决定的左不变向量场的 \(C^\infty \) 变换的 1 参数群 \(h_1 \)。先证明指数映射的性质。

引理 3 设 \(A \) 为 \(n \) 阶复方阵，定义 \(n \) 阶复方阵

\[
e^A = \exp A = I + \sum_{m=1}^{\infty} \frac{A^m}{m!}
\]

* 119 *
则

（1）上式右边级数当 λ 在 C^n 中有界集中变化时，它是一致收敛的；

（2）指数映射 $A \mapsto e^A = \exp A$ 为解析映射；

（3）$e^{A+B} = Pe^AP^{-1}$；

（4）$\det e^A = e^{\text{Tr} A}$，这里 $A = (a_{ij})$，$\text{Tr} A = \sum_{i=1}^n a_{ii}$ 为 A 的迹，因

而 $e^A \in \text{GL}(n, C)$. 如果 A 为 n 阶实方阵，则 $\det e^A > 0$；

（5）如果 $AB = BA$，则 $e^{A+B} = e^A \cdot e^B (= e^B \cdot e^A)$；

（6）设 $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$，$B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$，则 $AB = BA$，$e^{A+B} = e^A \cdot e^B$；

（7）$e^0 = I_n$，$e^{-A} = (e^A)^{-1}$（因而 $\det e^A \neq 0$）；

（8）设 $x(t) = e^{tA} = \exp(tA)$，$t \in \mathbb{R}$，则

$$\frac{dx(t)}{dt} = x(t) \cdot A (= A \cdot x(t))$$

（9）如果 $A' = -A$，则 $e^A \in U(n) = \{B \in \text{GL}(n, C) \mid B'B = BB' = I_n\}$（单式群或酉群）。

反之，若 $B \in U(n)$，则存在 n 阶复方阵 A，使 $A' = -A$ 且 $B = e^A$.

（10）如果 A 为 n 阶实方阵，且 $A' = -A$，则 $e^A \in O(n)^+ = \{B \in \text{GL}(n, \mathbb{R}) \mid B'B = BB' = I_n, \det B > 0\}$。

反之，若 $B \in O(n)^+$，则存在 n 阶实方阵 A，使 $A' = -A$，且 $B = e^A$.

证明 （1）A 中元素的绝对值不超过 M，即当 $A = (a_{ij})$ 时，$|a_{ij}| \leq M$。归纳证 A^n 中元素的绝对值不超过 $n^{n-1}M^n$，又因为

$$\sum_{m=1}^\infty \frac{(nM)^m}{m!}$$

收敛，故级数 $I_n + \sum_{m=1}^\infty \frac{A^n}{m!}$ 在此有界集上是一致收敛的。
（2）将 a_{ij} 视作自变量，显然 A^n 中元素 a_{ij} 关于 a_{ij} 是 m 次的，

由（1）可知 $I_n : \sum_{m=1}^{\infty} \frac{A^n_m}{m!} \leqslant \frac{e}{2}, \quad P : \sum_{m=1}^{\infty} \frac{A^n_m}{m!} \leqslant \frac{e}{2},$ 故 $A \rightarrow e^A = \exp A$ 为解析映射。

（3）由（1），任给 $\varepsilon > 0$，存在 $N \in N$，当 $n > N$ 时，有

$$\left| \sum_{m=1}^{\infty} \frac{(PA^P - 1)^m}{m!} \right| < \frac{e}{2}, \quad \left| P \sum_{m=1}^{\infty} \frac{A^n_m}{m!} \right| < \frac{e}{2},$$

则

$$\left| e^{PA^P - 1} - Pe^A P^{-1} \right| = \left| \left(I_n - \sum_{m=1}^{\infty} \frac{(PA^P - 1)^m}{m!} \right) - P \left(I_n + \sum_{m=1}^{\infty} \frac{A^n_m}{m!} \right) P^{-1} \right| < \frac{e}{2} + \frac{e}{2} \varepsilon,$$

令 $\varepsilon \rightarrow 0$ 得到 $e^{PA^P - 1} = Pe^A P^{-1}$。

（4）由线性代数知，存在可逆方阵 P，使 $A = P \begin{pmatrix} \lambda_1 & \ast \\ \ast & \tilde{\lambda}_n \end{pmatrix} P^{-1}$，

其中 λ_j 为 A 的特征值，$j = 1, \cdots, n$。于是

$$\det e^A = \det \begin{pmatrix} e^{\lambda_1} & \ast \\ 0 & \tilde{\lambda}_n \end{pmatrix} = \det Pe^{\begin{pmatrix} \lambda_1 & \ast \\ 0 & \tilde{\lambda}_n \end{pmatrix}} = \det \begin{pmatrix} e^{\lambda_1} & \ast \\ 0 & e^{\tilde{\lambda}_n} \end{pmatrix} = e^{\lambda_1 + \cdots + \lambda_n} = e^{Tr A}.$$

（5）如果 $AB = BA$，则

$$e^{A + B} = \sum_{m=0}^{\infty} \frac{(A + B)^m}{m!} = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{C_m^k A^k B^{m-k}}{m!} = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{A^k B^{m-k}}{m! k! (m-k)!}$$

$$= \left(\sum_{k=0}^{\infty} \frac{A^k}{k!} \right) \left(\sum_{l=0}^{\infty} \frac{B^l}{l!} \right) = e^A \cdot e^B.$$

由（1）保证了最后第二个等号是成立的。
(6) 直接计算即得。

(7) 显然 \(e^0 = I_n + \sum_{m=1}^{\infty} \frac{0^m}{m!} = I_n \)，再由(5)得到

\[e^t \cdot e^{-A} = e^{t(A-H)} = e^0 \cdot I_n, \quad \text{故} \quad e^{-A} = (e^A)^{-1}. \]

(8) 设 \(t \in (-\alpha, \alpha) \)，则由(1)和 \(\sum_{m=1}^{\infty} \frac{m!m^{-1}A^m}{m!} \) 的一致收敛性知，对 \(t \) 可逐项求导，故

\[
\frac{dx(t)}{dt} = \frac{d}{dt} \left(I + \sum_{m=1}^{\infty} \frac{t^mA^m}{m!} \right) = \sum_{m=1}^{\infty} \frac{mt^{m-1}A^m}{m!} - \left(\sum_{m=1}^{\infty} \frac{t^{m-1}A^{m-1}}{(m-1)!} \right) A \]

\[
\cdot x(t)A. \]

(9) 由(1)和(3) 中证法知 \(e^{it} = (e^{it})^t \)。于是，

\[e^A \cdot (e^A)^t = e^A \cdot e^{-A} = e^{A + (-A)} = e^0 = I_n, \quad \text{故} \quad e^A \in U(n). \]

若 \(B \in U(n) \)，则存在酉阵 \(P \) 使

\[
B = P \begin{pmatrix} e^{i\theta_1} & & \\ & \ddots & \\ & & e^{i\theta_n} \end{pmatrix} P^t = Pe^{i\theta_1} \cdot \cdot \cdot e^{i\theta_n} P^t, \quad \theta_j \in \mathbb{R}, j = 1, \ldots, n.
\]

令 \(A = P \begin{pmatrix} i\theta_1 \\ & \ddots \\ & & i\theta_n \end{pmatrix} P^t \)，显然 \(\overline{A} = -A \)。

(10) 由(1)和(3) 中证法知 \(e^A \cdot (e^A)^t \)。于是，

\[e^A \cdot (e^A)^t = e^A \cdot e^{A^t} = e^{A + A^t} = e^0 = I_n, \quad \text{故} \quad e^A \in O(n). \]

若 \(B \in O(n) \)，则存在正交矩阵 \(P \) 使

\[
B = P \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \\ & & \ddots \\ & & & \cos \theta_j & -\sin \theta_j \\ & & & \sin \theta_j & \cos \theta_j \\ & & & & \ddots \\ & & & & & 1 \\ & & & & & & 1 \end{pmatrix} P^t.
\]
\[
\begin{pmatrix}
\cos \theta_1 & -\sin \theta_1 \\
\sin \theta_1 & \cos \theta_1 \\
 1 & \\
\end{pmatrix}
\begin{pmatrix}
\cos \theta_j & -\sin \theta_j \\
\sin \theta_j & \cos \theta_j \\
 1 & \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
 0 & -\theta_1 \\
\theta_1 & 0 \\
\end{pmatrix}
\ldots
\begin{pmatrix}
 0 & -\theta_j \\
\theta_j & 0 \\
\end{pmatrix}
\]

\[
= P \cdot \exp
\begin{pmatrix}
 0 & -\theta_1 \\
\theta_1 & 0 \\
\end{pmatrix}
\ldots
\exp
\begin{pmatrix}
 0 & -\theta_j \\
\theta_j & 0 \\
\end{pmatrix}
\]

\[
= \exp
\begin{pmatrix}
 0 & -\theta_1 \\
\theta_1 & 0 \\
\end{pmatrix}
\ldots
\begin{pmatrix}
 0 & -\theta_j \\
\theta_j & 0 \\
\end{pmatrix}
\]

\[
P, \theta_j \in \mathbb{R}, j = 1, \ldots, n.
\]
显然 $A' = -A$。

现在，我们就可应用引理 3 给出由 A 产生的 $GL(n, \mathbb{R})$ 上的左不变量场 $X_0 = gA$ 的 C^∞ 变换的 1 参数群 h_t，过单位元素的 X 的流线 $x(t) = e^{tA} = \exp(tA) = I_n + \sum_{m=1}^{\infty} \frac{t^m A^m}{m!}$，这是因为

$$\frac{dx(t)}{dt} = x(t)A, \quad x(0) = I.$$

因此，所要求的 $h_t(g) = ge^{tA}$。事实上，

$$h_0(g) = ge^0 = gI_n = g,$$

$$\frac{d}{dt} h_t(g) \big|_{t=0} = \frac{d}{dt} (ge^{tA}) \big|_{t=0} = ge^{tA}A \big|_{t=0} = gA = X_0,$$

$$h_{t+1}(g) = \left(ge^{(t+1)A}\right) = ge^{tA} gA^t e^{tA} \cdots h_t(ge^{tA}) \cdots h_0(h_t(g)).$$

124
例 5 第二章 §1 例 8 已证明 $O(n)$ 为 $GL(n, \mathbb{R})$ 的 $\frac{n(n-1)}{2}$ 维 C^∞ Lie 子群。因而 I_n 的切空间 $T_{I_n}(O(n))$ 可视作 $T_{I_n}(GL(n, \mathbb{R}))$ 的子空间，下面可以证明 $T_{I_n}(O(n)) = \{ A | A' = -A \}$. 由此重新得到 $O(n)$ 的维数为 $T_{I_n}(O(n))$ 的维数 $\frac{n(n-1)}{2}$.

如果 $A' = -A, A$ 为 n 阶实方阵，则由引理 3 (10), $e^{tA} \in O(n)^+$, $e^{tA} |_{t=0} = I, \frac{d}{dt} e^{tA} |_{t=0} = e^{tA} A |_{t=0} = A$, 故 $A \in T_{I_n}(O(n))$. 反之, 若 $x(t) \in O(n)^+, x(0) = I, x'(0) = A \in T_{I_n}(O(n))$. 则 $A' + A : x'(0) + x'(0) = 0 = \frac{d}{dt} [x(t) x(t)] |_{t=0} = \frac{d}{dt} I |_{t=0} = 0$, 于是 $A' = -A$.

现在，我们给出 $[X, Y]$ 的另一表达式。

定理 10 设 (M, \mathcal{O}) 为 n 维 C^∞ 流形, $X, Y \in C^\infty(TM, h)$ 为 Y 的 C^∞ 局部 1 参数群，则

$$[X, Y] = \frac{d}{dt} (h_t)_* X |_{t=0}.$$

证明 在 $p \in M$ 的局部坐标系 (x^i) 中, 设 $X = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i}$, $Y = \sum_{i=1}^n b^i \frac{\partial}{\partial x^i}$, $h_i = (h^i_1)$. 则

$$(h_1)_* X |_p = (h_1)_* |_{h_1(p)} X = \sum_{i=1}^n a^i (h_1(p)) \cdot (h_1)_* |_{h_1(p)} \frac{\partial}{\partial x^i}$$

$$= \sum_{i=1}^n a^i (h_1(p)) \sum_{j=1}^n \partial h^i_j (p) \frac{\partial}{\partial x^j},$$

$$\frac{d}{dt} a^i (h_1(p)) |_{t=0} = \frac{d}{dt} h_1(p) a^i |_{t=0} = -Y(p) a^i,$$

- 125 -
\[
\frac{d}{dt} h_i^i(p) = b_i^i(p),
\]
所以，
\[
\frac{d}{dt} \frac{\partial h_i^j}{\partial x^j}(p) \bigg|_{t=0} - \frac{\partial}{\partial x^i} \frac{d}{dt} h_i^j(p) \bigg|_{t=0} = \frac{\partial b_i^j}{\partial x^i}(p)
\]
即
\[
\frac{d}{dt} (h_i)_\ast X \bigg|_{t=0} = \sum_{i,j=1}^{n} \frac{d}{dt} a_\ast^i (h_{-i}) \bigg|_{t=0} \frac{\partial h_i^j}{\partial x_i} \bigg|_{t=0} \frac{\partial}{\partial x^j} + \sum_{i,j=1}^{n} \left(Ya^i \cdot \delta_i^j + a^i \frac{\partial b_i^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}
\]
\[= \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \left(a_\ast^j \frac{\partial b_i^j}{\partial x^j} - b_i^j \frac{\partial a^j}{\partial x^j} \right) \right] \frac{\partial}{\partial x^j} = [X,Y]. \quad \#
\]

例 6 应用定理 10 重新计算例 4 中的 \([X,Y]_t\), 如下。因为
\[L_g(x) = gx, h_i(g) = g \cdot \exp(tB), Y_g = gB.\]
设右移 \(R_{y}, R_{y}(x) = xg.\) 则
\[R_y(x(t)) = x(t)g, (R_{y})_\ast (x'(t)) = x'(t)g, \]于是
\[h_i^i(I_n) = \exp(tB)
\]和
\[\begin{align*}
[X,Y]_t &= \frac{d}{dt} (h_i)_\ast X \bigg|_{t=0} - \frac{d}{dt} \left((R_{\exp(tB)} \ast X)_{\exp(-tB)} \right) \bigg|_{t=0} \\
&= \frac{d}{dt} \left((R_{\exp(tB)} \ast \exp(-tB) \cdot A) \right) \bigg|_{t=0} \\
&= \frac{d}{dt} (\exp(-tB) \cdot A \cdot \exp(tB)) \bigg|_{t=0} \\
&= AB - BA = [A,B].
\end{align*}\]

最后，我们不加证明地叙述两个重要的定理。

定理 11 设 \(M\) 为 \(n\) 维 \(C^\infty\) 流形，\(U \subset M\) 为开集，\(X_1, \cdots, X_k \in C^\infty(TU),\) 使得 \(\{X_1(x), \cdots, X_k(x)\}\) 对所有的 \(x \in U\) 是线性无关的。则
在 \(U\) 上，\([X_i, X_j] = 0, \quad 1 \leq i < j \leq k \iff\) 对任何 \(p \in U,\) 存在 \(p\)的局部坐标系 \((U_0, \varphi), \{x'\}\) 使得 \(U_0 \subset U\) 且 \(X_i = \frac{\partial}{\partial x^i}, \quad 1 \leq i \leq k.\)
证明 (\Leftarrow) 由定理 7(5)。

(\Rightarrow) 参阅 [Palais, R. S. and Terng, C. L. 1.4.2. Theorem]。

定理 12 设 M 为 n 维 C^∞ 流形，E 为 M 上秩 k 的 C^∞ 分布（即 E 为 TM 的秩 k 的 C^∞ 子丛），则

（1）E 为 \mathbb{F} 是封闭的（即对任何 $X, Y \in C^\infty(E)$ 有 $[X, Y] \in C^\infty(E)$）；

（2）对任何 $p \in M$，存在 p 的开邻域 U 中的 k 个局部 C^∞ 切向量场 X_1, \ldots, X_k 使得 $x \in U$ 的纤维 E_x 是由 $\{X_1(x), \ldots, X_k(x)\}$

张成的，且在 U 上，$\{X_1(x), \ldots, X_k(x)\}$ 对 \mathbb{F} 是封闭的（即

$$[X_j, X_i] = \sum_{i,j=1}^k f_{i,j} X_j, f_{i,j} \in C^\infty(U, \mathbb{R}).$$

\Leftarrow (3) 对任何 $p \in M$，存在 p 的局部坐标系 $(U, \varphi), \{x^i\}$ 使得

$$N = \{q \in U | x^{k+1}(q) = c^{k+1}, \ldots, x^n(q) = c^n\}$$

为 E 的积分子流形（即 $T_N = E_x, x \in N$ 或 $\left\{ \frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^k} \right\}$ 张成 E_x）。

证明 参阅 [徐森林 172 面 - 180 面]。

注 4 定理 12 中，(1) \Rightarrow (3) 或 (2) \Rightarrow (3) 称为 Frobenius 定理。
第三章 外微分形式和 Stokes 定理

第二章引进的切空间和切从将使更多的代数构造深入流形，从而使流形进一步代数化。

§1 讨论张量丛和 C^∞ 张量场，证明了 C^∞ 张量场 $= C^\infty$ 场张量。§2 研究 C^∞ 反称协变张量场的 C^∞ 外微分形式。外微分运算，并介绍将微分拓扑和代数拓扑密切相连的著名的 de Rham 定理列举的一些例子与数学分析紧密相关而且是很有趣的。§3 根据向量丛的定向，用 n 维 C^∞ 流形切丛的定向性作为流形 (M, Ω) 的定向性。对于定向流形 M，利用单位分解可定义 n 次 C^∞ 外微分形式 ω 在 n 维 C^∞ 定向仿紧流形上的积分 $\int_M \omega$。引进 M 的 $n-1$ 维 C^∞ 边界流形 ∂M 的诱导定向向流形 ∂M 以后，我们就可得到极其重要的 Stokes 定理 $\int_M d\omega = \int_{\partial M} I^* \omega$。

§1 张量丛和 C^∞ 张量场

在第二章 §2 例 7 中已提到了一个向量空间的对偶空间，这一节将详细讨论它，并引进张量，张量丛和 C^∞ 张量场等概念和证明有关性质。

定义 1 设 V 为 n 维实向量空间，令 $V^* = \{ \theta: \theta: V \to \mathbb{R} \text{ 为线性函数} \}$. 如果 $\theta, \eta \in V^*, \lambda \in \mathbb{R}$，我们定义 $(\theta + \eta)(X) = \theta(X) + \eta(X)$, $(\lambda \theta)(X) = \lambda \theta(X), X \in V$, 显然，$\theta + \eta, \lambda \theta: V \to \mathbb{R}$ 为线性函数，则 $\theta + \eta, \lambda \theta \in V^*$. 易证 $(V^*, +, \cdot)$ 数乘为 \mathbb{R} 上的向量空间，称为 V 的对偶空间，称 $\theta \in V^*$ 为协变（或余）向量，称 $X \in V$ 为逆变向量.
定理 1 设 \(\{e_i \mid i = 1, \ldots, n\} \) 为 \(V \) 的一个基，\(e^i : V \to \mathbb{R}, e^i \in V^* \)，且 \(e^i(e_j) = \delta_{ij} \)，则 \(\{e^i \mid i = 1, \ldots, n\} \) 为 \(V^* \) 的一个基，称为 \(\{e_i \mid i = 1, \ldots, n\} \) 的一个对偶基。

证明 设 \(\sum_{i=1}^{n} \lambda_i e^i = 0, \lambda_i \in \mathbb{R}, i = 1, \ldots, n, \) 则
\[
0 = \left(\sum_{i=1}^{n} \lambda_i e^i \right) (e_j) = \sum_{i=1}^{n} \lambda_i \delta_{ij} = \lambda_j, j = 1, \ldots, n,
\]
故 \(\{e^i \mid i = 1, \ldots, n\} \) 是线性无关的。

此外，对任何 \(\theta \in V^* \)，因为 \(\left(\sum_{i=1}^{n} \theta(e_i) e^i \right) (e_j) = \sum_{i=1}^{n} \theta(e_i) \delta_{ij} = \theta(e_j) \)，所以 \(\theta = \sum_{i=1}^{n} \theta(e_i) e^i \)。这就证明 \(\{e^i \mid i = 1, \ldots, n\} \) 为 \(V^* \) 的一个基，从而 \(V^* \) 为 \(n \) 维向量空间。

设 \(\{e_i \mid i = 1, \ldots, n\} \) 为 \(V \) 的另一个基，它的对偶基为 \(\{e^i \mid i = 1, \ldots, n\} \)。基变换公式为 \(e_i = \sum_{j=1}^{n} c_{ij} e^j, e^i = \sum_{j=1}^{n} d_{ij} e_j \)，即
\[
\begin{pmatrix}
\bar{e}_1 \\
\vdots \\
\bar{e}_n
\end{pmatrix} =
\begin{pmatrix}
c_1 & \cdots & c_n
\end{pmatrix}
\begin{pmatrix}
e_1 \\
\vdots \\
e_n
\end{pmatrix},
\begin{pmatrix}
\bar{e}_1 \\
\vdots \\
\bar{e}_n
\end{pmatrix} =
\begin{pmatrix}
d_1 & \cdots & d_n
\end{pmatrix}
\begin{pmatrix}
e^1 \\
\vdots \\
e^n
\end{pmatrix}.
\]

分别记上述矩阵为 \(C \) 和 \(D \)，显然 \(C = D^{-1} \)。

设 \(X \in V \)，则
\[
\sum_{i=1}^{n} a_i e_i = X = \sum_{i=1}^{n} a^i e_i = \sum_{i=1}^{n} a^i \sum_{j=1}^{n} d_{ij} e_j = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} d_{ij} a^i \right) e_j,
\]
\[
a^i = \sum_{i=1}^{n} d_{ij} a^i.
\]
此矩阵为 D'.

$$
\begin{pmatrix}
\bar{a}^1 \\
\vdots \\
\bar{a}^n
\end{pmatrix} =
\begin{pmatrix}
d_1^1 & \cdots & d_1^n \\
\vdots & \ddots & \vdots \\
d_n^1 & \cdots & d_n^n
\end{pmatrix}
\begin{pmatrix}
\theta^1 \\
\vdots \\
\theta^n
\end{pmatrix},
$$

令

$$\bar{e}' = \sum_{k=1}^{n} \lambda_k \bar{e}^k,$$

则

$$\delta_j = \bar{e}'(\bar{e}_j) - \left(\sum_{k=1}^{n} \lambda_k \bar{e}^k \right) \left(\sum_{i=1}^{n} c_{ji} \theta_i \right),$$

$$= \sum_{k, i=1}^{n} \lambda_k c_{ji} \delta_i = \sum_{k=1}^{n} \lambda_k \bar{c}_j^k,$$

即

$$
\begin{pmatrix}
\lambda_1^1 & \cdots & \lambda_n^1 \\
\vdots & \ddots & \vdots \\
\lambda_1^n & \cdots & \lambda_n^n
\end{pmatrix}
\begin{pmatrix}
c_1^1 & \cdots & c_1^n \\
\vdots & \ddots & \vdots \\
c_n^1 & \cdots & c_n^n
\end{pmatrix}
\begin{pmatrix}
1 \\
\vdots \\
1
\end{pmatrix},
$$

故 $(\bar{\lambda}_j)' = C^{-1}\bar{D}'$，$\lambda_j = d_j'$，$\bar{e}' = \sum_{j=1}^{n} d_j' \bar{e}^j$，于是对偶基变换公式

为

$$
\begin{pmatrix}
\bar{e}^1 \\
\vdots \\
\bar{e}^n
\end{pmatrix} =
\begin{pmatrix}
d_1^1 & \cdots & d_1^n \\
\vdots & \ddots & \vdots \\
d_n^1 & \cdots & d_n^n
\end{pmatrix}
\begin{pmatrix}
\theta^1 \\
\vdots \\
\theta^n
\end{pmatrix},
$$

此矩阵为 D'.

设 $\theta \in V^*$，则

$$\sum_{j=1}^{n} \bar{\theta}_j \bar{e}^j = \theta \bar{z} = \sum_{i=1}^{n} \theta_i \bar{e}^i = \sum_{i=1}^{n} \theta_i \left(\sum_{j=1}^{n} c_{ji} \bar{e}_j \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} c_{ji} \theta_j \right) \bar{e}^i,$$

$$\theta_i = \theta(\bar{e}_i), \quad \bar{\theta}_j = \theta(\bar{e}_j), \quad \bar{\theta}_j = \sum_{i=1}^{n} c_{ji} \theta_i,$$

$\rightarrow 130 \ast$
\[
\begin{pmatrix}
\theta_1 \\
\vdots \\
\theta_n
\end{pmatrix} = \begin{pmatrix}
e_1 & \cdots & e_r & e_{r+1} & \cdots & e_n
\end{pmatrix} \begin{pmatrix}
\theta_1 \\
\vdots \\
\theta_n
\end{pmatrix},
\]

此矩陣為 \(C = D^{-1} \)，而 \(\{\theta_i\} \) 和 \(\{\theta_i\} \) 分別稱為協變向量關於基 \(\{e_i \mid i = 1, \cdots, n\} \)， \(\{e^i \mid i = 1, \cdots, n\} \) 和 \(\{e_i \mid i = 1, \cdots, n\} \)， \(\{e^i \mid i = 1, \cdots, n\} \) 的
分量。由此可仿照古典切向量的定義給出變差（切）向量的定義。

定義 2 设映射
\[
\theta: \underbrace{V^* \times \cdots \times V^* \times V \times \cdots \times V}_{r 个} \rightarrow \mathbb{R} \underbrace{V^* \times \cdots \times V^* \times V \times \cdots \times V}_{s 个}
\]

为偏线性的，即对任意 \(W_i, U_i \in V^*, X_j, Y_i \in V, \lambda, \mu \in \mathbb{R} \) 有
\[
\theta(W_1, \cdots, W_r, \lambda W_i + \mu U_i, W_{r+1}, \cdots, W_n; X_1, \cdots, X_s) = \lambda \theta(W_1, \cdots, W_r, U_i, W_{r+1}, \cdots, W_n; X_1, \cdots, X_s)
\]
\[
+ \mu \theta(W_1, \cdots, W_r; X_1, \cdots, X_{r-1}, Y_i, X_{r+1}, \cdots, X_s)
\]

则称 \(\theta \) 为 \(V \) 上的 \((r, s)\) 型张量，\(r \) 为其逆变变数，\(s \) 为其协变变数。

(\(r, 0 \)) 型张量称为 \(r \) 阶逆变张量，\((1, 0) \) 型张量即是逆变向量; \((0, s) \) 型张量称为 \(s \) 阶协变张量，\((0, 1) \) 型张量就是协变向量；当 \(r, s > 0 \) 时，\((r, s) \) 型张量称为混合张量；为方便和统一，规定实数为 \((0, 0) \) 型张量。

设 \(\{e_i \mid i = 1, \cdots, n\} \) 为 \(V \) 的基，\(\{e^i \mid i = 1, \cdots, n\} \) 为 \(V^* \) 的基，\(\{e_i \mid i = 1, \cdots, n\} \) 的对偶基，令 \(\theta^j_i = \theta(e^i, \cdots, e^i, e_j, \cdots, e_j) \)，称 \(n^{r+s} \) 个数 \(\{\theta^j_i\} \) 为 \(\theta \) 关于基 \(\{e_i \mid i = 1, \cdots, n\} \) 的分量。

如果 \(\{\bar{e}_i \mid i = 1, \cdots, n\} \) 为 \(V \) 的另一基，\(\{\bar{e}^i \mid i = 1, \cdots, n\} \) 为 \(\{e_i \mid i = 1, \cdots, n\} \) 的对偶基，其分量变换公式为
\[
\theta^j_i = \theta(\bar{e}_1, \cdots, \bar{e}_r; \bar{e}_j, \cdots, \bar{e}_j)
\]
逆变向量和协变向量的分量变换公式恰是这公式的两个特例：

另一个特例是双（编）线性函数 $\theta: V \times V \to \mathbb{R}$。设 $\{e_i | i = 1, \ldots, n\}$ 为 V 的一个基，$\{e_i | i = 1, \ldots, n\}$ 为 V 的另一基，$\theta_{ij} = \theta(e_i, e_j)$，$\theta_{ij} = \theta(e_i, e_j)$，对任何 $X, Y \in V$，

$$\theta(X, Y) = \theta\left(\sum_{i=1}^{n} a^i e_i, \sum_{j=1}^{n} b^j e_j\right) = \sum_{i, j} \theta_{ij} a^i b^j$$

$$= \begin{pmatrix} a^1 & \cdots & a^n \end{pmatrix} \begin{pmatrix} \theta_{11} & \cdots & \theta_{1n} \\ \vdots & \ddots & \vdots \\ \theta_{n1} & \cdots & \theta_{nn} \end{pmatrix} \begin{pmatrix} b^1 \\ \vdots \\ b^n \end{pmatrix}$$

$$\theta_{ij} = \sum_{k, l=1}^{n} e_k^i c_l^j \theta_{kl},$$

$$(\theta_{ij}) = C(\theta_{ij}) C',$$

于是矩阵 (θ_{ij}) 与 (θ_{ij}) 是相合的。

由张量的分量变换公式和切向量的古典定义方法立知可给出古典张量的定义。

定义 3 设 $\otimes^{p,q} V$ 为所有 (r, s) 型张量的全体，而 $\otimes^1 V = V, \otimes^{0, 1} V = V^*, \otimes^{0, 0} V = \mathbb{R}$。对于 $\theta, \eta \in \otimes^{r,s} V, \lambda \in \mathbb{R}$，我们定义

$$(\theta + \eta)(W_1, \ldots, W_r; X_1, \ldots, X_s) = \theta(W_1, \ldots, W_r; X_1, \ldots, X_s) + \eta(W_1, \ldots, W_r; X_1, \ldots, X_s),$$

$$(\lambda \theta)(W_1, \ldots, W_r; X_1, \ldots, X_s) = \lambda \cdot \theta(W_1, \ldots, W_r; X_1, \ldots, X_s),$$

其中 $W_i \in V^*, X_i \in V$。显然，$\theta, \eta, \lambda \theta \in \otimes^{r,s} V$ 则 $(\otimes^{r,s} V, +, \ast)$ 数乘。
形成一个向量空间，称为关于 V 的 (r, s) 型张量空间，

易见，$\theta + \eta$ 和 2θ 关于基 $\{e_i | i = 1, \ldots, n\}$ 的分量为

$$(\theta_{j_1 \cdots j_r}^i + \eta_{j_1 \cdots j_r}^i) \text{ 和 } (2\theta_{j_1 \cdots j_r}^i)$$

定义 4 设 $\theta \in \otimes^r V, \eta \in \otimes^s V$，我们定义张量积

$$\otimes: \otimes^r V \times \otimes^s V \to \otimes^{r+s} V$$

$$(\theta, \eta) \mapsto \theta \otimes \eta,$$

$$(\theta \otimes \eta)(W_1, \ldots, W_{r_1}, r_2; X_{1, \ldots, s_1}) = \theta(W_1, \ldots, W_{r_1}, X_1, \ldots, X_{s_1})$$

$$\cdot \eta(W_{r_1+1}, \ldots, W_{r_1+r_2}; X_{s_1+1}, \ldots, X_{s_1+s_2}),$$

其中 $W_i \in V^*, X_j \in V$。显然，$\theta \otimes \eta \in \otimes^{r+s} V$，且 $\theta \otimes \eta$ 的分量为

$$(\theta \otimes \eta)_{j_1 \cdots j_r j_{r_1+1} \cdots j_{r_1+r_2}} = \theta_{j_1 \cdots j_r} \cdot \eta_{j_{r_1+1} \cdots j_{r_1+r_2}}.$$

从定义 4 立即得到

$$(\theta_1 - \theta_2) \otimes \eta = \theta_1 \otimes \eta - \theta_2 \otimes \eta,$$

$$\theta \otimes (\eta_1 + \eta_2) = \theta \otimes \eta_1 + \theta \otimes \eta_2,$$

$$(\lambda \theta) \otimes \eta = \lambda (\theta \otimes \eta), \lambda \in \mathbb{R},$$

$$(\theta \otimes \eta) \otimes \zeta = \theta \otimes (\eta \otimes \zeta),$$

但 $\theta \otimes \eta = \eta \otimes \theta$ 不一定成立。例如：令 $\theta(e_i) = 1, i = 1, \ldots, n$；

$$\begin{cases} 1, & i = 1, \\ 2, & i = 2, \\ 0, & i \geqslant 3, \end{cases}$$

则 $(\theta \otimes \eta)(e_1, e_2) = \theta(e_1) \eta(e_2) = 1 \cdot 2 = 2$，而

$$(\eta \otimes \theta)(e_1, e_2) = \eta(e_1) \theta(e_2) = 1, \text{ 从而 } \theta \otimes \eta \neq \eta \otimes \theta.$$
\[(\otimes V = \bigoplus_{\tau, \sigma \in 0} \otimes^\tau \otimes^\sigma V, \text{数乘, } \cdot, \otimes) \]

关于数乘和加法形成一个向量空间，关于加法和\(\otimes\)形成一个环(\(\otimes\)
不可交换)，则它为实数域 \(\mathbb{R}\) 上的一个代数，称为关于 \(V\) 的张量代数。

而 \(\bigoplus_{\sigma \in 0} \otimes^\sigma V, \text{数乘, } +, \otimes\) 形成此张量代数的一个子代数。

定理 2 设 \(\{e_i^* | i = 1, \cdots, n\}\) 为 \(V^*\) 的一个基，且为 \(\{e_i | i = 1, \cdots, n\}\) 的对偶基，\(\{e_i^{**} | i = 1, \cdots, n\}\) 为 \(V^{**}\) 的一个基，它是 \(\{e_i^* | i = 1, \cdots, n\}\) 的对偶基。则 \(\{e_i^{**} \otimes \cdots \otimes e_i^{**} \otimes e_j^{**} \otimes \cdots \otimes e_j^{**} | 1 \leq i_1, \cdots, i_r, j_1, \cdots, j_s \leq n\}\) 为 \(\otimes^{r+s} V\) 的一个基，因而 \(\otimes^{r+s} V\) 为 \(n^{r+s}\) 维向量空间。此外，\(\theta \in \otimes^{r+s} V\)
可表示为
\[
\theta = \sum_{j_1, \cdots, j_s=1}^n \theta_{j_1, \cdots, j_s} e_i^{**} \otimes \cdots \otimes e_i^{**} \otimes e_j^{**} \otimes \cdots \otimes e_j^{**}.
\]

证明 设
\[
\sum_{j_1, \cdots, j_s=1}^n \lambda_{j_1, \cdots, j_s} e_i^{**} \otimes \cdots \otimes e_i^{**} \otimes e_j^{**} \otimes \cdots \otimes e_j^{**} = 0,
\]
则
\[
\theta_1 (e_i^1, \cdots, e_i^r; e_1, \cdots, e_r) \in \left(\sum_{j_1, \cdots, j_s=1}^n \lambda_{j_1, \cdots, j_s} e_i^{**} \otimes \cdots \otimes e_i^{**} \otimes e_j^{**} \otimes \cdots \otimes e_j^{**} \right)
\]
和
\[
\sum_{j_1, \cdots, j_s=1}^n \lambda_{j_1, \cdots, j_s} \delta_{i_1}^{j_1} \cdots \delta_{i_r}^{j_r} \delta_{j_1}^{l_1} \cdots \delta_{j_s}^{l_s} = \lambda_{i_1, \cdots, i_r, j_1, \cdots, j_s},
\]
1 \leq k_1, \cdots, k_r, l_1, \cdots, l_s \leq n,

从而 \(\{e_i^{**} \otimes \cdots \otimes e_i^{**} \otimes e_j^{**} \otimes \cdots \otimes e_j^{**} | 1 \leq i_1, \cdots, i_r, j_1, \cdots, j_s \leq n\}\) 是……
线性无关的。

对于任何 \(\theta \in \bigotimes^{r-s} V \)，因为

\[
\left(\sum_{j_1, \ldots, j_s = 1}^n \theta_{j_1} \cdots j_s \varepsilon^{i_1} \cdots \varepsilon^{i_r} \otimes \cdots \otimes \varepsilon^{t_1} \otimes \cdots \otimes \varepsilon^{t_s} \right)
\]

\[
\cdot (e^{k_1} \cdots e^{k_r} \varepsilon^{i_1} \cdots \varepsilon^{i_s})
\]

\[
= \theta_{j_1} \cdots j_s \varepsilon^{i_1} \cdots \varepsilon^{i_s} = \theta (e^{k_1} \cdots e^{k_r} \varepsilon^{i_1} \cdots \varepsilon^{i_s})
\]

故 \(\theta = \sum_{j_1, \ldots, j_s = 1}^n \theta_{j_1} \cdots j_s \varepsilon^{i_1} \cdots \varepsilon^{i_s} \otimes \cdots \otimes \varepsilon^{t_1} \otimes \cdots \otimes \varepsilon^{t_s} \).

综上所述，\(\{ \varepsilon^{i_1} \otimes \cdots \otimes \varepsilon^{i_s} \otimes e^{j_1} \otimes \cdots \otimes e^{j_s} | 1 \leq i_1, \ldots, i_r, j_1, \ldots, j_s \leq n \} \) 为 \(\bigotimes^{r-s} V \) 的一个基。

定义 6 设 \(V_1 \) 为 \(n_1 \) 维向量空间，\(i = 1, 2 \)，由线性映射 \(\mathcal{A} : V_1 \rightarrow V_2 \) 诱导协变张量之间的映射

\(\mathcal{A}^* : \bigotimes^0 \overset{0}{\rightarrow} V_1 \rightarrow \bigotimes^0 \overset{0}{\rightarrow} V_2, \theta \mapsto \mathcal{A}^* \theta \).

\((\mathcal{A}^* \theta)(X_1, \ldots, X_s) = \theta(\mathcal{A} X_1, \ldots, \mathcal{A} X_s), X_1, \ldots, X_s \in V_1 \)

其中 \(\mathcal{A}^* \theta \in \bigotimes^0 \overset{0}{\rightarrow} V_2 \) 是由于 \(\mathcal{A} \) 线性和 \(\theta \) 的偏线性，因为

\(\mathcal{A}^* (\lambda \theta_1 + \mu \theta_2)(X_1, \ldots, X_s) = (\lambda \theta_1 + \mu \theta_2)(\mathcal{A} X_1, \ldots, \mathcal{A} X_s) \)

\(= \lambda \theta_1 (\mathcal{A} X_1, \ldots, \mathcal{A} X_s) + \mu \theta_2 (\mathcal{A} X_1, \ldots, \mathcal{A} X_s) \)

\(= (\lambda. \mathcal{A}^* \theta_1 + \mu. \mathcal{A}^* \theta_2)(X_1, \ldots, X_s) \)

故 \(\mathcal{A}^* (\lambda \theta_1 + \mu \theta_2) = \lambda. \mathcal{A}^* \theta_1 + \mu. \mathcal{A}^* \theta_2 \).

\(\theta_1, \theta_2 \in \bigotimes^0 \overset{0}{\rightarrow} V_2, \lambda, \mu \in \mathbb{R} \)，即 \(\mathcal{A}^* \) 是线性的。

定理 3 设 \(V, V_1, V_2, V_3 \) 分别为 \(n, n_1, n_2, n_3 \) 维向量空间，\(\mathcal{A} : V_1 \rightarrow V_2, \mathcal{B} : V_2 \rightarrow V_3 \) 为线性映射，则

(1) \(\mathcal{A}^*(\theta_1 \otimes \theta_2) = \mathcal{A}^* \theta_1 \otimes \mathcal{A}^* \theta_2, \theta_1 \in \bigotimes^0 \overset{0}{\rightarrow} V_1, \theta_2 \in \bigotimes^0 \overset{0}{\rightarrow} V_2 \);
(2) \((\text{Id}_V)^* = \text{Id}_{\bigotimes^0 \overset{0}{\rightarrow} V} \);
(3) \((\mathcal{B} \mathcal{A})^* = \mathcal{A}^* \mathcal{B}^* \);
(4) 设 \(\{ e_i | i = 1, \ldots, n \} \) 为 \(V_1 \) 的基，\(\{ e_i^t | i = 1, \ldots, n \} \) 为其对偶
基，\(\{\eta_j^i | j = 1, \ldots, n_2\}\) 为 \(V_2\) 的基，\(\{\eta^i | j = 1, \ldots, n_2\}\) 为其对偶基，

\(\mathcal{A} e_i = \sum_{i = 1}^{n_2} \theta^i \eta^i\)。则 \(\mathcal{A}^* \eta^i = \sum_{i = 1}^{n_2} \theta^i \eta^i\)。且对 \(\theta = \sum_{j_1, \ldots, j_{n_2} = 1}^{n_2} \theta_{j_1 \ldots j_{n_2}}^1 \eta^i_{j_1 \ldots j_{n_2}}\)，

\(\mathcal{A}^* \mathcal{A} = \sum_{i = 1}^{n_1} \left(\sum_{i = 1}^{n_2} \theta^i \eta^i \right) e_i \otimes \cdots \otimes e_i\)。

(5) 如果 \(\mathcal{A} : V_1 \rightarrow V_2\) 为线性同构，\(\mathcal{A}^{-1} : V_2 \rightarrow V_1\) 为其逆，它也是线性同构，则 \(\mathcal{A}^* \mathcal{A}^{-1} = (\mathcal{A}^{-1})^*\)，\(n_1 - n_2 = n\)。

设 \(\{e_i | i = 1, \ldots, n\}\) 为 \(V_1\) 的基，\(\{e^i | i = 1, \ldots, n\}\) 为其对偶基，\(\{e^i \otimes e_j | i = 1, \ldots, n\}\) 为 \(V_2\) 的一个基，\(\{\eta^i | i = 1, \ldots, n\}\) 为它的对偶基，\(\{\eta^i \otimes \eta^j | i = 1, \ldots, n\}\) 为 \(\{\eta^i | i = 1, \ldots, n\}\) 的对偶基。由线性同构 \(\mathcal{A} : V_1 \rightarrow V_2\) 诱导出张量之间的映射

\(\mathcal{A}^* : \otimes^n V_2 \rightarrow \otimes^n V_1\)， \(\theta \mapsto \mathcal{A}^* \theta\)。

\((\mathcal{A}^* \theta)(W_1, \ldots, W_n, X_1, \ldots, X_n) = \theta \left(\mathcal{A}^* \otimes W_1, \ldots, \mathcal{A}^* \otimes W_n, \mathcal{A} X_1, \ldots, \mathcal{A} X_n \right)\)。

其中 \(\mathcal{A}^* \theta \in \otimes^n V_1\) 是由 \(\mathcal{A}\), \(\mathcal{A}^*\) 线性和 \(\theta\) 的偏线性得到。类似定义 \(\mathcal{A}^*\) 是线性的，则 \(\mathcal{A}^* \eta^i = e^i\)，\(\mathcal{A}^* \eta^i \otimes \eta^j = e^i \otimes e^j\)。完全类似于 (1)(2)(3) 有

\(\mathcal{A}^* (\theta_i \otimes \theta_2) = \mathcal{A}^* \theta_1 \otimes \mathcal{A}^* \theta_2\)，

\((\text{Id}_V)^* = \text{Id}_{\otimes^* V}\)，

\((\mathcal{A} \circ \mathcal{B})^* = \mathcal{A}^* \mathcal{B}^*\)，

\((\mathcal{A}^*)^{-1} = (\mathcal{A}^{-1})^*\)。

此外，\(\mathcal{A}^* : \otimes^n V_2 \rightarrow \otimes^n V_1\) 为线性同构，且

\[\mathcal{A}^* \theta = \mathcal{A}^* \left(\sum_{\{i_1, \ldots, i_{n_2} \}}^{n_2} \theta_{i_1 \ldots i_{n_2}} \eta^i_{i_1 \ldots i_{n_2}} \otimes \cdots \otimes \eta^i_{i_1 \ldots i_{n_2}} \right)\]

\(\bullet 136\)。
\[
= \sum_{i_1, \ldots, i_r = 1}^{n} \theta_{i_1}^{*} e_{i_1}^{*} \otimes \cdots \otimes e_{i_r}^{*} \otimes \varepsilon_{i_r}^{*} \otimes \cdots \otimes \varepsilon_{i_r}^{*}.
\]

证明 (1) \(\mathcal{A}^{*} (\theta_{1} \otimes \theta_{2}) (X, \ldots, X_{r}) \)

\[
= (\theta_{1} \otimes \theta_{2}) (\mathcal{A} X, \ldots, X_{r})
\]

\[
= \theta_{1} (\mathcal{A} X, \ldots, X_{r}) \cdot \theta_{2} (\mathcal{A} X, \ldots, X_{r})
\]

\[
= \mathcal{A}^{*} \theta_{1} (X, \ldots, X_{r}) \cdot \mathcal{A}^{*} \theta_{2} (X_{r+1}, \ldots, X_{r+s})
\]

\[
= (\mathcal{A}^{*} \theta_{1} \otimes \mathcal{A}^{*} \theta_{2}) (X_{1}, \ldots, X_{r}) \cdot \theta_{1} (\mathcal{A} X_{1}, \ldots, X_{r+s})
\]

\[
= \mathcal{A}^{*} (\theta_{1} \otimes \theta_{2}) \cdot \mathcal{A}^{*} \theta_{1} \otimes \mathcal{A}^{*} \theta_{2}.
\]

(2) \((\text{Id}_{V})^{*} \theta (X, \ldots, X_{r}) \cdot \theta (\text{Id}_{V} X, \ldots, \text{Id}_{V} X_{r}) \)

\[
= \theta (\mathcal{A} X, \ldots, X_{r}) \cdot \theta (\mathcal{A} X_{1}, \ldots, \mathcal{A} X_{s})
\]

\[
= \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{r}) \cdot \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{s})
\]

\[
= \mathcal{A}^{*} \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{r}) \cdot \mathcal{A}^{*} \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{s})
\]

\[
= \mathcal{A}^{*} \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{r}) \cdot \mathcal{A}^{*} \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{s})
\]

\[
= \mathcal{A}^{*} \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{r}) \cdot \mathcal{A}^{*} \mathcal{A}^{*} \theta (X_{1}, \ldots, X_{s})
\]

(4) \(\mathcal{A}^{*} \eta^{i} (e_{i}) = \eta^{i} (\mathcal{A} e_{i}) = \eta^{i} \left(\sum_{i=1}^{n} d_{i} \eta_{i} \right) = \sum_{i=1}^{n} d_{i} \delta_{i}^{i} = d_{i}^{i} \)

\[
\left(\sum_{i=1}^{n} d_{i}^{i} e^{i} \right) (e_{i})
\]

\[
= \mathcal{A}^{*} \eta^{i} = \sum_{i=1}^{n} d_{i}^{i} e^{i}.
\]

(5) 由 (2) 和 (3), \(\text{Id}_{V}^{*} \eta_{i} = (\text{Id}_{V})^{*} (\mathcal{A}^{-1})^{*} = (\mathcal{A}^{-1})^{*} \mathcal{A}, \)

同理有：\(\text{Id}_{\mathcal{V}}^{*} \eta_{i} = \mathcal{A}^{*} (\mathcal{A}^{-1})^{*}, \) 故 \((\mathcal{A}^{*})^{-1} = (\mathcal{A}^{-1})^{*}. \)

\[
(\mathcal{A}^{*} \eta^{i}) (e_{j}) = \eta^{i} (\mathcal{A} e_{j}) = \eta^{i} (\eta_{j}) = \delta_{j}^{i} = e^{i} (e_{j}), \text{则} \mathcal{A}^{*} \eta^{i} = e^{i}.
\]

* 137 *
\((\mathcal{A}^{*}\eta_{i}^{*}) (e^{i}) = \eta_{i}^{*} (\mathcal{A}^{*} (e^{i})) = \eta_{i}^{*} (\eta^{i}) - \delta_{i}^{j} - e_{j}^{*} (e^{i})\),

则 \(\mathcal{A}^{*} \eta_{i}^{*} = e_{i}^{*} \).

定义 7 设 \(\xi = \{E, M, x, \text{GL}(m, \mathbb{R}), \mathbb{R}^{n}, \mathcal{S}\}\) 为 \(C^{k}\) 向量丛。令

\(\bigotimes^{r,s} E = \bigcup_{x \in M} \bigotimes^{r,s} E_{x}\),

其中 \(\bigotimes^{r,s} E_{x} = \{0 \mid 0\}\) 为向量空间 \(E_{x}\) 的 \((r,s)\) 型张量；投影 \(\pi_{1}: \bigotimes^{r,s} E \rightarrow M, \text{使得} \pi_{1} \bigotimes^{r,s} E_{x} = x, x \in M\)（第二章 §2 例 7 为特例，
\(E^{*} = \bigotimes^{0,1} E\)）。记

\((\xi, \mathcal{S})^{i} = \left\{ (\pi_{1}^{-1} (U_{a}), (\psi_{a}^{-1})^{-1} (\pi_{1}^{-1} (U_{a}), \psi_{a}) \in \mathcal{S}\right\},

而 \(\pi_{1}^{-1} (U_{a}) \xrightarrow{\phi_{a}^{x}} U_{a} \times \bigotimes^{r,s} \mathbb{R}^{n} \cong U_{a} \times \mathbb{R}^{n+r+s}\) 定义如下（参照定义 3）：

\[\begin{align*}
\{x\} \times \mathbb{R}^{m} & \xrightarrow{\phi_{a}^{-1}} \bigotimes_{x}^{r,s} E_{x} \xrightarrow{\phi_{a}^{-1}} \{x\} \times \mathbb{R}^{n}, \\
\{x\} \times \bigotimes^{r,s} \mathbb{R}^{n} \xrightarrow{(\phi_{a}^{-1})^{-1}} \bigotimes^{r,s} E_{x} \xrightarrow{(\phi_{a})^{x}} \{x\} \times \bigotimes^{r,s} \mathbb{R}^{n}
\end{align*}\]

\[\{x\} \times \mathbb{R}^{m+r+s}\]

\[\{x\} \times \mathbb{R}^{m+r+s}\]

这里，\((x, b) = (x, g_{b a} (x) a), g_{b a} (x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) 为线性同构。设 \(\mathcal{A}\) 为相应于矩阵 \(g_{b a} (x)\) 的线性同构，\(\{e_{i}^{*} \mid i = 1, \ldots, m\}\) 为 \(\mathbb{R}^{m}\) 的一个基，\(\{e^{i} \mid i = 1, \ldots, m\}\) 为 \(\{e_{i}^{*} \mid i = 1, \ldots, m\}\) 的对偶基，\(\{e^{*}_{i} \mid i = 1, \ldots, m\}\) 为 \(\{e^{i} \mid i = 1, \ldots, m\}\) 的对偶基，则 \(\mathcal{A} e_{i} = \eta_{i} \mid i = 1, \ldots, m\) 也为 \(\mathbb{R}^{m}\) 的一个基，设 \(\{\eta^{i} \mid i = 1, \ldots, m\}\) 为 \(\{\eta_{i} \mid i = 1, \ldots, m\}\) 的对偶基，而 \(\{\eta^{*}_{i} \mid i = 1, \ldots, m\}\) 为 \(\{\eta^{i} \mid i = 1, \ldots, m\}\) 的对偶基。根据定义 3，\(\mathcal{A}^{*} \eta^{i} = e^{i}, \mathcal{A}^{*} \eta^{*}_{i} = e^{*}_{i}\)。令

\[\begin{pmatrix}
(\mathcal{A} e_{i}) \\
\vdots
\end{pmatrix} =
\begin{pmatrix}
\eta_{1} \\
\vdots
\end{pmatrix} =
\begin{pmatrix}
d_{1}^{*} \\
\vdots
\end{pmatrix} =
\begin{pmatrix}
e_{1}^{*}
\end{pmatrix},

\]
则
\[
\sum_{j=1}^{m} b^i e_j = \mathcal{A} \left(\sum_{i=1}^{n} a^i e_i \right) = \sum_{i=1}^{n} a^i \sum_{j=1}^{m} d^i_j e_j
\]

\[
= \sum_{i=1}^{n} \left(\sum_{j=1}^{m} d^i_j a^i \right) e_j,
\]

\[
\begin{pmatrix}
(b^1_i) \\
(\vdots) \\
(b^m_i)
\end{pmatrix} = \begin{pmatrix}
(d^1_1 & \cdots & d^1_m) \\
(\vdots) \\
(d^m_1 & \cdots & d^m_m)
\end{pmatrix}
\]

\[
\left(e^i_1 \right) = \begin{pmatrix}
(c^1_1 & \cdots & c^1_m) \\
(\vdots) \\
(c^m_1 & \cdots & c^m_m)
\end{pmatrix}
\]

于是，
\[
\sum_{i, j_1, \ldots, j_s = 1}^{n} \theta^{j_1 \cdots j_s}_{i, j_1, \ldots, j_s} e_i^* \otimes \cdots \otimes e_{j_s}^* \otimes e_{i_1} \otimes \cdots \otimes e_{i_s}
\]

\[
= \mathcal{A} \left(\sum_{i, j_1, \ldots, j_s = 1}^{n} \theta^{j_1 \cdots j_s}_{i, j_1, \ldots, j_s} e_i^* \otimes \cdots \otimes e_{j_s}^* \otimes e_{i_1} \otimes \cdots \otimes e_{i_s} \right)
\]

\[
= \mathcal{A} \left(\sum_{i, j_1, \ldots, j_s = 1}^{n} \theta^{j_1 \cdots j_s}_{i, j_1, \ldots, j_s} \left(\sum_{i_1, \ldots, i_s = 1}^{m} c^1_{i_1} \eta^1_{i_1} \right) \otimes \cdots \otimes \left(\sum_{i_1, \ldots, i_s = 1}^{m} c^1_{i_s} \eta^1_{i_s} \right) \right)
\]

\[
= \sum_{i, j_1, \ldots, j_s = 1}^{m} \left(\sum_{i_1, \ldots, i_s = 1}^{m} c^1_{i_1} \cdots c^1_{i_s} d^1_{i_1} \cdots d^1_{i_s} \theta^{j_1 \cdots j_s}_{i, j_1, \ldots, j_s} \right) e_i^* \otimes \cdots \otimes e_{i_s}^* \otimes e_{i_1} \otimes \cdots \otimes e_{i_s}
\]

\[
\theta^{j_1 \cdots j_s}_{i, j_1, \ldots, j_s} = \sum_{i_1, \ldots, i_s = 1}^{m} c^1_{i_1} \cdots c^1_{i_s} d^1_{i_1} \cdots d^1_{i_s} \theta^{j_1 \cdots j_s}_{i, j_1, \ldots, j_s}
\]

或

\[\cdots 39 \cdots \]
显然这表示为 $\otimes^{s, r} \mathbb{R}^m \rightarrow \otimes^{r, s} \mathbb{R}^m$ 的线性同构，相应的矩阵 $\in \text{GL}(m^{r+s}, \mathbb{R})$ 设 $\otimes^{r, s}$ 为由 $(\otimes^{s, r})'$ 唯一确定的 $\otimes^{r, s} E$ 的从同构，则称

$$\otimes^{r, s} \xi = \{ \otimes^{r, s} E, M, \pi_1, \text{GL}(m^{r+s}, \mathbb{R}), R^{m^{r+s}}, \otimes^{r, s} \}$$

为 ξ 的 (r, s) 型的 C^* 张量丛。

注 1 如果令 $X_{i,x} = \psi_{i,x} |_{x(e_i)}, Y_{i,x} = \psi_{i,x} |_{x(e_i)}$，则 $\{X_{i,x} | i = 1, \ldots, m\}$ 和 $\{Y_{i,x} | i = 1, \ldots, m\}$ 为 E_x 的两个基。从上面容易看出 E_x 上同一个 (r, s) 型张量 θ 分别关于基 $\{X_{i,x} | i = 1, \ldots, m\}$ 和 $\{Y_{i,x} | i = 1, \ldots, m\}$ 的分量 $(\theta_{i_1 \cdots i_r}^{i_1 \cdots i_r})$ 和 $(\theta_{j_1 \cdots j_r}^{j_1 \cdots j_r})$ 之间的关系就是上面已得到的关系。因此，今后类似的结论，按后面的观点论述要方便得多。

$$
\begin{pmatrix}
X_{i,x} \\
Y_{i,x}
\end{pmatrix}
=
\begin{pmatrix}
e_1 & \cdots & e_m \\
\vdots & & \vdots \\
e_1 & \cdots & e_m
\end{pmatrix}
\begin{pmatrix}
Y_{i,x} \\
X_{i,x}
\end{pmatrix}
,$$

则

$$
\sum_{j=1}^m b'_j Y_{j,x} = X_x : \sum_{i=1}^m a'_i X_{i,x} = \sum_{i=1}^m a'_i \sum_{j=1}^m d'_j Y_{j,x}
$$

$$
\sum_{i=1}^m \left(\sum_{j=1}^m d'_j a'_i \right) Y_{j,x}, \ b'_i = \sum_{i=1}^m d'_j a'_i,
$$

$$
\begin{pmatrix}
b_1 \\
\vdots \\
b_m
\end{pmatrix}
=
\begin{pmatrix}
d_1 & \cdots & d_m \\
\vdots & & \vdots \\
d_1 & \cdots & d_m
\end{pmatrix}
\begin{pmatrix}
a_1 \\
\vdots \\
a_m
\end{pmatrix}, \ g_{p,x}(x) =
\begin{pmatrix}
d_1 & \cdots & d_m \\
\vdots & & \vdots \\
d_1 & \cdots & d_m
\end{pmatrix}.
$$

如果 $\{X_{i,x} | i = 1, \ldots, m\}$ 为 $[X_{i,x} | i = 1, \ldots, m]$ 的对偶基，$\{Y_{i,x} | i = 1, \ldots, m\}$ 为 $[Y_{i,x} | i = 1, \ldots, m]$ 的对偶基。于是，E_x 上的 (r, s) 型张量 θ 关于基 $\{X_{i,x} | i = 1, \ldots, m\}$ 的分量 $(\theta_{i_1 \cdots i_r}^{i_1 \cdots i_r})$ 和关于基 $\{Y_{i,x} | l = 1, \ldots, m\}$ 的分量 $(\theta_{j_1 \cdots j_r}^{j_1 \cdots j_r})$ 之间的关系就是上面已得到的关系。因此，今后类似的结论，按后面的观点论述要方便得多。
$i = 1, \ldots, m$的分量($\overline{\theta}^{\alpha_i \cdots \alpha_j}$)之间的变换公式为

$$\overline{\theta}^{\alpha_1 \cdots \alpha_j}_{\alpha^1 \cdots \alpha^j} = \sum_{\alpha^1 \cdots \alpha^j} d^i_1 \cdots d^i_j c^1_1 \cdots c^j_j \theta^{\alpha_1 \cdots \alpha_j}_{\alpha^1 \cdots \alpha^j}.$$

其中 d^i_j 和 c^i_j 为 $U \cap U_s$ 上的 C^k 函数。反之，如果 C^k 向量丛 ξ 满足本注的各条件，它就唯一确定了一个张量丛。

定义 8 设 $\otimes^r \xi$ 为与 C^l 向量丛 ξ 相联系的 (r, s) 型 C^l 张量丛，$U \subset M$，称截面

$$\theta: U \rightarrow \otimes^r \xi E = \bigcup_{x \in U} \otimes^r \xi E_x, x \mapsto \theta_x$$

为 U 上的 (r, s) 型张量场，U 称为它的定义域。如果 θ 为 C^0(连续)截面，则称它为 U 上的 (r, s) 型 C^0(连续)张量场；如果 $U \subset M$ 为开集，称 U 上的 $C^k(1 \leq k \leq l)$ 截面 θ 为 U 上的 (r, s) 型 C^k 张量场，其全体记为 $C^k(\otimes^r \xi E | U)$。

我们特别感兴趣的 是与 n 维 C^∞ 流形 (M, ξ) 的切丛 $\xi = (TM, M, \pi, GL(n, R), R^n)$ 相联系的 (r, s) 型 C^∞ 张量丛 $\otimes^r \xi = (\otimes^r TM = \bigcup_{x \in M} \otimes^r T_x M, M, \pi_1, GL(n^{r+s}, R), R^{n^{r+s}})$. 此时，

$$X_{i_1} = \psi^{-1}_{i_1} |_p(e_i) = \frac{\partial}{\partial x^i} |_p , Y_{i_1} = \psi^{-1}_{i_1} |_p (e_i) = \frac{\partial}{\partial y^i} |_p , \quad \text{而} \otimes^r \xi T_x M = \{ \theta | \theta \text{ 为 p 点的切空间} T_x M \text{ 上的 (r, s) 型张量} \}, \text{ 投影} \pi_1: \otimes^r \xi TM \rightarrow M, \text{ 使得} \pi_1|_{\otimes^r \xi T_x M} = p, p \in M$. 由

$$\left(\begin{array}{c} \frac{\partial}{\partial y^1} |_{p} \\ \vdots \end{array} \right) = \left(\begin{array}{ccc} \frac{\partial x^1}{\partial y^1} & \ldots & \frac{\partial x^n}{\partial y^1} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^1}{\partial y^n} & \ldots & \frac{\partial x^n}{\partial y^n} \end{array} \right) \left(\begin{array}{c} \frac{\partial}{\partial x^1} |_{p} \\ \vdots \end{array} \right),$$

$$\text{和} \sum_{i=1}^r b^i \frac{\partial}{\partial y^i} |_{p} = X_{i_1} = \sum_{i=1}^r a^i \frac{\partial}{\partial x^i} |_{p} \text{ 得到}$$
\[
\begin{pmatrix}
\begin{bmatrix}
\begin{pmatrix}
\frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n}
\end{pmatrix} & \begin{pmatrix}
\frac{\partial y^2}{\partial x^1} & \cdots & \frac{\partial y^2}{\partial x^n}
\end{pmatrix} & \cdots & \begin{pmatrix}
\frac{\partial y^m}{\partial x^1} & \cdots & \frac{\partial y^m}{\partial x^n}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\begin{bmatrix}
\frac{\partial x^1}{\partial y^1} & \cdots & \frac{\partial x^1}{\partial y^m}
\end{pmatrix} & \begin{pmatrix}
\frac{\partial x^2}{\partial y^1} & \cdots & \frac{\partial x^2}{\partial y^m}
\end{pmatrix} & \cdots & \begin{pmatrix}
\frac{\partial x^n}{\partial y^1} & \cdots & \frac{\partial x^n}{\partial y^m}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix} = \begin{pmatrix}
\begin{bmatrix}
\frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n}
\end{pmatrix} & \begin{pmatrix}
\frac{\partial y^2}{\partial x^1} & \cdots & \frac{\partial y^2}{\partial x^n}
\end{pmatrix} & \cdots & \begin{pmatrix}
\frac{\partial y^m}{\partial x^1} & \cdots & \frac{\partial y^m}{\partial x^n}
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\begin{bmatrix}
\frac{\partial x^1}{\partial y^1} & \cdots & \frac{\partial x^1}{\partial y^m}
\end{pmatrix} & \begin{pmatrix}
\frac{\partial x^2}{\partial y^1} & \cdots & \frac{\partial x^2}{\partial y^m}
\end{pmatrix} & \cdots & \begin{pmatrix}
\frac{\partial x^n}{\partial y^1} & \cdots & \frac{\partial x^n}{\partial y^m}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix} = \begin{pmatrix}
g_{x^1}(p) & \cdots & g_{x^n}(p)
\end{pmatrix} = \begin{pmatrix}
g_{e^1}(p) & \cdots & g_{e^n}(p)
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\begin{bmatrix}
\frac{\partial x^1}{\partial e^1} & \cdots & \frac{\partial x^1}{\partial e^n}
\end{pmatrix} & \begin{pmatrix}
\frac{\partial x^2}{\partial e^1} & \cdots & \frac{\partial x^2}{\partial e^n}
\end{pmatrix} & \cdots & \begin{pmatrix}
\frac{\partial x^n}{\partial e^1} & \cdots & \frac{\partial x^n}{\partial e^n}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\begin{bmatrix}
\frac{\partial y^1}{\partial e^1} & \cdots & \frac{\partial y^1}{\partial e^n}
\end{pmatrix} & \begin{pmatrix}
\frac{\partial y^2}{\partial e^1} & \cdots & \frac{\partial y^2}{\partial e^n}
\end{pmatrix} & \cdots & \begin{pmatrix}
\frac{\partial y^m}{\partial e^1} & \cdots & \frac{\partial y^m}{\partial e^n}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\end{align*}

记 \(T_p M \) 的对偶空间为 \(T^*_p M \)，称为余切空间，它的元素称为余
切向量。\(T^* M = \bigcup_{p} T^*_p M \) 称为余切丛，它是切丛 \(TM \) 的对偶丛。

设 \(\frac{\partial}{\partial x^i} \mid_{p} \mid_{i=1, \cdots, n} \) 的对偶基为 \(\{ dx^i \mid_{p} \mid_{i=1, \cdots, n} \} \)，\(\frac{\partial}{\partial y^i} \mid_{p} \mid_{i=1, \cdots, n} \) 的对偶基为 \(\{ dy^i \mid_{p} \mid_{i=1, \cdots, n} \} \)。于是，\(T_p M \) 上的 \((r, s)\) 型张量 \(\theta \) 关于基 \(\{ \frac{\partial}{\partial x^i} \mid_{p} \mid_{i=1, \cdots, n} \} \) 的分量 \((\theta_{i_1 \cdots i_r}^j_{j_1 \cdots j_s}) \) 和关于基 \(\{ \frac{\partial}{\partial y^i} \mid_{p} \mid_{i=1, \cdots, n} \} \) 的分量 \((\theta_{i_1 \cdots i_r}^j_{j_1 \cdots j_s}) \) 之间的变换公式为

\[
\theta_{i_1 \cdots i_r}^j_{j_1 \cdots j_s} = \sum_{k_1, \cdots, k_r=1}^n \frac{\partial y^{i_1}}{\partial x^{k_1}} \cdots \frac{\partial y^{i_r}}{\partial x^{k_r}} \frac{\partial x^{k_1}}{\partial y^{j_1}} \cdots \frac{\partial x^{k_r}}{\partial y^{j_s}} \theta_{k_1 \cdots k_r}^{j_1 \cdots j_s}.
\]

其中 \(\frac{\partial y^{i_1}}{\partial x^{k_1}} \) 和 \(\frac{\partial x^{k_1}}{\partial y^{j_1}} \) 分别为 \(\varphi_p(U_a \cap U_b) \) 和 \(\varphi_p(U_a \cap U_b) \) 上的 \(C^\infty \) 函数。

在局部坐标系 \((U_a, \varphi_a), (x^i) \) 中，\(\theta \in \otimes^r \otimes^s TM \) 可表示为

\[
\theta = \sum_{j_1, \cdots, j_s=1}^n \theta_{i_1 \cdots i_r}^j_{j_1 \cdots j_s} \frac{\partial}{\partial x^1} \cdots \frac{\partial}{\partial x^n} \otimes \frac{\partial}{\partial y^1} \cdots \frac{\partial}{\partial y^m} \otimes dx^{j_1} \cdots dx^{j_s}.
\]

定理 4 设 \((M, \mathcal{D})\) 为 \(n \) 维 \(C^\infty \) 流形，则

（1）\(\theta \) 为 \(M \) 上的 \((r, s)\) 型 \(C^k (0 \leq k \leq \infty) \) 张量场 \(\mapsto \) 对任何 \((U, \varphi), \{x^i\} \in \mathcal{D}, \theta_p = \sum_{j_1, \cdots, j_s=1}^n \theta_{i_1 \cdots i_r}^j_{j_1 \cdots j_s} (p) \frac{\partial}{\partial x^1} \cdots \frac{\partial}{\partial x^n} \otimes \frac{\partial}{\partial y^1} \cdots \frac{\partial}{\partial y^m} \otimes dx^{j_1} \cdots dx^{j_s}, p \in U, \) 有 \(\theta_{i_1 \cdots i_r}^j_{j_1 \cdots j_s} \in C^k(U, \mathbb{R}). \)

（2）\(\theta \) 为 \(M \) 上的 \((r, s)\) 型 \(C^\infty \) 张量场 \(\mapsto \) 对 \(M \) 上的任何 \(C^\infty \) 协
变切向量场 \(W_1, \ldots, W_n \) 和 \(C^\infty \) 逆变切向量场 \(X_1, \ldots, X_s, \theta(W_1, \ldots, W_n; X_1, \ldots, X_s) \) 为 \(M \) 上的 \(C^\infty \) 函数。

证明

(1) \(\theta : M \to \otimes^n T M \) 为 \(C^\infty \) 类映射 \(\iff \) 对任何 \((U, \varphi), (x^i) \in \mathcal{O}, x \mapsto (\theta_{x^i_{j_1} \cdots j_s} \circ \varphi^{-1}(x)) \) 是 \(C^k \) 类的 \(\iff \) 对任何 \((U, \varphi), (x^i) \in \mathcal{O}, \theta_{x^i_{j_1} \cdots j_s} \in C^k(U, \mathbb{R}) \).

(2) \((\implies)\) 对任何 \((U, \varphi), (x^i) \in \mathcal{O}, \) 在 \(U \)

\[
\theta(W_1, \ldots, W_n; X_1, \ldots, X_s) = \left(\sum_{i_1, \ldots, i_r = 1}^n \theta_{x^i_{j_1} \cdots j_s} \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_r} \right)
\]

\[
\left(\sum_{k=1}^n c_k dx^{i_k}, \ldots, \sum_{k=1}^n c_k dx^{i_r}, \sum_{i_r=1}^n a^{i_1} \frac{\partial}{\partial x^{i_1}}, \ldots, \sum_{i_r=1}^n a^{i_r} \frac{\partial}{\partial x^{i_r}} \right)
\]

\[
= \sum_{i_1, \ldots, i_r = 1}^n \theta_{x^i_{j_1} \cdots j_s} c_k dx^{i_k} \cdots c_k dx^{i_r} a^{i_1} \cdots a^{i_r},
\]

由题设和 (1) 知，\(\theta_{x^i_{j_1} \cdots j_s} c_k dx^{i_k}, \cdots, c_k dx^{i_r}, a^{i_1}, \cdots, a^{i_r} \in C^\infty(U, \mathbb{R}) \)，故 \(\theta(W_1, \ldots, W_n; X_1, \ldots, X_s) \) 为 \(M \) 上的 \(C^\infty \) 函数。

\((\Leftarrow)\) 对任何 \(p \in M \)，取 \((U, \varphi), (x^i) \in \mathcal{O}, \) 使 \(p \in U \)。设

\[
\theta = \sum_{i_1, \ldots, i_r = 1}^n \theta(dx^{i_1}, \ldots, dx^{i_r}; \frac{\partial}{\partial x^{i_1}}, \ldots, \frac{\partial}{\partial x^{i_r}}) \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_r}.
\]

利用第 1 章 §3 引理 1 构造 \(C^\infty \) 协变切向量场 \(W_1, \ldots, W_n \) 和 \(C^\infty \) 逆变切向量场 \(X_1, \ldots, X_s \)，使得

\[
W_i|_r = dx^i, X_i|_r = \frac{\partial}{\partial x^i}, i = 1, \ldots, n,
\]

* 143 *
其中 V 为 U 中的开集，于是 V 中，

$$
\theta(x_1, \ldots, x_s) = \theta(dx^1, \ldots, dx^s; \frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^s})
$$

$$
= \theta(W_1, \ldots, W_s; X_1, \ldots, X_s)
$$

是 C^∞ 类的函数，由（1）可知 θ 为 M 上的 (r, s) 型 C^∞ 张量场。

定义 9 设 (M, \mathcal{D}) 为 n 维 C^∞ 流形，$C^\infty(TM)$ 为 M 上 C^∞ 向量场的全体，如果映射

$$
\theta: C^\infty(TM) \times \cdots \times C^\infty(TM) \rightarrow C^\infty(M, \mathbb{R})
$$

是偏线性的，即

$$
\theta(X_1, \ldots, X_s, fX_1 + gY_1, X_{i+1}, \ldots, X_s) = f \cdot \theta(X_1, \ldots, X_i, \ldots, X_s) + g \cdot \theta(X_1, \ldots, X_{i-1}, Y_1, X_{i+1},
\ldots, X_s), f, g \in C^\infty(M, \mathbb{R}), X_1, Y_1 \in C^\infty(TM),
$$

则称 θ 为 $(0, s)$ 型的 C^∞ 场张量。

为了证明 C^∞ 张量场和 C^∞ 场张量在某种意义下是相同的，我们先证下面的引理。

引理 1 设 $X_1, Y_1 \in C^\infty(TM), i = 1, \ldots, s, \theta$ 为 $(0, s)$ 型 C^∞ 场张量。如果在开集 U 中，$X_i = Y_i, i = 1, \ldots, s$，则在 U 中有

$$
\theta(X_1, \ldots, X_s) = \theta(Y_1, \ldots, Y_s).
$$

证明 如果在 U 中，$X_i = 0$，则在 U 中必有 $\theta(X_1, \ldots, X_s) = 0$。事实上，对任何 $y \in U$，作 M 上的 C^∞ 函数 f，使 $f(y) = 0$ 和 $f |_{M-y} = 1$，则在 M 上，$X_i = fX_i$，因而 $\theta(X_1, \ldots, X_s) |_y = \theta(fX_1, X_2, \ldots, X_s) |_y = \theta(Y_1, \ldots, Y_s) |_y = 0$，即

$$
\theta(X_1, X_2, \ldots, X_s) = \theta(Y_1, X_2, \ldots, X_s) = 0.
$$

如果在 U 中，$X_1 \neq Y_1$，则 $X_1 = Y_1 = 0$，于是 $\theta(X_1, X_2, \ldots, X_s) - \theta(Y_1, X_2, \ldots, X_s) = \theta(X_1, X_2, \ldots, X_s) = 0$，即

$$
\theta(X_1, X_2, \ldots, X_s) = \theta(Y_1, X_2, \ldots, X_s).
$$
同理，\(\theta(X_1, X_2, \ldots, X_s) = \theta(Y_1, X_2, \ldots, X_s) \quad \cdots \quad \theta(Y_1, Y_2, \ldots, Y_s). \)

定理 5（拉格朗日张量场） 设 \((M, \Omega)\) 为 \(n\) 维 \(C^\infty\) 流形，则 \(M\) 上的任何一个 \((0, s)\) 型 \(C^\infty\) 张量场 \(\theta\) 可以看作 \((0, s)\) 型 \(C^\infty\) 场张量。反之，

一个 \((0, s)\) 型 \(C^\infty\) 场张量 \(\theta\) 也可视作 \(M\) 上的 \((0, s)\) 型 \(C^\infty\) 张量场。

证明 (1) 设 \(\theta\) 为 \((0, s)\) 型 \(C^\infty\) 张量场，

\[
\theta_p: T_p M \times \cdots \times T_p M \to \mathbb{R}
\]

为偏线性函数，由定理 4，

\[
\theta: C^\infty(TM) \times \cdots \times C^\infty(TM) \to C^\infty(M, \mathbb{R}), \quad (X_1, \ldots, X_s) \mapsto \theta(X_1, \ldots, X_s), \quad \theta(X_1, \ldots, X_s) |_p = \theta_p(X_1, \ldots, X_s) \quad \text{为偏线性映射，}
\]

故 \(\theta\) 可视作 \((0, s)\) 型 \(C^\infty\) 场张量。

(2) 相反地，如果

\[
\theta: C^\infty(TM) \times \cdots \times C^\infty(TM) \to C^\infty(M, \mathbb{R})
\]

为 \((0, s)\) 型 \(C^\infty\) 场张量。对每个 \(p \in M\)，由 \(\theta\) 诱导出一个偏线性函数

\[
\theta_p: T_p M \times \cdots \times T_p M \to \mathbb{R}
\]

如下：设 \(e_1, \ldots, e_n \in T_p M\)，任取 \(X_1, \ldots, X_s \in C^\infty(TM)\)，使 \(X_1 |_p = e_1, \ldots, X_s |_p = e_s\)。令 \(\theta_p(e_1, \ldots, e_n) = \theta(X_1, \ldots, X_s) |_p\)，如果能证明这个定义与上述的 \(X_1, \ldots, X_s\) 的选取无关，则 \(\theta_p\) 是定义精确的。且明显为偏线性函数，从而它是一个点处的 \((0, s)\) 型张量。

设 \(X_1 |_p = 0\)，在 \(p\) 的局部坐标系 \((U, \varphi), (x^i)\) 中，\(X_1 = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i}\)。

我们构造 \(M\) 上的 \(C^\infty\) 向量场 \(Y_i\) 和 \(C^\infty\) 函数 \(f^i\)，使得在 \(p\) 的开邻
域 $V \subseteq U$ 中，$Y_i = \frac{\partial}{\partial x^i}$，$f^i \cdot a^i$，$i = 1, \ldots, n$，则在 V 中 $X_i = \sum_{i=1}^{n} f^i Y_i$，得

$$theta(X_1, \cdots, X_n) \mid_p = \theta\left(\sum_{i=1}^{n} f^i Y_i, X_2, \cdots, X_n\right) \mid_p$$

$$\sum_{i=1}^{n} f^i(p) \theta(Y_i, X_2, \cdots, X_n) \mid_p$$

$$\cdots \sum_{i=1}^{n} a^i(p) \theta(Y_i, X_2, \cdots, X_n) \mid_p = 0.$$

如果 $Y_1, \cdots, Y_n \in C^\infty(TM)$，$Y(\cdot) \mid_p = e_1, \cdots, Y_n \mid_p = e_n$，则 $(X_1 - Y_1) \mid_p = 0$，

$$\theta(X_1, X_2, \cdots, X_n) \mid_p \quad \theta(Y_1, X_2, \cdots, X_n) \mid_p$$

$$= \theta(X_1 - Y_1, X_2, \cdots, X_n) \mid_p = 0，$$

即

$$\theta(X_1, X_2, \cdots, X_n) \mid_p = \theta(Y_1, X_2, \cdots, X_n) \mid_p.$$

同理，$\theta(X_1, X_2, \cdots, X_n) \mid_p = \theta(Y_1, Y_2, \cdots, X_n) \mid_p = \theta(Y_1, Y_2, X_3, \cdots, X_n) \mid_p = \cdots = \theta(Y_1, \cdots, Y_n) \mid_p$，这就证明了 θ 的定义与 X_1, \cdots, X_n 的选取无关。

最后，讨论 M_2 上的 $(0, 2)$ 型张量 θ 在 C^∞ 映射 $f: M_1 \rightarrow M_2$ 下变为 $f^* \theta$ 的一些性质。

定理 6 设 (M_1, \mathcal{D}_1) 为 n_1 维 C^∞ 流形，$f: M_1 \rightarrow M_2$ 为 C^∞ 映射，$f_{*\circ f}: T_{f(p)}M_1 \rightarrow T_{f(p)}M_2$ 为 f 的微分或 Jacobi 映射。根据定义 6 和定理 3，由

$$f^* \theta(X_1, \cdots, X_n)$$

$\cdots \theta(f_{*\circ f}X_1, \cdots, f_{*\circ f}X_n)$，$\theta \in \bigotimes^{0, 2} T_{f(p)}M_2, X_i \in T_p M$

定义的映射 $f^*: \bigotimes^{0, 2} T_{f(p)}M_2 \rightarrow \bigotimes^{0, 2} T_p M_1$，$\theta \mapsto f^* \theta$ 为线性映射且
\[f_p^*(\theta_1 \otimes \theta_2) = f_p^* \theta_1 \otimes f_p^* \theta_2, \theta_1 \in \otimes^n \Gamma T_{i(p)} M_1, \theta_2 \in \otimes^n \Gamma T_{f(p)} M_2. \]

此外，如果 \((U, \varphi), \{x^i\}\) 和 \((V, \psi), \{y^j\}\) 分别为 \(p\) 点和 \(f(p)\) 点的局部坐标系，则

\[
\begin{align*}
 f_p^* dy^i &= \sum_{i=1}^{n} \frac{\partial (y^i \circ f)}{\partial x^i} \Big|_{\varphi(p)} dx^i, \quad j = 1, \ldots, n_2, \\
 \left(f_p^* dy^1 \right) &= \begin{pmatrix}
 \frac{\partial (y^1 \circ f)}{\partial x^1} & \cdots & \frac{\partial (y^n \circ f)}{\partial x^n}
 \end{pmatrix}, \\
 \vdots \quad \vdots \\
 \left(f_p^* dy^{n_2} \right) &= \begin{pmatrix}
 \frac{\partial (y^{n_2} \circ f)}{\partial x^1} & \cdots & \frac{\partial (y^{n_2} \circ f)}{\partial x^n}
 \end{pmatrix}.
\end{align*}
\]

\[f_p^* \theta = \sum_{i_1, \ldots, i_n = 1}^{n_1} \left(\sum_{j_1, \ldots, j_n = 1}^{n_2} \frac{\partial (y^{i_1} \circ f)}{\partial x^{j_1}} \bigg|_{\varphi(p)} \theta_{j_1 \cdots j_n} \circ f(p) \right) dx^{i_1} \otimes \cdots \otimes dx^{i_n}, \]

\[
 (f_p^* \theta)_{i_1 \cdots i_n} = \sum_{j_1, \ldots, j_n = 1}^{n_2} \frac{\partial (y^{i_1} \circ f)}{\partial x^{j_1}} \bigg|_{\varphi(p)} \cdots \frac{\partial (y^{i_n} \circ f)}{\partial x^{j_n}} \bigg|_{\varphi(p)} \theta_{j_1 \cdots j_n} \circ f(p).
\]

证明

从

\[f_p^* dy^i \left(\frac{\partial}{\partial x^t} \right) = dy^i \left(f_p^* \frac{\partial}{\partial y^t} \right) = dy^i \left(\sum_{i=1}^{n_1} \frac{\partial (y^i \circ f)}{\partial x^i} \bigg|_{\varphi(p)} \frac{\partial}{\partial y^t} \right) \]

\[= \sum_{i=1}^{n_1} \frac{\partial (y^i \circ f)}{\partial x^i} \bigg|_{\varphi(p)} \delta_{i}^j \frac{\partial (y^j \circ f)}{\partial x^i} \bigg|_{\varphi(p)} \]

得到

\[f_p^* dy^i = \sum_{i=1}^{n_1} \frac{\partial (y^i \circ f)}{\partial x^i} \bigg|_{\varphi(p)} dx^i. \]

由此，有

\[f_p^* \theta = f_p^* \left(\sum_{j_1, \ldots, j_n = 1}^{n_2} \theta_{j_1, \ldots, j_n} dy^{j_1} \otimes \cdots \otimes dy^{j_n} \right) \]

\[= \sum_{j_1, \ldots, j_n = 1}^{n_2} \theta_{j_1, \ldots, j_n} \circ f(p) (f_p^* dy^{j_1}) \otimes \cdots \otimes (f_p^* dy^{j_n}). \]

\[\cdot 147 \cdot \]
\[
\begin{align*}
&= \sum_{j_1, \ldots, j_n} \theta_{j_1 \cdots j_n} \circ f(p) \left(\sum_{i_1}^{m} \frac{\partial (y^{i_1} \circ f)}{\partial x^{i_1}} \bigg|_{\psi(p)} \ dx^{i_1} \right) \\
& \circ \cdots \circ \left(\sum_{i_1}^{m} \frac{\partial (y^{i_n} \circ f)}{\partial x^{i_n}} \bigg|_{\psi(p)} \ dx^{i_n} \right) \\
&= \sum_{i_1, \ldots, i_n} \left(\sum_{j_1, \ldots, j_n} \frac{\partial (y^{i_1} \circ f)}{\partial x^{i_1}} \bigg|_{\psi(p)} \right) \theta_{j_1 \cdots j_n} \circ f(p) \ dx^{i_1} \circ \cdots \circ dx^{i_n}.
\end{align*}
\]

定理 7 设 \((M_1, \otimes)\) 为 \(n_1\) 维 \(C^\infty\) 流形，\(f: M_1 \to M_2\) 为 \(C^n\) 映射，\(\Theta\) 为 \(M_2\) 上的 \(s\) 阶 \(C^n\) 协变张量场，则 \(f^*\Theta\) 为 \(M_1\) 上的 \(s\) 阶 \(C^n\) 协变张量场，其中 \((f^*\Theta)_p = f^*_p \Theta_{f(p)}^*\).

证明 由定理 6，在局部坐标系 \((U, \phi), \{x^i\}\) 和 \((V, \psi), \{y^j\}\) 中，

\[
f^*\Theta = \sum_{i_1, \ldots, i_n} \left(\sum_{j_1, \ldots, j_n} \frac{\partial (y^{i_1} \circ f)}{\partial x^{i_1}} \cdots \frac{\partial (y^{i_n} \circ f)}{\partial x^{i_n}} \theta_{j_1 \cdots j_n} \circ f \right) \ dx^{i_1} \circ \cdots \circ dx^{i_n}
\]

因为 \(\theta_{j_1 \cdots j_n}\) 是 \(y^1, \ldots, y^{n_2}\) 的 \(C^n\) 函数，而 \(y^j\) 又是 \(x^1, \ldots, x^{n_1}\) 的 \(C^n\) 函数，

故 \[\sum_{j_1, \ldots, j_n} \frac{\partial (y^{i_1} \circ f)}{\partial x^{i_1}} \cdots \frac{\partial (y^{i_n} \circ f)}{\partial x^{i_n}} \theta_{j_1 \cdots j_n} \circ f \text{ 为 } x^1, \ldots, x^{n_1} \text{ 的 } C^n \text{ 函数，}\]

这就证明了 \(f^*\Theta\) 为 \(M_1\) 上的 \(s\) 阶 \(C^n\) 协变张量场。

注 2 对照第二章 §3 例 6。

利用定义 8，定理 3(4) 和第二章 §2 定义 4，§3 定理 4，并以映射 \((f, f)\) 代替 \((f, f)\) 可将上述定理 7 推广为

定理 8 设 \(\xi_1, \xi_2\) 为 \(C^n\) 向量场，\(\otimes^n \xi_1, \otimes^0 \xi_2\) 分别为其 \((0, s)\) 型 \(C^n\) 张量场，\((f, f): \xi_1 \to \xi_2\) 为 \(C^n\) 映射 \((0 \leq k \leq r)\)，\(\Theta\) 为 \(\xi_2\) 的 \(s\) 阶 \(C^n\) 协变张量场，则 \(f^*\Theta\) 为 \(\xi_1\) 的 \(s\) 阶 \(C^n\) 协变张量场，其中 \((f^*\Theta)_p := (f^*_p)^* \Theta_{f(p)}^*\).

* 148 *
§ 2 外微分形式和外微分

这一节将研究变分协变张量、外微分形式、外微分运算并介绍 de Rham 定理。

定义 1 设 ω 为 n 维向量空间，$\omega \in \otimes^s V^*$，如果对任意 $X_i \in V$ $(i = 1, \cdots, s)$ 及 $(1, \cdots, s)$ 的任何置换 π 满足：

$$\omega(X_{\pi(1)}, \cdots, X_{\pi(s)}) = (-1)^{\pi} \omega(X_1, \cdots, X_s),$$

其中 $(-1)^{\pi} = \left\{ \begin{array}{ll} 1, & \pi \text{ 为偶置换,} \\
-1, & \pi \text{ 为奇置换,} \end{array} \right.$

则称 ω 为 s 阶反称协变张量或 s 阶外形式。设 s 阶反称协变张量的全体为 $\Lambda^s V^*$，显然它是 $\otimes^s V^*$ 的一个子向量空间。

引理 1 ω 是反称的 \iff 对 $(1, \cdots, s)$ 的任一置换 π，

$$\omega_{\pi(1)} \cdots \omega_{\pi(s)} = (-1)^{\pi} \omega_{1 \cdots s},$$

其中 $\omega_{1 \cdots s} = \omega(e_i, \cdots, e_s)$，而

$$\{e_i | i = 1, \cdots, n\}$$

为 V 的一个基。

证明 (\Rightarrow) $\omega_{\pi(1)} \cdots \omega_{\pi(s)} = \omega(e_{\pi(1)}, \cdots, e_{\pi(s)})$

$$= (-1)^{\pi} \omega(e_1, \cdots, e_s)$$

$$= (-1)^{\pi} \omega_{1 \cdots s}.$$

(\Leftarrow) $\omega(X_{\pi(1)}, \cdots, X_{\pi(s)})$

$$= \omega \left(\sum_{i=1}^{n} a_{i_{\pi(1)}}^{\pi(1)} e_{i_{\pi(1)}}, \cdots, \sum_{i_{\pi(n)}=1}^{n} a_{i_{\pi(n)}}^{\pi(n)} e_{i_{\pi(n)}} \right)$$

$$= \sum_{i=1}^{n} a_{i_{\pi(1)}}^{\pi(1)} \cdots a_{i_{\pi(n)}}^{\pi(n)} \omega_{i_{\pi(1)} \cdots i_{\pi(n)}}$$

$$= (-1)^{\pi} \sum_{i_{\pi(1)} \cdots i_{\pi(n)}=1}^{n} a_{i_{\pi(1)}}^{\pi(1)} \cdots a_{i_{\pi(n)}}^{\pi(n)} \omega_{i_{\pi(1)} \cdots i_{\pi(n)}}$$

$$= (-1)^{\pi} \sum_{i_{1} \cdots i_{s} \pi^{-1}} a_{i_{1}}^{\pi^{-1}} \cdots a_{i_{s}}^{\pi^{-1}} \omega_{i_{1} \cdots i_{s}}.$$
\[= (-1)^r \omega \left(\sum_{i_1=1}^n a_{i_1}^t e_{i_1}, \cdots, \sum_{i_s=1}^n a_{i_s}^t e_{i_s} \right) \]
\[= (-1)^r \omega (X_1, \cdots, X_s). \]

注 1 0 阶和 1 阶协变张量作反称的。

由定义 1 立即可看出，如果 \(\omega \in \Lambda^r V^* \)，且 \(X_1, \cdots, X_s \) 中有两个相等，则 \(\omega (X_1, \cdots, X_s) = 0 \)。由此还可得到，如果 \(i_1, \cdots, i_s \) 中有两个相等，则 \(\omega_{i_1 \cdots i_s} = 0 \)。

如果 \(s \geq n+1, \omega \in \Lambda^r V^* \)，则 \(e_{i_1}, \cdots, e_{i_s} \) 中至少有两个相等，故 \(\omega_{i_1 \cdots i_s} = 0 \)。从而 \(\omega = 0 \)。于是 \(\Lambda^r V^* = \{0\} \)。

定义 2 设 \(\theta \in \otimes^n V \)，映射(协变张量的反称化)

\[A : \otimes^n V \to \Lambda^r V^*, \]

\[\theta \mapsto A(\theta) \]

定义为

\[A(\theta)(X_1, \cdots, X_s) = \frac{1}{s!} \sum_{\sigma} (-1)^{\sigma} \theta(X_{\sigma(1)}, \cdots, X_{\sigma(s)}), \]

其中求和取遍所有 \((1, \cdots, s) \) 的置换 \(\sigma \)。显然，这个公式等价于

\[(A(\theta))_{i_1 \cdots i_s} = \frac{1}{s!} \sum_{\sigma} (-1)^{\sigma} \theta_{i_{\sigma(1)} \cdots i_{\sigma(s)}}. \]

易见 \(A(\theta) \in \otimes^n V \)。因为

\[A(\theta)(X_{\sigma(1)}, \cdots, X_{\sigma(s)}) = \frac{1}{s!} \sum_{\sigma} (-1)^{\sigma} \theta(X_{\sigma(1)}, \cdots, X_{\sigma(s)}) \]
\[= (-1)^{\sigma} \frac{1}{s!} \sum_{\sigma} (-1)^{\sigma} \theta(X_{\sigma(1)}, \cdots, X_{\sigma(s)}) \]
\[= (-1)^{\sigma} A(\theta)(X_1, \cdots, X_s), \]

故 \(A(\theta) \in \Lambda^r V^* \)。

定理 1 (1) \(A \) 为线性映射；

(2) \(\theta \in \Lambda^r V^* \); \(A(\theta) = \theta \)；

.. 150 ..
(3) 若 $\theta \in \wedge^0 V^*$，则 $A(A(\theta)) \cdot A(\theta)$

证明 (1) 从 A 的定义立即可知。

(2) $(\leftarrow) \theta = A(\theta) \in \wedge^s V^*$。

(\rightarrow) 设 $\theta \in \wedge^s V^*$，则

$$A(\theta)(X_1, \cdots, X_s) = \frac{1}{s!} \sum (-1)^{s} \theta(X_{a(1)}, \cdots, X_{a(s)})$$

$$= \frac{1}{s!} \sum (-1)^{s} \cdot (-1)^{s} \theta(X_1, \cdots, X_s) = \theta(X_1, \cdots, X_s),$$

即 $A(\theta) = \theta$。

(3) 由定义 2, $A(\theta) \in \wedge^s V^*$，再由 (2), $A(A(\theta)) = A(\theta)$，

定义 3 设 $\alpha \in \wedge^r V^*$, $\beta \in \wedge^s V^*$, 我们定义外积（或反称积或 Grassmann 积或楔积）

$$\Lambda: \wedge^r V^* \times \wedge^s V^* \rightarrow \wedge^{r+s} V^*$$

$$(\alpha, \beta) \rightarrow \alpha \Lambda \beta = \frac{(r+s)!}{r!s!} A(\alpha \otimes \beta),$$

即

$$(\alpha \Lambda \beta)(X_1, \cdots, X_{r+s}) = \frac{(r+s)!}{r!s!} A(\alpha \otimes \beta)(X_1, \cdots, X_{r+s})$$

$$= \frac{1}{r!s!} \sum (-1)^{r} (\alpha \otimes \beta)(X_{a(1)}, \cdots, X_{a(r+s)})$$

$$= \frac{1}{r!s!} \sum (-1)^{r} \alpha(X_{a(1)}, \cdots, X_{a(r)}) \beta(X_{a(r+1)}, \cdots, X_{a(r+s)}),$$

当 $r = s = 1$ 时，

$$(\alpha \Lambda \beta)(X_1, X_2) = \alpha(X_1) \beta(X_2) - \alpha(X_2) \beta(X_1).$$

定理 2 (1) $\alpha \Lambda (\beta_1 + \beta_2) = \alpha \Lambda \beta_1 + \alpha \Lambda \beta_2$，

$(\alpha_1 + \alpha_2) \Lambda \beta = \alpha_1 \Lambda \beta + \alpha_2 \Lambda \beta,

\text{双线性}$

$\alpha \Lambda (\lambda \beta) = (\lambda \alpha) \Lambda \beta = \lambda (\alpha \Lambda \beta), \lambda \in \mathbb{R};$

(2) $\alpha \Lambda \beta = (-1)^{rs} \beta \Lambda \alpha, \alpha \in \wedge^r V^*, \beta \in \wedge^s V^*$,
特别当 \(r + s = 1 \) 时有 \(\alpha \land \beta = - \beta \land \alpha, \quad \alpha \land \alpha = 0; \)

(3) \((\alpha \land \beta) \land \gamma = \alpha \land (\beta \land \gamma) - \frac{(r + s + t)!}{r!s!t!} A(\alpha \land \beta \land \gamma), \)
\(\alpha \in \Lambda V, \beta \in \Lambda V, \gamma \in \Lambda V. \) 结合律

由此，\(\alpha \land \beta \land \gamma \) 与作外积的次序无关。再一般地 \(\alpha_1 \land \cdots \land \alpha_s \) 与外积的次序无关，且

\[
\alpha_1 \land \cdots \land \alpha_s = \frac{(r_1 + \cdots + r_s)!}{r_1! \cdots r_s!} A(\alpha_1 \land \cdots \land \alpha_s).
\]

证明 (1) 由 \(\land \) 的定义立即推得。

(2) \((\alpha \land \beta)(X_{1}, \cdots, X_{r+s}) - \frac{1}{r!s!} \sum_{\pi} (-1)^{\pi} \alpha(X_{\pi(1)}, \cdots, X_{\pi(r)}) \cdot
\beta(X_{\pi(r+1)}, \cdots, X_{\pi(r+s)}) = \frac{1}{r!s!} \sum_{\pi} (-1)^{\pi} \beta(X_{\pi(1)}, \cdots, X_{\pi(r)}) \cdot
\alpha(X_{\pi(r+1)}, \cdots, X_{\pi(r+s)}).
\]
其中

\[
(1, \cdots, r + s) \rightarrow (\pi(1), \cdots, \pi(r + s)) \stackrel{r \in \text{对换}}{\rightarrow} (\pi(r + 1), \cdots,
\pi(r), \pi(1), \cdots, \pi(r + s)).
\]

(3) 设 \(G \) 为 \((1, \cdots, r + s + t) \) 的所有置换的全体， \(H \) 为保持 \(r + s + 1, \cdots, r + s + t \) 不动的置换的全体，则

\[
(\alpha \land \beta) \land \gamma(X_{1}, \cdots, X_{r+s+t}) = \frac{1}{(r + s)!t!} \sum_{\pi \in \beta} (-1)^{\pi} (\alpha \land \beta) \cdot
(X_{\pi(1)}, \cdots, X_{\pi(r)}), \quad \gamma(X_{\pi(r+1)}, \cdots, X_{\pi(r+s+t)}) = \frac{1}{(r + s)!t!} \sum_{\pi \in \beta} (-1)^{\pi} \gamma(X_{\pi(1)}, \cdots, X_{\pi(r)}),
\]

\[
(-1)^{r} \frac{1}{r!s!} \sum_{\rho \in H} (-1)^{\rho} \alpha(X_{\rho(1)}, \cdots, X_{\rho(r)}), \beta(X_{\rho(r+1)}, \cdots,
\]

* 152 *
\[X_{a \in \rho (r+s)} \cdot \gamma (X_{a \in \rho (r+s)}, \ldots, X_{a \in \rho (r+s+t)}) = \frac{1}{(r+s)!r!s!l!} \sum_{\rho \in \mathfrak{P}} (-1)^{\rho} \alpha (X_{a \in \rho (1)}, \ldots, X_{a \in \rho (r)}) \cdot \beta (X_{a \in \rho (r+1)}, \ldots, X_{a \in \rho (r+s)}) \]

\[\cdot \gamma (X_{a \in \rho (r+s+1)}, \ldots, X_{a \in \rho (r+s+t)}) = \frac{1}{(r+s)!r!s!l!} \sum_{\rho \in \mathfrak{P}} (r+s+t)! \sum_{\rho \in \mathfrak{P}} \gamma (X_{a \in \rho (r+s+1)}, \ldots, X_{a \in \rho (r+s+t)}) \]

\[A(a \otimes \beta \otimes \gamma) (X_1, \ldots, X_{r+s+t}) = \frac{(r+s+t)!}{r!s!l!} A(a \otimes \beta \otimes \gamma) (X_1, \ldots, X_{r+s+t}) \]

故 \((\alpha \wedge \beta) \wedge \gamma = \frac{(r+s+t)!}{r!s!l!} A(a \otimes \beta \otimes \gamma) \),

同理

\[(\alpha \wedge (\beta \wedge \gamma)) = \frac{(r+s+t)!}{r!s!l!} A(a \otimes \beta \otimes \gamma) \]

于是

\((\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma) \).

定理 3 设 \(V \) 为 \(n \) 维向量空间，\(\{ e_i | i = 1, \ldots, n \} \) 为 \(V \) 的一个基，
\(\{ e^i | i = 1, \ldots, n \} \) 为它的对偶基，则 \(\{ e^{i_1} \wedge \cdots \wedge e^{i_s} | 1 \leq i_1 < \cdots < i_s \leq n \} \)
为 \(\Lambda^s V^* \) 的一个基，因而 \(\Lambda^s V^* \) 为 \(C_n^* \) 维向量空间。

证明 设 \(\omega \in \Lambda^s V^* \subset \bigotimes^s e^i V \)，则 \(\omega = \sum_{i_1 < \cdots < i_s} \omega_{i_1 \cdots i_s} e^{i_1} \otimes \cdots \otimes e^{i_s} \)

由定理 1(2) 和定理 2(3) 以及 \(\omega \) 的对称性，

\[\omega = A(\omega) = \sum_{i_1 < \cdots < i_s} \omega_{i_1 \cdots i_s} A(e^{i_1} \otimes \cdots \otimes e^{i_s}) \]

\[= \frac{1}{s!} \sum_{i_1 < \cdots < i_s} \omega_{i_1 \cdots i_s} e^{i_1} \wedge \cdots \wedge e^{i_s} \]

\[= \sum_{1 \leq i_1 < \cdots < i_s \leq n} \omega_{i_1 \cdots i_s} e^{i_1} \wedge \cdots \wedge e^{i_s} \]

\(\cdot 153 \cdot \)
于是 \(\{ e^{i_1} \wedge \cdots \wedge e^{i_k} | 1 \leq i_1 < \cdots < i_k \leq n \} \) 张成线性空间 \(\Lambda^k V^* \).

另一方面，如果 \(\sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1 \cdots i_k} e^{i_1} \wedge \cdots \wedge e^{i_k} = 0 \)，则当 \(j_1 < \cdots < j_k \leq n \) 时有

\[
0 = \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1 \cdots i_k} e^{i_1} \wedge \cdots \wedge e^{i_k} \right) (e_{j_1}, \ldots, e_{j_k})
= s! \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1 \cdots i_k} A(e^{i_1} \otimes \cdots \otimes e^{i_k}) (e_{j_1}, \ldots, e_{j_k})
= \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1 \cdots i_k} \sum_{x} (-1)^x (e^{i_1} \otimes \cdots \otimes e^{i_k}) (e_{j_1(x)}, \ldots, e_{j_k(x)})
= \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1 \cdots i_k} (e^{i_1} \otimes \cdots \otimes e^{i_k}) (e_{j_1}, \ldots, e_{j_k}) = \lambda_{j_1 \cdots j_k}.
\]

因此，\(\{ e^{i_1} \wedge \cdots \wedge e^{i_k} | 1 \leq i_1 < \cdots < i_k \leq n \} \) 是线性无关的.

综合上述可知，\(\{ e^{i_1} \wedge \cdots \wedge e^{i_k} | 1 \leq i_1 < \cdots < i_k \leq n \} \) 为 \(\Lambda^k V \) 的一个基.

例 1 设 \(V \) 为 \(n \geq 1 \) 维向量空间，\(\{ e_i | i = 1, \ldots, n \} \) 为 \(V \) 的一个基，\(\{ e^i | i = 1, \ldots, n \} \) 为它的对偶基，\(\alpha = e^1 \wedge e^2 + e^3 \wedge e^4 \)，则 \(\alpha \wedge \alpha = (e^1 \wedge e^2 + e^3 \wedge e^4) \wedge (e^1 \wedge e^2 + e^3 \wedge e^4) = 2 e^1 \wedge e^2 \wedge e^3 \wedge e^4 = 0 \)。

定义 4 设 \(\Lambda^* V = \Lambda^0 V^* \oplus \Lambda^1 V^* \oplus \cdots \oplus \Lambda^n V^* \)，其中 \(\oplus \) 表示直和，显然 \(\{ 1; e^i, i = 1, \ldots, n; e^i \wedge e^j, 1 \leq i < j \leq n; \ldots; e^1 \wedge \cdots \wedge e^n \} \) 形成了 \(\Lambda^* V \) 的一个基。\(\Lambda^* V \) 是由 \(1 \) 和 \(\Lambda^1 V^* = V^* \) 生成的 \(C^n_0 + C^n_1 + \cdots + C^n_n = 2^n \) 维的向量空间，这里乘法 \(\wedge \) 可以线性拓扑到 \(\Lambda^* V \) 上，即要求 \(\wedge \) 关于向量加法是分配的，这乘法也是结合的，并关于加法和乘法 \(\wedge \) 形成一环，从而 \(\Lambda^* V \) 是一个具有单位元 \(1 \) 的代数，称为 Grassmann 代数或外代数。

例 2 设 \(\{ e_i | i = 1, \ldots, n \} \) 和 \(\{ \bar{e}_i | i = 1, \ldots, n \} \) 都是 \(n \) 维向量空间的基，\(\{ e^i | i = 1, \ldots, n \} \) 为 \(\{ e_i | i = 1, \ldots, n \} \) 的对偶基，\(\{ \bar{e}^i | i = 1, \ldots, n \} \) 为 \(\{ \bar{e}_i | i = 1, \ldots, n \} \) 的对偶基。
\[\sum_{i_1, \ldots, i_s} \omega_{i_1 \cdots i_s} \varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_s} = \sum_{i_1, \ldots, i_s} \left(\sum_{a=1}^{n} \sum_{e} d_{i_a}^{e} \varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_s} \right) \]

特别当 \(s = n \) 时，有

\[\omega^{j_1} \wedge \cdots \wedge \varepsilon^{n} = \begin{vmatrix} d_{j_1}^{1} & \cdots & d_{j_1}^{n} \\ \vdots & \ddots & \vdots \\ d_{j_n}^{1} & \cdots & d_{j_n}^{n} \end{vmatrix} = \omega^{j_1} \wedge \cdots \wedge \varepsilon^{n}.

\]

由张量的分量变换公式和 \(\omega \) 的反称性得到

\[\omega_{i_1 \cdots i_s} = \sum_{i_1, \ldots, i_s} c_{i_1}^{j_1} \cdots c_{i_s}^{j_s} \omega_{j_1 \cdots j_s} \]

或者从

\[\sum_{1 < j_1 < \cdots < j_s < n} \omega_{j_1 \cdots j_s} \varepsilon^{j_1} \wedge \cdots \wedge \varepsilon^{j_s} = \omega = \sum_{1 < i_1 < \cdots < i_s < n} \omega_{i_1 \cdots i_s} \varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_s} \]

\[= \sum_{1 < i_1 < \cdots < i_s < n} \omega_{i_1 \cdots i_s} \sum_{1 < j_1 < \cdots < j_s < n} \begin{vmatrix} c_{i_1}^{j_1} & \cdots & c_{i_1}^{j_s} \\ \vdots & \ddots & \vdots \\ c_{i_s}^{j_1} & \cdots & c_{i_s}^{j_s} \end{vmatrix} \varepsilon^{j_1} \wedge \cdots \wedge \varepsilon^{j_s} \]

\[= \sum_{1 < j_1 < \cdots < j_s < n} \left(\sum_{1 < i_1 < \cdots < i_s < n} \begin{vmatrix} c_{i_1}^{j_1} & \cdots & c_{i_1}^{j_s} \\ \vdots & \ddots & \vdots \\ c_{i_s}^{j_1} & \cdots & c_{i_s}^{j_s} \end{vmatrix} \right) \varepsilon^{j_1} \wedge \cdots \wedge \varepsilon^{j_s}.

\]
\[\omega_{i_1 \cdots i_s} = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \begin{vmatrix} c_{i_1}^1 & \cdots & c_{i_1}^r \\ \vdots & \cdots & \vdots \\ c_{i_s}^1 & \cdots & c_{i_s}^r \end{vmatrix} \omega_{i_1 \cdots i_s}. \]

定理 4 设 \(V_i \) 为 \(n_i \) 维向量空间，\(i = 1, 2 \) 由线性映射 \(\mathcal{A} : V_i \to V_2 \) 诱导出外形式之间的映射

\[\mathcal{A}^* : \Lambda^* V_i^* \to \Lambda^* V_2^*, \omega \to \mathcal{A}^* \omega, \]

\[(\mathcal{A}^* \omega)(X_1, \cdots, X_r) = \omega(\mathcal{A} X_1, \cdots, \mathcal{A} X_r), \quad X_1, \cdots, X_r \in V_1, \]

则

(1) \(\mathcal{A}^* \omega \in \Lambda^* V_2^* \);

(2) \(\mathcal{A}^*(\lambda \omega_1 + \mu \omega_2) = \lambda \mathcal{A}^* \omega_1 + \mu \mathcal{A}^* \omega_2, \)

\(\omega_1, \omega_2 \in \Lambda^* V_i^*, \lambda, \mu \in \mathbb{R}; \)

(3) \(\mathcal{A}^* (\omega \wedge \eta) = \mathcal{A}^* \omega \wedge \mathcal{A}^* \eta, \quad \omega, \eta \in \Lambda^* V_i^* \);

(4) 设 \(\{e_i | i = 1, \cdots, n_1 \} \) 为 \(V_1 \) 的基，\(\{e^i | i = 1, \cdots, n_2 \} \) 为其对偶基，\(\{\eta_j | j = 1, \cdots, n_2 \} \) 为 \(V_2 \) 的基，\(\{\eta^i | j = 1, \cdots, n_2 \} \) 为其对偶基，

\[\mathcal{A} e_i = \sum_{j=1}^{n_2} a_{ij} \eta_j, \text{ 则 } \mathcal{A}^* \eta^i = \sum_{j=1}^{n_2} d_{ij} e^j, \text{ 对 } \omega = \sum_{i=1}^{n_1} \omega_{i_1 \cdots i_r} \eta^{i_1} \wedge \cdots \wedge \eta^{i_r}, \]

有

\[\mathcal{A}^* \omega = \sum_{1 \leq i_1 < \cdots < i_s \leq n_1} \left(\sum_{1 \leq j_1 < \cdots < j_r \leq n_2} \begin{vmatrix} a_{i_1 j_1} & \cdots & a_{i_1 j_r} \\ \vdots & \cdots & \vdots \\ a_{i_s j_1} & \cdots & a_{i_s j_r} \end{vmatrix} \begin{vmatrix} d_{j_1 i_1} & \cdots & d_{j_1 i_s} \\ \vdots & \cdots & \vdots \\ d_{j_r i_1} & \cdots & d_{j_r i_s} \end{vmatrix} \right) \eta^{i_1} \wedge \cdots \wedge \eta^{i_r}. \]

证明 (1) 由 § 1 定义 6，\(\mathcal{A}^* \omega \in \otimes^r V_1^* \)，又因为

\[(\mathcal{A}^* \omega)(X_{(1)}^1, \cdots, X_{(r)}^r) = \omega(\mathcal{A} X_{(1)}^1, \cdots, \mathcal{A} X_{(r)}^r) \]

\[= (-1)^r \omega(\mathcal{A} X_1, \cdots, \mathcal{A} X_r) = (-1)^r \mathcal{A}^* \omega(X_1, \cdots, X_r), \]

故 \(\mathcal{A}^* \omega \in \Lambda^r V_1^* \).

(2) 应用 § 1 定义 6 下面的结果。

(3) \(\mathcal{A}^* (\omega \wedge \eta)(X_1, \cdots, X_{r+2}) = \omega \wedge \eta(\mathcal{A} X_1, \cdots, \mathcal{A} X_{r+2}) \)

156
\[
\begin{align*}
= & \frac{(r+s)!}{r!s!} A(\omega \otimes \eta) (\mathcal{A} X_1, \ldots, \mathcal{A} X_{r+s}) \\
= & \frac{(r+s)!}{r!s!} \frac{1}{(r+s)!} \sum \left(\sum_{i=0}^{r+s} (-1)^i \omega(\mathcal{A} X_{i+1}, \ldots, \mathcal{A} X_{r+s}) \right) \\
= & \frac{(r+s)!}{r!s!} \frac{1}{(r+s)!} \sum \left(\sum_{i=0}^{r+s} (-1)^i \mathcal{A}^* \omega(X_{i+1}, \ldots, X_{r+s}) \right) \\
= & \frac{(r+s)!}{r!s!} \frac{1}{(r+s)!} \sum \left(\sum_{i=0}^{r+s} (-1)^i \mathcal{A}^* \omega \otimes \mathcal{A}^* \eta(X_{i+1}, \ldots, X_{r+s}) \right) \\
= & \frac{(r+s)!}{r!s!} A(\mathcal{A}^* \omega \otimes \mathcal{A}^* \eta)(X_1, \ldots, X_{r+s}) \\
= & \mathcal{A}^* (\omega \otimes \eta) - \mathcal{A}^* \omega \wedge \mathcal{A}^* \eta.
\end{align*}
\]

(4) 由 §1 定理 3 (4), \(\mathcal{A}^* \eta^i = \sum_{i=1}^{n} d_{i}^j e^i\). 于是，由 (3) 得到

\[
\mathcal{A}^* \omega = \mathcal{A}^* \left(\sum_{1 \leq j_1 < \ldots < j_r \leq n} \omega_{j_1 \ldots j_r} \eta^{j_1} \wedge \ldots \wedge \eta^{j_r} \right)
= \sum_{1 \leq j_1 < \ldots < j_r \leq n} \omega_{j_1 \ldots j_r} \mathcal{A}^* \eta^{j_1} \wedge \ldots \wedge \mathcal{A}^* \eta^{j_r}
= \sum_{1 \leq j_1 < \ldots < j_r \leq n} \omega_{j_1 \ldots j_r} \sum_{1 \leq i_1 < \ldots < i_s \leq n} \sum_{1 < i_1 < \ldots < i_s \leq n} (-1)^s d_{i_1}^{j_1} e^{i_1} \wedge \ldots \wedge e^{i_s}
= \sum_{1 \leq i_1 < \ldots < i_s \leq n} \left(\sum_{1 \leq i_1 < \ldots < i_s \leq n} \begin{vmatrix} d_{i_1}^{j_1} & \ldots & d_{i_1}^{j_r} \\ \vdots & \ddots & \vdots \\ d_{i_s}^{j_1} & \ldots & d_{i_s}^{j_r} \end{vmatrix} \omega_{j_1 \ldots j_r} \right).
\]
\[e_1 \wedge \cdots \wedge e^r. \]

类似于 § 1 定义 7 中张量丛的定义和公式
\[\omega_{i_1, \ldots, i_n} = \sum_{1 \leq i_1 < \cdots < i_n \leq n} c^i_{i_1} \cdots c^i_{i_n} \omega_{i_1, \ldots, i_n} \]
可定义与\(C^r \) 向量丛\(\xi = (E, M, \pi, \text{GL}(m, R), (R^m, \otimes)) \)相联系的\(s \) 阶\(C^r \) 外形式丛
\[\Lambda^s \xi^* = \{ \Lambda^s E^* = \bigcup_{\tau \in M} \Lambda^s E^*_{\tau}, (\tau, \text{GL}(C^s_m, R), R^{C^s}, \otimes) \} \]
它是与\(\xi \) 相联系的\((0, s)\)型\(C^r \) 张量丛的子向量丛。

定义 5 设 \(\Lambda^s \xi^* \) 为与\(C^r \) 向量丛\(\xi \) 相联系的\(s \) 阶\(C^r \) 外形式丛，\(U \subseteq M \)，称截面
\[\omega: U \rightarrow \Lambda^s E^* = \bigcup_{\tau \in M} \Lambda^s E^*_{\tau}, \quad \tau \mapsto \omega_{\tau} \]
为\(U \) 上的\(s \) 阶外形式，\(U \) 称为这外形式的定义域。如果\(\omega \) 为\(C^0 \)
(连续) 截面，则称它为\(U \) 上的\(s \) 阶\(C^0 \) (连续) 外形式；如果\(U \subseteq M \)
为开集，称\(C^k (1 \leq k \leq r) \) 截面\(\omega \) 为\(U \) 上的\(s \) 阶\(C^k \) 外微分形式，其
全体记为\(C^k (\Lambda^s E^*|_U) \)。

当\(s = 0 \) 时，\(\omega \) 为\(U \) 上的\(C^0 \) 函数；当\(s = 1 \) 时，\(\omega \) 也称为\(U \) 上的
\(C^0 \) Pfaff 形式；当\(s > n \) 时，\(\omega = 0 \)。

下面我们考虑与\(\xi \) 维\(C^\infty \) 流形\((M, \otimes)) \) 的切丛\(\xi = \{ T M = \bigcup_{p \in M} T_p M, M, \pi, \text{GL}(n, R), R^n, \otimes \} \) 相联系的\(s \) 阶\(C^\infty \) 外形式丛
\[\Lambda^s \xi^* = \{ \Lambda^s T^* M = \bigcup_{p \in M} \Lambda^s T^* M_p, M, \pi, \text{GL}(C^n_M, R), R^{C^n}, \otimes \} \]
它是与\(\xi \) 相联系的\((0, s)\)型\(C^\infty \) 张量丛的子向量丛，其中\(\Lambda^s T^*_p M \) 为\(p \)
点处关于切空间\(T_p M \) 的\(s \) 阶外形式的全体，\(\omega \in \Lambda^s T^*_p M \) 称为\(p \) 点处的\(s \) 阶外形式。

* 158 *
设 \((U_a, \varphi_a)\), \((x^i) \in \varnothing\), \((U_b, \varphi_b)\), \((y^j) \in \varnothing\), \(U_a \cap U_b = \varnothing\). 因为

\[
\begin{pmatrix}
\frac{\partial}{\partial y^1} & \frac{\partial}{\partial y^2} & \cdots & \frac{\partial}{\partial y^n} \\
\frac{\partial}{\partial y^1} & \frac{\partial}{\partial y^2} & \cdots & \frac{\partial}{\partial y^n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial y^1} & \frac{\partial}{\partial y^2} & \cdots & \frac{\partial}{\partial y^n}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial x^1}{\partial y^1} & \frac{\partial x^1}{\partial y^2} & \cdots & \frac{\partial x^1}{\partial y^n} \\
\frac{\partial x^2}{\partial y^1} & \frac{\partial x^2}{\partial y^2} & \cdots & \frac{\partial x^2}{\partial y^n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x^m}{\partial y^1} & \frac{\partial x^m}{\partial y^2} & \cdots & \frac{\partial x^m}{\partial y^n}
\end{pmatrix}
\begin{pmatrix}
dx^1 \\
dx^2 \\
\vdots \\
dx^m
\end{pmatrix}
\]

故 \(\omega_{j_1, \ldots, j_s} = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \frac{\partial (x^{i_1}, \ldots, x^{i_s})}{\partial (y^{j_1}, \ldots, y^{j_s})} \omega_{i_1, \ldots, i_s}\)

\[
dy^{j_1} \wedge \cdots \wedge dy^{j_s} = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \frac{\partial (y^{j_1}, \ldots, y^{j_s})}{\partial (x^{i_1}, \ldots, x^{i_s})} dx^{i_1} \wedge \cdots \wedge dx^{i_s},
\]

特别地当 \(s = n\) 时，有

\[
dy^1 \wedge \cdots \wedge dy^n = \frac{\partial (y^1, \ldots, y^n)}{\partial (x^1, \ldots, x^n)} dx^1 \wedge \cdots \wedge dx^n,
\]

\[
\omega = \sum_{1 \leq i_1 < \cdots < i_n \leq n} \omega_{i_1, \ldots, i_n} dx^{i_1} \wedge \cdots \wedge dx^{i_n}
\]

\[
= \sum_{1 \leq j_1 < \cdots < j_n \leq n} \omega_{j_1, \ldots, j_n} dy^{j_1} \wedge \cdots \wedge dy^{j_n}.
\]

记 \(U\) 上的 \(s\) 阶 \(C^s\) 外微分形式的全体为 \(C^s(\wedge^s T^* U)\)，其直和为 \(C^s(\wedge^s T^* U) = C^s(\wedge^1 T^* U) \oplus C^s(\wedge^2 T^* U) \oplus \cdots \oplus C^s(\wedge^n T^* U)\)，如果 \(\omega \in C^s(\wedge^s T^* U)\)，则在局部坐标系 \((U_a, \varphi_a), \{x^i\}\) 中，

\[
\omega = \omega_0 + \sum_{k=1}^n \omega_{i_1, \ldots, i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k} + \cdots
\]

\[
+ \sum_{1 \leq i_1 < \cdots < i_n \leq n} \omega_{i_1, \ldots, i_n} dx^{i_1} \wedge \cdots \wedge dx^{i_n} + \cdots + \omega_{1, \ldots, n} dx^1 \wedge \cdots \wedge dx^n,
\]

其中 \(\omega_0, \omega_{i_1, i_2}, \ldots, \omega_{i_1, \ldots, i_s}, \ldots, \omega_{1, \ldots, n} \in C^s(U_a, \mathbb{R})\).

定义 6 设 \((M, \varnothing)\) 为 \(n\) 维 \(C^\infty\) 流形，我们定义外微分运算

\[
d_x: C^s(\wedge^s T^* M) \to C^{s+1}(\wedge^{s+1} T^* M), \omega \to d_x \omega, \text{简记为 } d\omega,
\]

- 159 -
如果 \(s = 0 \), \(f \in C^{\infty}(\Lambda^0 T^* M) \), \(C^\infty(M, \mathbb{R}) \), \(X \in C^\infty(T^* M) \), \(df(X) = Xf \);
如果 \(s \geq 1 \), \(\omega \in C^\infty(\Lambda^s T^* M) \), \(X_i \in C^\infty(T^* M) \), \(i = 1, \ldots, s+1 \), 令
\[
\begin{aligned}
d\omega(X_1, \ldots, X_{s+1}) &= \sum_{i = 1}^{s+1} (-1)^{s+1} X_i \omega(X_1, \ldots, X_{i-1}, \hat{X}_i, X_{i+1}, \ldots, X_{s+1}) \\
&- \sum_{1 \leq i < j \leq s+1} (-1)^{s+2} \omega([X_i, X_j], X_1, \ldots, X_{i-1}, \hat{X}_i, X_{i+1}, \ldots, X_{j-1}, \hat{X}_j, X_{j+1}, \ldots, X_{s+1}).
\end{aligned}
\]
显然，上述定义 \(d \) 可用自然方法线性扩张到 \(C^\infty(\Lambda^s T^* M) \). 由下面的引理 2 可知，\(d \) 的定义是合理的。

引理 2 如果 \(f \in C^\infty(\Lambda^s T^* M) \), \(\omega \in C^\infty(\Lambda^s T^* M) \), \(s \geq 1 \), 则 \(df \in C^\infty(\Lambda^{s+1} T^* M) \), \(d\omega \in C^\infty(\Lambda^{s+1} T^* M) \).

证明 因为
\[
\begin{aligned}
df(\varphi_1 X_1 + \varphi_2 X_2) &= (\varphi_1 X_1 + \varphi_2 X_2) f - \varphi_1 \cdot X_1 f + \varphi_2 \cdot X_2 f \\
&= \varphi_1 \cdot df(X_1) - \varphi_2 \cdot df(X_2), \varphi_1, \varphi_2 \in C^\infty(M, \mathbb{R}),
\end{aligned}
\]
故 \(df \) 为 \(M \) 上的 \((0, 1)\) 型 \(C^\infty \) 场张量，由 §1 定理，\(df \in C^\infty(\Lambda^s T^* M) \).

如果 \(\omega \in C^\infty(\Lambda^s T^* M) \), \(s \geq 1 \), \(d\omega \) 关于加法的偏线性是明显的。
为了证明 \(d\omega \) 是反称的，只须验证
\[
\begin{aligned}
d\omega(X_1, \ldots, X_i, X_{i+1}, \ldots, X_{s+1}) &= -d\omega(X_1, \ldots, X_{i-1}, X_i, X_{i+1}, \ldots, X_{s+1}).
\end{aligned}
\]
因为
\[
\begin{aligned}
d\omega(X_1, \ldots, X_i, X_{i+1}, \ldots, X_{s+1}) &= \sum_{1 \leq i \leq \ldots \leq s+1} (-1)^{s+1} X_i \omega(X_1, \ldots, X_{s+1}) \\
&+ \sum_{1 \leq i < j \leq s+1} (-1)^{s+2} \omega([X_i, X_j], X_1, \ldots, X_{s+1}) \\
&+ \sum_{j = 1}^{s+1} (-1)^{s+1} X_j \omega(X_1, \ldots, X_{s+1})
\end{aligned}
\]

\[\to 160.\]
\[+ \sum_{i + 1 < j} (-1)^{i+1} \omega([X_i, X_j], X_{i+1}, \ldots, X_n, X_{n+1}, \ldots, \hat{X}_i, \ldots, \hat{X}_j, X_{i+1}, \ldots, X_n) + \sum_{i + 1 < j} (-1)^{i+1} \omega([X_i, X_j], X_{i+1}, \ldots, \hat{X}_j, X_{j+1}, \ldots, X_n) + \sum_{i + 1 < j} (-1)^{i+1} \omega([X_i, X_j], X_{i+1}, \ldots, X_n) + (-1)^{i+1} \omega([X_i, X_{i+1}], \ldots, \hat{X}_i, X_{i+1}, \ldots, X_{n+1}) + \sum_{i + 1 < j} (-1)^{i+1} \omega([X_i, X_j], \ldots, \hat{X}_i, X_{i+1}, \ldots, X_{n+1}) + \sum_{i + 1 < j} (-1)^{i+1} \omega([X_i, X_j], \ldots, \hat{X}_j, X_{j+1}, \ldots, X_n) \]

所以，如果将上式中 \(X_i \) 和 \(X_{i+1} \) 交换，明显地，它等于

\[-d \omega(X_1, \ldots, X_{i+1}, X_i, \ldots, X_{n+1}) \]

由反称性，剩下的仅须证明

\[d \omega(fX_1, X_2, \ldots, X_{n+1}) = (fX_1) \omega(X_1, X_2, \ldots, X_{n+1}) + \sum_{i + 1 < j} (-1)^{i+1} X_i \omega(fX_1, \ldots, \hat{X}_i, \ldots, X_{n+1}) + \sum_{i + 1 < j} (-1)^{i+1} \omega([fX_1, X_j], \hat{X}_1, X_2, \ldots, \hat{X}_j, \ldots, X_{n+1}) + \sum_{i + 1 < j} (-1)^{i+1} \omega([X_i, X_j], fX_1, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_{n+1}) \]

* 161 *
\[= f d \omega(X_1, \cdots, X_{s+1}) + \sum_{i=2}^{s+1} (-1)^{i-1}(X_i f) \omega(X_1, \cdots, \dot{X}_i, \cdots, X_{s+1}) + \sum_{j=0}^{s+1} (-1)^{j+1} \omega(-(X_j f) X_1, \dot{X}_1, X_2, \cdots, \dot{X}_j, \cdots, X_{s+1}) = f d \omega(X_1, \cdots, X_{s+1}). \]

于是，\(d \omega \) 为 \((0, s + 1)\) 型 \(C^\infty \) 场张量，由 § 1 定理 5，它是 \((0, s + 1)\) 型 \(C^\infty \) 张量场，因而 \(d \omega \in C^\infty(\Lambda^{s+1} T^* M) \).

定理 5 设 \(f \in C^\infty(\Lambda^{0} T^* M), \omega \in C^\infty(\Lambda^{s} T^* M), s \geq 1 \)，在局部坐标系 \((U, \varphi), \{x^i\}\) 中，

\[
\omega = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \omega_{i_1 \cdots i_s} dx^{i_1} \wedge \cdots \wedge dx^{i_s},
\]

则

\[
d f = \sum_{i=1}^{n} \partial (f \circ \varphi^{-1}) \frac{\partial}{\partial x^i} d x^i,
\]

\[
d \omega = \sum_{1 \leq i_1 \cdots i_s \leq n} d \omega_{i_1 \cdots i_s} dx^{i_1} \wedge \cdots \wedge dx^{i_s}
\]

\[
= \sum_{1 \leq i_1 \cdots i_s \leq n} \sum_{i=1}^{n} \frac{\partial (\omega_{i_1 \cdots i_s} \circ \varphi^{-1})}{\partial x^i} dx^1 \wedge \cdots \wedge dx^n.
\]

证明 任何 \(p \in U \)，取 \(p \) 的开邻域 \(U_1 \subset U \)，使得在 \(M \) 上有 \(C^\infty \) 向量场 \(X_1, X_i |_{U_1} = \frac{\partial}{\partial x^i}, i = 1, \cdots, n \)。在 \(U_1 \) 中，

\[
d f \left(\frac{\partial}{\partial x^i} \right) = df(X_i) = X_i f = \frac{\partial}{\partial x^i} f = \partial (f \circ \varphi^{-1}),
\]

\[
d f = \sum_{i=1}^{n} df \left(\frac{\partial}{\partial x^i} \right) dx^i = \sum_{i=1}^{n} \partial (f \circ \varphi^{-1}) dx^i.
\]

再证第二式。在 \(U_1 \) 中，由于 \(\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right] = 0 \)，得到
\[
\left(\sum_{1 \leq i_1 < \cdots < i_s \leq n} d\omega_{i_1 \cdots i_s} \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_s} \left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}} \right) \right)
= \sum_{1 \leq i_1 < \cdots < i_s \leq n} \sum (s+1)^s d\omega_{i_1 \cdots i_s} \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_s} \\
\left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}} \right) \\
= d\omega_{i_1 \cdots i_s} \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_s} \left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}} \right)
- d\omega_{i_1 \cdots i_s} \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_s} \left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}} \right)
+ \cdots + (-1)^{s+2} d\omega_{i_1 \cdots i_s} \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_s}
\left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}} \right)
\]

\[= \sum_{i=1}^{s+1} (-1)^{i+1} \frac{\partial (\omega_{i_1 \cdots i_s} \circ \varphi^{-1})}{\partial x^{i_1}} \]

\[= \sum_{i=1}^{s+1} (-1)^{i+1} \frac{\partial}{\partial x^{i_1}} \left(\omega_{i_1 \cdots i_s} \left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}} \right) \right)
+ \sum_{i < j} (-1)^{i+j} \omega \left(\left[\frac{\partial}{\partial x^{i_1}}, \frac{\partial}{\partial x^{i_1}} \right], \frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}}, \cdots, \frac{\partial}{\partial x^{i_1}} \right)
\]

\[= \sum_{i=1}^{s+1} (-1)^{i+1} X_{k_1} \omega (X_{k_1}, \cdots, \hat{X}_{k_1}, \cdots, X_{k_s})
+ \sum_{i < j} (-1)^{i+j} \omega \left([X_{k_1}, X_{k_1}], X_{k_1}, \cdots, \hat{X}_{k_1}, \cdots, \hat{X}_{k_1}, \cdots, X_{k_s}, \cdots, \right)
\]

\[X_{k_{s+1}} = d\omega (X_{k_1}, \cdots, X_{k_{s+1}}) = d\omega \left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_s}} \right), \]

\[k_1 < \cdots < k_{s+1} \]
注 2 从定理 5 可知可看出，在不致混淆的情况下，可以直接
用 $\frac{\partial}{\partial x^i}$ 运算而不再每次引进整体的 X_i。

定理 6 外微分运算 d 具有以下性质:
(1) $d(\omega - \eta) = d\omega + d\eta$,
 $d(\lambda \omega) = \lambda d\omega$, $\omega \in C^\infty (\wedge^* T^* M)$, $\lambda \in \mathbb{R}$
(2) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^r \omega \wedge d\eta$, $\omega \in C^\infty (\wedge^r T^* M)$,
 $\eta \in C^\infty (\wedge^{r+1} T^* M)$;
(3) $d^2 \omega = d(d\omega) = 0$, $\omega \in C^\infty (\wedge^r T^* M)$.
(4) 如果 $\omega_1, \ldots, \omega_k$ 为 C^∞ Pfaff 形式，则

 $d(\omega_1 \wedge \cdots \wedge \omega_k) = \sum_{i=1}^k (-1)^{i-1} \omega_1 \wedge \cdots \wedge d\omega_i \wedge \cdots \wedge \omega_k$

特别地，$d(d(f_1 \wedge \cdots \wedge df_k)) = 0$.

证明 (1) 由定义 6 立即得到。
(2) 由定理 5 和 (1)，在局部坐标系 (U, φ)，(x^i) 中只须证明单项式

$\omega = f dx^i \wedge \cdots \wedge dx^i$, $\eta = g dx^i \wedge \cdots \wedge dx^i$

的情形即可。

$r = s = 0$, $d(f \wedge g) = d(fg) = \sum_{i=1}^n \partial (fg) \cdot \frac{\partial \varphi^{-1}}{\partial x^i} dx^i$

$= \sum_{i=1}^n \partial (g \cdot \varphi^{-1}) dx^i + \sum_{i=1}^n \partial (g \cdot \varphi^{-1}) dx^i$

$= df \wedge g + (-1)^{i-1} dg$.

一般情形，

$d(\omega \wedge \eta) = d(fd x^i \wedge \cdots \wedge dx^i \wedge dx^i \wedge \cdots \wedge dx^i)$

164
\[= d(fg) \wedge dx^1 \wedge \cdots \wedge dx^r \wedge dx^{i1} \wedge \cdots \wedge dx^{is} \]
\[= \left(gd \cdot f + fdg \right) \wedge dx^1 \wedge \cdots \wedge dx^r \wedge dx^{i1} \wedge \cdots \wedge dx^{is} \]
\[- d\omega \wedge \eta + (-1)^s \omega \wedge d\eta.\]

(3) \(s = 0\), \(\omega = f \in C^\infty(\wedge^nT^*M)\).

\[df = \sum_{r=1}^n \frac{\partial(f \circ \varphi^{-1})}{\partial x^i} dx^i,\]

\[d^2 f = d\left(\sum_{r=1}^n \frac{\partial(f \circ \varphi^{-1})}{\partial x^i} dx^i \right) = \sum_{r=1}^n d\left(\frac{\partial(f \circ \varphi^{-1})}{\partial x^i} \right) \wedge dx^i \]
\[= \sum_{i,j=1}^n \frac{\partial^2(f \circ \varphi^{-1})}{\partial x^i \partial x^j} dx^i \wedge dx^j = 0.\]

\(s \geq 1\), 由 (1) 只须证 \(\omega = f dx^1 \wedge \cdots \wedge dx^s\) 情形。因为

\[d\omega = df \wedge dx^1 \wedge \cdots \wedge dx^s,\]

\[d^2 \omega = d\left(\left(\sum_{i=1}^n \frac{\partial(f \circ \varphi^{-1})}{\partial x^i} dx^i \wedge dx^1 \wedge \cdots \wedge dx^s \right) \right)\]
\[= \sum_{i,j=1}^n \frac{\partial^2(f \circ \varphi^{-1})}{\partial x^i \partial x^j} dx^i \wedge dx^j \wedge dx^1 \wedge \cdots \wedge dx^s,\]
\[= \sum_{i<j} \left(\frac{\partial^2(f \circ \varphi^{-1})}{\partial x^i \partial x^j} - \frac{\partial^2(f \circ \varphi^{-1})}{\partial x^j \partial x^i} \right) dx^i \wedge dx^j \wedge dx^1 \wedge \cdots \wedge dx^s = 0.\]

(4) 用 (2) 和归纳法。

定理 7 设 \((M_i, \mathcal{A}_i)\) 为 \(n\) 维 \(C^\infty\) 流形，\(i = 1, 2, f: M_1 \to M\)
为 \(C^\infty\) 映射，\(\omega, \omega_1, \omega_2 \in C^\infty(\wedge^nT^*M_1), \eta \in C^\infty(\wedge^nT^*M_2), \lambda \in C^\infty(\wedge^nT^*M_2) = C^\infty(M_2, \mathbb{R})\)，则

(1) \(f^* \omega \in C^\infty(\wedge^nT^*M_1)\);
(2) \(f^*(\omega_1 + \omega_2) = f^*\omega_1 + f^*\omega_2; \)

(3) \(f^*(\lambda \cdot \omega) = (\lambda \cdot f) \cdot f^*\omega; \)

(4) \(f^*(\omega \wedge \eta) = f^*\omega \wedge f^*\eta; \)

(5) \(f^* \left(\sum_{1 \leq i_1 < \cdots < i_r \leq n} \omega_{i_1 \cdots i_r} \, dy^{i_1} \wedge \cdots \wedge dy^{i_r} \right) \)

\[= \sum_{1 \leq i_1 < \cdots < i_r \leq n} \omega_{i_1 \cdots i_r} \cdot \frac{\partial \left(y^{i_1} \circ f, \ldots, y^{i_r} \circ f \right)}{\partial \left(x^{i_1}, \ldots, x^{i_r} \right)} \, dx^{i_1} \wedge \cdots \wedge dx^{i_r} \]

特例地，\(f^*(dy^i) = \sum_{i=1}^{n_1} \frac{\partial (y^i \circ f)}{\partial x^i} \, dx^i \)（参阅§1定理6）；当\(n_1 = n_2 = \cdots = n_r \)时，

\(f^*(dx^1 \wedge \cdots \wedge dx^n) = (\lambda \cdot f) \cdot \frac{\partial \left(y^1 \circ f, \ldots, y^n \circ f \right)}{\partial \left(x^1, \ldots, x^n \right)} \, dx^1 \wedge \cdots \wedge dx^n. \)

(6) \(d(f^*\omega) = f^*(d\omega) \)，即\(d \)与\(f^* \)可交换。

证明（1）由§1定理，\(f^*\omega \)为\(r \)阶\(C^\infty \)协变张量场，又由定理4(1)可知\(f^*\omega \)是反称的，故\(f^*\omega \in C^\infty(\wedge^r T^* M_1). \)

（2）、（3）、（4）由定理4(2)得到。

（5）由（2）、（3）、（4），\(f^*(dy^i) = \sum_{i=1}^{n_1} \frac{\partial (y^i \circ f)}{\partial x^i} \, dx^i \)和定理4(4)，

\[f^* \left(\sum_{1 \leq i_1 < \cdots < i_r \leq n} \omega_{i_1 \cdots i_r} \, dy^{i_1} \wedge \cdots \wedge dy^{i_r} \right) \]

\[= \sum_{1 \leq i_1 < \cdots < i_r \leq n} \omega_{i_1 \cdots i_r} \cdot \frac{\partial \left(y^{i_1} \circ f, \ldots, y^{i_r} \circ f \right)}{\partial \left(x^{i_1}, \ldots, x^{i_r} \right)} \, dx^{i_1} \wedge \cdots \wedge dx^{i_r}. \]

(6) 设\((U, \varphi), (x^i) \)为\(p \in M_1 \)的局部坐标系，\((V, \psi), (y^i) \)为\(f(p) \in M_2 \)的局部坐标系，显然，

\[f^*(dy^i) = \sum_{i=1}^{n_1} \frac{\partial (y^i \circ f)}{\partial x^i} \, dx^i = d(y^i \circ f) = d(f^*y^i), \]

\[f^*(d\omega_{i_1 \cdots i_r}) = f^* \left(\sum_{a=1}^{n_2} \frac{\partial (\omega_{i_1 \cdots i_r} \circ \psi^{-1})}{\partial y^a} \, dy^a \right) \]

* 166 *
再根据定理 6，
\[
f^*(\partial^a \omega) = \partial^a \left(\sum_{a=1}^{n^2} \partial (\omega_{i_1 \cdots i_m} \circ f) \alpha_{i_j} \wedge \cdots \wedge \alpha_{i_r} \right)
\]
\[
= \sum_{i_1 < i_2 < \cdots < i_m} \partial \left(\omega_{i_1 \cdots i_m} \circ f \right) \alpha_{i_1} \wedge \cdots \wedge \alpha_{i_m}
\]
\[
= \partial \left(\sum_{1 \leq i_1 < \cdots < i_m \leq n^2} (\omega_{i_1 \cdots i_m} \circ f) \wedge \cdots \wedge \alpha_{i_m} \right)
\]
\[
= \partial (\partial^a \omega).
\]

注 3 可以用定理 5 的结论作为外微分 \(\partial^a \) 定义的出发点，然后验证定义与局部坐标系的选取无关（用坐标观点定义 \(\partial^a \)），再推出相应的定理 6, 7 等（参阅[徐森林，247—249 页题 14])。

最后，我们引进闭形式，恰当微分形式，de Rham 上同调群，并叙述 Cartan-de Rham 定理来结束这一节。

定义 7 设 \((M, \partial)\) 为 \(n\) 维 \(C^\infty\) 流形，\(\omega \in C^\infty_*(\Lambda^* T^* M)\)。如果\(\partial \omega = 0\)，则称 \(\omega\) 为闭形式；如果存在 \(\eta \in C^\infty(\Lambda^{n-1} T^* M)\) 使 \(\omega = \partial \eta\)，则称 \(\omega\) 为恰当微分形式或全微分。

定义 8 若 \(\omega \in C^\infty(\Lambda^* T^* M)\) 为恰当微分形式，则 \(\omega\) 为闭形式，但反之不成立。

证明 设 \(\omega = \partial \eta, \eta \in C^\infty(\Lambda^{n-1} T^* M)\)，由定理 6(3)\(, \partial \omega = \partial (\partial \eta) = 0\)，即 \(\omega\) 为闭形式。

例 3（反例）在 \(M = \mathbb{R}^2 - \{(0, 0)\}\) 上定义 \(C^\infty\) Pfaff 形式

\[\]
\[
\omega = -\frac{y}{x^2 + y^2} \frac{dx}{x^2} - \frac{x}{x^2 + y^2} \frac{dy}{y^2}.
\]

显然，
\[
d\omega = -\frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} \, dx \wedge dy + \frac{x^2 - y^2 - 2x^2}{(x^2 + y^2)^2} \, dx \wedge dy
\]

\[
= \left[\frac{x^2 - y^2}{(x^2 + y^2)^2} + \frac{y^2 - x^2}{(x^2 + y^2)^2} \right] \, dx \wedge dy = 0.
\]

故 \(\omega\) 为闭形式，但 \(\omega\) 不是恰当微分形式。反证假设 \(\omega\) 为恰当微分形式，则 \(\omega = d\eta, \eta \in \mathcal{C}^\infty(\Lambda^s T^* M)\)，则
\[
\int_{\partial C} \omega = \int_{C} d\eta \cdot \left[\eta^2 \left. d\theta \cdot \eta(\theta) \right|_0^{2\pi} \right] = \eta(2\pi) - \eta(0) = 0.
\]

这与
\[
\int_{\partial \mathcal{C}_\theta} \omega = \int_{\mathcal{C}_\theta} \frac{-y}{x^2 + y^2} \, dx - \frac{x}{x^2 + y^2} \, dy = \int_{0}^{2\pi} \frac{-\sin \theta}{\cos^2 \theta + \sin^2 \theta} (\sin \theta) \, d\theta + \frac{\cos \theta}{\cos^2 \theta + \sin^2 \theta} \, d\theta = \int_{0}^{2\pi} d\theta = 2\pi \neq 0
\]
相矛盾。其中 \(\mathcal{C}_\theta\) 为逆时针方向的单位圆。

定义 8 二维 \(\mathcal{C}^\infty\) 流形 \((M, \omega)\) 上的 \(s\) 阶 \(\mathcal{C}^\infty\) 外微分形式的全体关于加法自然成簇 \(\mathcal{C}^\infty(\Lambda^s T^* M)\)，而外微分运算 \(\mathcal{D}\) 定义了一个同态
\[
d_s : \mathcal{C}^\infty(\Lambda^s T^* M) \to \mathcal{C}^\infty(\Lambda^{s+1} T^* M), \ s \in \mathbb{Z},
\]
它可线性扩张为 \(d : \mathcal{C}^\infty(\Lambda T^* M) \to \mathcal{C}^\infty(\Lambda T^* M)\)，其中 \(\mathcal{C}^\infty(\Lambda^s T^* M) = \{0\}, s \in \mathbb{Z} - \{0, 1, \ldots, n\}\) 和 \(\mathcal{C}^\infty(\Lambda T^* M) = \bigoplus_{s \in \mathbb{Z}} \mathcal{C}^\infty(\Lambda^s T^* M)\)。设 \(M\) 上的 \(s\) 阶 \(\mathcal{C}^\infty\) 外微分形式所成的加群为
\[
\mathcal{Z}_s(M) = \{ \omega \in \mathcal{C}^\infty(\Lambda^s T^* M) \mid d\omega = 0 \} = \text{Kernel} \ d_s,
\]
而 \(s\) 阶 \(\mathcal{C}^\infty\) 恰当微分形式所成的加群为
\[
\mathcal{B}_s(M) = \{ \omega \in \mathcal{C}^\infty(\Lambda^s T^* M) \mid \omega = d\eta, \eta \in \mathcal{C}^\infty(\Lambda^{s-1} T^* M) \} = \text{Image} \ d_{s-1}.
\]
因为 \(d^2 = 0\)，故 \(\mathcal{B}_s(M) \subseteq \mathcal{Z}_s(M)\)。称商群
\[
\mathcal{Z}_s(M)/\mathcal{B}_s(M).
\]

168.
\[H^s_\varphi(M) = \mathbb{Z}^s_\varphi(M)/B^s_\varphi(M) \]

为 \(M \) 上的第 \(s \) 个 de Rham 上同调群。\(H^s_\varphi(M) \) 中的元素称为 \(s \) 阶
\(C^\infty \) 闭外微分形式的同调类, \(\omega \) 的同调类记为 \([\omega]\)。显然，

\[[\omega_1] = [\omega_2] \iff \omega_1 = \omega_2 + d\eta, \eta \in C^\infty(\wedge^{s-1}T^*M). \]

下面我们不加证明地叙述一个最早由 E. Cartan 猜测的，并在 1931 年由 de Rham 完全证明的重要定理（参阅 [Warner, F. W.])

定理 9（Cartan-De Rham 定理） 设 \((M, \varphi) \) 为 \(n \) 维 \(C^\infty \) 连通流形，则 \(M \) 的 de Rham 上同调群 \(H^s_\varphi(M) = H^s(M, \mathbb{R}) \) 同构于 \(M \) 的实奇异上同调群 \(H^s(M) = H^s(M, \mathbb{R}) \)，即

\[H^s_\varphi(M) \cong H^s(M, \mathbb{R}), s \in \mathbb{Z}. \]

注 4 \(H^s_\varphi(M) \) 由 \(M \) 的微分构造 \(\varphi \) 所决定，而 \(H^s(M) \) 由 \(M \) 的拓扑所决定，二者的同构在微分几何与代数拓扑之间建立了联系。从 de Rham 定理还可看出，由同一个拓扑流形 \(M \) 的二个不同微分构造 \(\varphi_1 \) 和 \(\varphi_2 \) 所决定的 de Rham 上同调群是同构的，即

\[H^s_{\varphi_1}(M) \cong H^s_{\varphi_2}(M). \]

虽然能从 de Rham 定理和计算 \(M \) 的实奇异上同调群得到 \(M \) 的 de Rham 上同调群，但对于一些特殊例子，我们宁可用微分拓扑和分析的方法来计算 de Rham 上同调群，由此也可得到 \(M \) 的实奇异上同调群。

定理 10 设 \((M, \varphi) \) 为 \(n \) 维 \(C^\infty \) 连通流形，则 \(H^1_\varphi(M) \cong \mathbb{R} \)

证明 因为 \(B^1_\varphi(M) = d_{-1}(C^\infty(\wedge^{1}T^*M)) = d_{-1}([0]) = \{0\} \)，
则 \(H^1_\varphi(M) = \mathbb{Z}^1_\varphi(M) = \{ f \in C^\infty(\wedge^0T^*M) | df = 0 \} \)。如果 \(df = 0 \)，则
对任何 \(p \in M \)，存在 \(p \) 的局部坐标系 \((U, \varphi), (x^i) \)，使得

\[\varphi(U) = \{ x = (x^1, \ldots, x^n) \in \mathbb{R}^n | \sum_{i=1}^{n} (x^i)^2 < 1 \}. \]

由
\[0 = df|_V = \sum_{i=1}^{n} \frac{\partial(f \circ \varphi^{-1})}{\partial x^i} dx^i. \]

得到 \[\frac{\partial(f \circ \varphi^{-1})}{\partial x^i} = 0, \quad i = 1, \ldots, n. \]
这就意味着 \(f|_V \) 为常值。由此可知，
\[M_1 = \{ p \in M | f(p) = f(p_0) \} \quad \text{和} \quad M_2 = \{ p \in M | f(p) \neq f(p_0) \} \]
均为开集。因为 \(p_0 \in M_1 \) 和 \(M \) 连通，故 \(M_2 = \emptyset \)，从而 \(M_1 = M \)，即 \(f|_M \) 为常值。于是，
\[H^0_\varphi(M) = Z^0_\varphi(M) = (f \circ \varphi : M \to R \text{ 为常值函数}) \cong R. \]

定理 11 (Poincaré) 设 \(M \subset \mathbb{R}^n \) 为包含 0 的星形状开集：对任何 \(x \in M \)，必有 \(\{ tx | 0 \leq t \leq 1 \} \subset M \)。则
\[H^0_\varphi(M) \cong \begin{cases} \mathbb{R}, & s = 0, \\ \{0, s \in \mathbb{Z} \setminus \{0\}\}, & s < 0. \end{cases} \]

证明 当 \(s = 0 \) 时，由定理 10，\(H^0_\varphi(M) \cong \mathbb{R} \)；当 \(s < 0 \) 时，显然有 \(H^0_\varphi(M) = 0 \)；当 \(s > 0 \) 时，可证 \(Z^0_\varphi(M) = B^0_\varphi(M) \)，故
\[H^0_\varphi(M) = Z^0_\varphi(M)/B^0_\varphi(M) = 0. \]
剩下的只须证 \(Z^0_\varphi(M) = B^0_\varphi(M) \)。为此定义映射
\[I_\varphi : C^\infty(\Lambda^* TM) \to C^\infty(\Lambda^* T_* M), \quad \omega \mapsto I_\varphi(\omega). \]

设 \(\omega = \sum_{1 \leq i_1 < \cdots < i_s \leq n} \omega_{i_1 \cdots i_s} dx^{i_1} \wedge \cdots \wedge dx^{i_s} \)

\[d\omega = \sum_{1 \leq i_1 < \cdots < i_s < i < r} \sum_{j=1}^{n} \frac{\partial \omega_{i_1 \cdots i_s j}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_s} \wedge dx^i, \]

\[I_\varphi(\omega) = \sum_{1 \leq i_1 < \cdots < i_s < i < n} \sum_{s=1}^{n} (-1)^{s-1} \left(\int_0^1 \omega_{i_1 \cdots i_s} (tx) dt \right) \]

\[\cdot x^i dx^{i_1} \wedge \cdots \wedge \hat{x^i} dx^{i_2} \wedge \cdots \wedge dx^{i_s} \]

(因为 \(M \) 为星形状开集，故积分有意义)。

显然，\(I_\varphi(0) = 0 \)，下面可证 \(\omega = d(I_\varphi(\omega)) + I_\varphi(d\omega) \)。因此，如 * 170 *
果 $d\omega = 0$，就可推出 $\omega = d(I_\omega(\omega)) + I_\omega(0) = d(I_\omega(\omega))$。事实上，

$$
\sum_{i_1, i_2, \ldots, i_n \in \mathbb{R}} \sum_{j=1}^{n} (-1)^{a-1} \left(\int_{0}^{1} t^{a-1} \frac{\partial \omega_{i_1 \cdots i_n}}{\partial x^j} (tx) dt \right) \cdot dx^1 \wedge \cdots \wedge dx^n
$$

$$
= \sum_{1 \leq i_1 < \cdots < i_n \leq n} \sum_{j=1}^{n} (-1)^{a-1} \left(\int_{0}^{1} t^{a-1} \omega_{i_1 \cdots i_n} (tx) dt \right) \cdot dx^1 \wedge \cdots \wedge dx^n
$$

$$
= \sum_{1 \leq i_1 < \cdots < i_n \leq n} \left(\int_{0}^{1} t^{a-1} \omega_{i_1 \cdots i_n} (tx) dt \right) \cdot dx^1 \wedge \cdots \wedge dx^n
$$

定理 12 设 (M, \mathcal{O}) 为 n 维 C^∞ 流形，ω 为 M 上的 C^∞ 闭 1 形式，则

(1) ω 是 C^∞ 恰当形式；

\Leftrightarrow (2) 对 M 上的任一分段 C^∞ 定向闭曲线 \mathcal{C}，有 $\int_{\mathcal{C}} \omega = 0$ (外微分形式积分的定义和性质参阅§3)；
\(\Leftrightarrow (3) \) 对 \(M \) 上的任意两点 \(p, q \)，以及连结 \(p, q \) 的任意两条分段
\(C^\infty \) 定向曲线 \(\overline{C}_1, \overline{C}_2 \)，有
\[
\int_{\overline{C}_1} \omega = \int_{\overline{C}_2} \omega.
\]

证明 （1）\(\Rightarrow \)（2）设 \(\omega = d\eta, \eta \in C^\infty(\wedge^0 T^* M) \) \(C^\infty (M, \mathbb{R}) \)，
\(\overline{C} \) 由 \(\sigma : [0, T] \rightarrow M, \sigma(0) = \sigma(T) \) 确定，则
\[
\int_{\overline{C}} \omega = \int_0^T d\eta = \int_0^T \eta(d\theta) \quad (\text{因} \quad \eta(\sigma(0)) = \eta(\sigma(T))) = 0.
\]

（2）\(\Rightarrow \)（3）设 \(\overline{C} \) 由 \(\overline{C}_1 \) 和 \(-\overline{C}_2 \) 组成，由（2）
\[
\int_{\overline{C}_1} \omega - \int_{\overline{C}_2} \omega = \int_{\overline{C}} \omega = 0, \quad \text{故} \quad \int_{\overline{C}_1} \omega = \int_{\overline{C}_2} \omega.
\]

（3）\(\Rightarrow \)（1）显然只需对 \(M \) 的任一道路连通分支 \(M \)，证明存在 \(C^\infty \) 的 \(\eta \)，使 \(d\eta = \omega \)。设 \(p \) 为该连通分支 \(M \) 的一固定点，对任何 \(q \in M \)，令 \(\eta(q) = \int_p^q \omega \)，这里积分沿从 \(p \) 到 \(q \) 的任一定向曲线，由（3）它与选取的定向曲线无关。设 \((U, \varphi), \{ x^i \} \) 为 \(q \) 的局部坐标系，
则
\[
\frac{\partial(\eta \circ \varphi^{-1})}{dx^i} = \lim_{\Delta x^i \to 0} \frac{\eta(\varphi^{-1}(x^1, \ldots, x^{i-1}, x^i + \Delta x^i, x^{i+1}, \ldots, x^n)) - \eta(\varphi^{-1}(x))}{\Delta x^i}
\]
\[
= \lim_{\Delta x^i \to 0} \frac{\int_0^{\Delta x^i} \omega_i \circ \varphi^{-1} dx^i}{\Delta x^i} = \lim_{\Delta x^i \to 0} \omega_i \circ \varphi^{-1}(x^1, \ldots, x^{i-1}, x^i + \theta \Delta x^i, x^{i+1}, \ldots, x^n) = \omega_i \circ \varphi^{-1}(x), \quad \text{且} \quad \eta \in C^\infty(\wedge^0 T^* M) = C^\infty (M, \mathbb{R}).
\]
从而 \(\omega = d\eta \)。

例 4 设 \(M \in \mathbb{R}^n \) 为包含 \(0 \) 的星形成开集，
\[
\omega = \sum_{i=1}^n \omega_i dx^i \quad \text{为} \quad M
\]
上的 \(C^\infty \) 形式。若 \(\omega \) 是恰当的，则存在 \(\eta \in C^\infty(\wedge^c T^* M) \)，使得
\[
\sum_{i=1}^n \omega_i dx^i = \omega = d\eta = \sum_{i=1}^n \partial \eta_i dx^i,
\]
\[
\frac{\partial \eta}{\partial x^i} = \omega_i.
\]

\(\cdot \quad 172 \cdot \)
于是，对 $x \in \mathcal{M}$ 有

$$
\eta(x) = \eta(0) + \int_0^1 \frac{d}{dt} \eta(tx) \, dt = \eta(0) + \sum_{i=1}^n \frac{\partial \eta_i}{\partial x^i}(tx) \cdot x^i \, dt
$$

$$
= \eta(0) + \sum_{i=1}^n \int_0^1 \omega_i(tx) \cdot x^i \, dt,
$$

这说明 η 除差一常数 $\eta(0)$ 外完全由 φ 确定。

如果 φ 为 C 闭 1 形式，即 $d \varphi = 0$，令

$$
\eta(x) = \eta(0) + \sum_{i=1}^n \int_0^1 \omega_i(tx) \cdot x^i \, dt,
$$

其中 $\eta(0)$ 为任意常数。因为 $0 = d \varphi = d \left(\sum_{i=1}^n \omega_i(x) x^i \right) = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial \omega_i}{\partial x^j} \cdot x^i \wedge dx^j = \sum_{i=1}^n \int_0^1 \omega_i(tx) \cdot x^i \, dt \wedge dx^i$, 令 $\frac{\partial \omega_i}{\partial x^j} = \partial \omega_i / \partial x^j$.

于是，

$$
\frac{\partial \eta}{\partial x^j} = \sum_{i=1}^n \left[\int_0^1 \frac{\partial \omega_i(tx)}{\partial x^j} \, x^i \, dt + \int_0^1 \omega_i(tx) \delta^i_j \, dt \right]
$$

$$
= \sum_{i=1}^n \left[\int_0^1 \omega_i(tx) \cdot x^i \, dt + \int_0^1 \omega_i(tx) \delta^i_j \, dt \right]
$$

$$
= \sum_{i=1}^n \left[\int_0^1 \omega_i(tx) \cdot x^i \, dt + \int_0^1 \omega_i(tx) \, dt \right]
$$

$$
= \int_0^1 t \omega_i(tx) \, dt + \int_0^1 \omega_i(tx) \, dt
$$

于是 $d \eta = \sum_{j=1}^n \frac{\partial \eta}{\partial x^j} \, dx^j = \sum_{j=1}^n \omega_j \, dx^j = \omega$.

... 173 ...
此时，\(Z^1(M) = B^1(M), H^1(M) = 0. \)

例 5 设 \(M \subseteq \mathbb{R}^n \) 为开集，且对任何 \(p, q \in M \)，任何连结 \(p, q \) 的平行坐标轴的一固定顺序的折线 (例如，先平行 \(x^1 \) 轴，再平行 \(x^2 \) 轴) 全在 \(M \) 中。\(\omega \) 为 \(M \) 上的 \(C^\infty \) 闭 1 形式，即 \(d \omega = 0 \)。令

\[
\eta(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{i} \omega_j(x, x^i, \ldots, x^j, x^{j+1}, \ldots, x^n) \right) dx^i,
\]

其中 \(x_0 \in M \) 为固定点，\(x \in M \)。则

\[
\frac{\partial \eta}{\partial x^j} = \frac{\partial}{\partial x^j} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{i} \omega_j(x, x^i, \ldots, x^j, x^{j+1}, \ldots, x^n) \right) dx^i \right)
= \omega_j(x, \ldots, x^i, x^{j+1}, \ldots, x^n)
+ \sum_{i=j+1}^{n} \left(\sum_{j=1}^{i} \frac{\partial \omega_j}{\partial x^i}(x, \ldots, x^i, x^{j+1}, \ldots, x^n) \right) dx^i
= \omega_j(x, \ldots, x^i, x^{j+1}, \ldots, x^n)
+ \sum_{i=j+1}^{n} \left(\sum_{j=1}^{i} \frac{\partial \omega_j}{\partial x^i}(x, \ldots, x^i, x^{j+1}, \ldots, x^n) \right) dx^i
\]

\(= \omega_j(x, \ldots, x^i, x^{j+1}, \ldots, x^n) + \sum_{i=j+1}^{n} \left[\omega_j(x, \ldots, x^i, x^{i+1}, \ldots, x^n) \right] = \omega_j(x, \ldots, x^n). \)

于是，\(d \eta = \sum_{i=1}^{n} \frac{\partial \eta}{\partial x^i} dx^i = \sum_{i=1}^{n} \omega_j dx^j = 0 \)。此时，\(Z^1(M) = B^1(M) \),

\(H^1(M) = 0. \)

例 6 设 \((S^1, \omega) \) 为通常的 \(C^\infty \) 流形，则

\[
H^s_s(S^1) \cong \begin{cases} \mathbb{R}, & s = 0, 1, \\ 0, & s = 0, 1, s \in \mathbb{Z}. \end{cases}
\]

* 174 *
显然只须证 \(H^1_\theta(S^1) \cong \mathbb{R} \).

因为当 \(s > 1 \) 时不存在 \(S^1 \) 上的非 \(0 \) 形式，故 \(Z^1_\theta(S^1) = C^\infty(A^1 T^* S^1) \), \(\bigcup B_\delta(S^1) \cdot \{ df \mid f \in C^\infty(A^1 T^* S^1) \} \). 如果 \(\theta \) 表示 \(S^1 \) 上点的极坐标的极角，则 \(\frac{\partial}{\partial \theta} \) 为 \(S^1 \) 上的整体 \(C^\infty \) 处处非 0 切向量场，而它的对偶 \(1 \) 形式 \(d\theta \) 是 \(S^1 \) 上的整体 \(C^\infty \) 处处非 0 的 \(1 \) 形式，此外 \(d\theta \) 不是恰当的（注意 \(\theta \) 不是整体的 \(C^\infty \) 函数），但是，对于 \(S^1 \)上的任意 \(C^\infty \) 1 形式 \(\omega = g(t) dt \),

\[
\eta(\theta) = \int_0^\theta g(t) \, dt - \left(\frac{1}{2\pi} \int_0^{2\pi} g(t) \, dt \right) \theta
\]

是以 \(2\pi \) 为周期的 \(C^\infty \) 函数，即 \(\eta \) 为 \(S^1 \) 上的 \(C^\infty \) 函数，且

\[
d\eta = g(\theta) d\theta - \left(\frac{1}{2\pi} \int_0^{2\pi} g(t) \, dt \right) d\theta
\]

它为 \(S^1 \) 上的 \(C^\infty \) 恰当 1 形式，因而 \(\omega = \frac{1}{2\pi} \int_0^{2\pi} g(t) \, dt \, [d\theta] \),

\[
H^1_\theta(S^1) = Z^1_\theta(S^1) / B^1_\delta(S^1) \cong \{ \lambda d\theta \mid \lambda \in \mathbb{R} \} \cong \mathbb{R}.
\]

例 7 设 \(M = \mathbb{R}^2 - \{(0,0)\} \) 为 \(\mathbb{R}^2 \) 的普通的 \(C^\infty \) 开子流形，则

\[
H^s_\theta(M) = \begin{cases} \mathbb{R}, & s = 0, 1, \\ \{0\}, & s \neq 0, 1, \text{ } s \in \mathbb{Z}. \end{cases}
\]

因为 \(M \) 连通，由定理 10 可知 \(H^1_\theta(M) = \mathbb{R} \).

设 \(\omega \in Z^1_\theta(M) \), 则 \(\omega - \frac{1}{2\pi} \left(\int_{\partial_1} \omega \left(\frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy \right) \right) \)

\(\in Z^1_\theta(M) \), 其中 \(\partial_1 \) 为逆时针方向的单位圆。容易看出，对 \(M \) 上的任一分段 \(C^\infty \) 定向闭曲线 \(\partial_1 \), 有

\[
\int_{\partial_1} \left[\omega - \frac{1}{2\pi} \left(\int_{\partial_1} \omega \left(\frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy \right) \right) \right] = 0,
\]

\(\bullet \) 175 \(\bullet \)
再根据定义12(2), 有
\[\frac{1}{2\pi} \left(\frac{1}{x^2 + y^2} \right) \frac{\partial}{\partial r} \omega \left(x, \frac{y}{x^2 + y^2} \right) \in B_\omega(M), \]

因此, \[[\omega] = \frac{1}{2\pi} \left(\frac{1}{x^2 + y^2} \right) \left(\frac{-y}{x^2 + y^2} \right) dx + \frac{x}{x^2 + y^2} dy \]

\[H^1_\omega(M) = Z^1_\omega(M) / B_\omega(M) \simeq \left\{ \lambda \left(\frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \right) \left| \lambda \in \mathbb{R} \right. \right\} \]

\[\simeq \mathbb{R}. \]

设 \(\omega = a(r, \theta) dr \wedge d\theta \in C^\infty(\Lambda^2 T^* M) \), 因为 \(C^\infty(\Lambda^2 T^* M) \cdot 0 \), 且
\(\Lambda^2 T^* M = Z_\omega(M) \), 令选 \(Pd\theta + Qd\theta \in C^\infty(\Lambda^2 T^* M) \), 使得
\[adr \wedge d\theta = d(Pd\theta + Qd\theta) = \left(\frac{\partial Q}{\partial r} - \frac{2P}{r^2} \right) dr \wedge d\theta. \]

我们有
\[\begin{cases}
 P = 0 \\
 \frac{\partial Q}{\partial r} = a,
\end{cases} \]

故
\[Q = \int_{r_1}^r a(r, \theta) dr, \quad \omega = d \left(\left(\int_{r_1}^r a(r, \theta) dr \right) d\theta \right), \]
其中, \(r_1, r_\in (0, +\infty) \). 这就证明了 \(C^\infty(\Lambda^2 T^* M) = Z_\omega(M) = B_\omega(M), \quad H^1_\omega(M) = Z^1_\omega(M) / B_\omega(M) = 0 \). 于是, 对任何 \(p \in \mathbb{R}^2 \) 有
\[H^1_\omega(\mathbb{R}^2 - p) = \begin{cases}
 \mathbb{R}, & s = 0, 1, \\
 0, & s \in \mathbb{Z} - \{0, 1\}.
\end{cases} \]

例8 设 \(p, q \in \mathbb{R}^2, p \neq q \). 下面证明
\[H^1_\omega(\mathbb{R}^2 - \{p, q\}) = \begin{cases}
 \mathbb{R}, & s = 0, \\
 \mathbb{R} \oplus \mathbb{R}, & s = 1, \\
 0, & s \in \mathbb{Z} - \{0, 1\}.
\end{cases} \]

因为 \(\mathbb{R}^2 - \{p, q\} \) 连通, 故 \(H^1_\omega(\mathbb{R}^2 - \{p, q\}) = \mathbb{R} \). 类似 \(\mathbb{R}^2 - p \) 可证, 对任何 \(\omega \in Z^1_\omega(\mathbb{R}^2 - \{p, q\}) \) 有
\[[\omega] = \left(\int_{r_1}^r \omega \right) [\omega_1] + \left(\int_{r_2}^r \omega \right) [\omega_2], \]

* 176 *
其中 $C_1: (x-p_1)^2 + (y-q_1)^2 = r^2$, $C_2: (x-p_2)^2 + (y-q_2)^2 = r^2$,
其中 $p = (p_1, p_2), q = (q_1, q_2)$, 定义为逆时针方向；

$$\omega_1 = \frac{1}{2\pi} \int \frac{(y-q_2)dx - (x-q_2)dy}{(x-p_1)^2 + (y-q_2)^2},$$
$$\omega_2 = \frac{1}{2\pi} \int \frac{(y-p_2)dx - (x-p_2)dy}{(x-q_1)^2 + (y-q_2)^2}.$$

如果 $\lambda \omega_1 + \mu \omega_2 = \lambda \omega_1 + \mu \omega_2 = 0$, 则 $\lambda \omega_1 + \mu \omega_2 = d\eta$, 于是,

$$0 = \oint \omega_1 + \mu \oint \omega_2 = \lambda + \mu \cdot 0 = \lambda,$$
同理 $\mu = 0$, 这就证明了 $[\omega_1]$ 和 $[\omega_2]$ 是线性无关的, 由此得到 $H^1_\nu (\mathbb{R}^2 - \{p, q\}) = \mathbb{R} \oplus \mathbb{R}$.

再证 $H^1_\mu (\mathbb{R}^2 - \{p, q\}) = 0$. 为方便, 不妨设 $p = (-1, 0), q = (1, 0)$. 令

$$U = \left\{ (x, y) \left| x < \frac{1}{2} \right\} \cap (\mathbb{R}^2 - \{p, q\}),$$
$$V = \left\{ (x, y) \left| x > \frac{1}{2} \right\} \cap (\mathbb{R}^2 - \{p, q\}),$$

则 $U \cup V = \mathbb{R}^2 - \{p, q\}$. 设 (ρ_U, ρ_V) 为从属于 U, V 的广义单位分解, 对任何 $f \in C^\infty (\mathbb{R}^2 - \{p, q\}, \mathbb{R}), \rho_U f \in C^\infty (\mathbb{R}^2 - p, \mathbb{R}), (\rho_U f) (q) = 0, \rho_U f \in C^\infty (\mathbb{R}^2 - \{p, q\}, \mathbb{R}), (\rho_V f) (p) = 0$, 由例 $7, \rho_U f dx \wedge dy \in B_{\mu}^2 (\mathbb{R}^2 - p)$ 和 $\rho_V f dx \wedge dy \in B_{\nu}^2 (\mathbb{R}^2 - q)$, 因而 $\int dx \wedge dy = \rho_U f dx \wedge dy + \rho_V f dx \wedge dy \in B_{\mu}^2 (\mathbb{R}^2 - \{p, q\}), H^1_\nu (\mathbb{R}^2 - \{p, q\}) = 0$.

注 5 为计算 $H^1_\nu (\mathbb{R}^2 - \{p, q\}) = \mathbb{R} \oplus \mathbb{R}$, 定义映射

$$\omega \mapsto \left(\int_{\nu_1} \omega, \int_{\nu_2} \omega \right),$$

$\cdot 177 \cdot$
显然, $\omega = \lambda \omega_1 + \mu \omega_2 \to (\lambda, \mu)$, 故 $\text{Im} \int = R \mathbin{\bigoplus} R$, 即 \setminus 为满射, 且
$$\omega \in B^1_R (R^2 \setminus \{p, q\}) \iff \text{对 } R^2 \setminus \{p, q\} \text{中任一分段 } C^1 \text{定向闭曲线 } \gamma \text{有 } \int_{\gamma} \omega = \left(\int_{\gamma_1} \omega, \int_{\gamma_2} \omega \right) = (0, 0). \quad \text{即 } B^1_R (R^2 \setminus \{p, q\}) = \ker \int \text{ 由同}
$$
构定理, $H^1_R (R^2 \setminus \{p, \ q\} \cdot Z^1_R (R^2 \setminus \{p, q\}) / B^1_R (R^2 \setminus \{p, q\}) = Z^1_R (R^2 \setminus \{p, q\}) / \ker \int \cong R \mathbin{\bigoplus} R$.

类似地, 读者可以证明 $(p, p, i \neq j)$
$$H^1_R (R^2 \setminus \{p_1, \ldots, p_m\}) = \begin{cases} R, & s = 0, \\ R \mathbin{\bigoplus} \cdots \mathbin{\bigoplus} R, & s = 1, \\ 0, & s \in \mathbb{Z} \setminus \{0, 1\}. \end{cases} \quad \text{上同调群是相同的. 从拓扑的观点来看是自然的. 因为 } F; [0, 1] \times M \to M, F(t, x) = (1 - t)x + t \frac{x}{\|x\|}, F(0, x) = x, F(1, x) = \frac{x}{\|x\|}, \\ F(t, x) = x (x \in S^1) \text{, 故 } S^1 \text{ 为 } M \text{ 的强形变收缩核和它的实奇异上同调群是相同的, 再由 } \text{de Rham 定理, 它们的 de Rham 上同调群也应相同.}$

例 9 设 $M \subset \mathbb{R}^3$ 为区域, 且存在 $(x_0, y_0, z_0) \in M$ 使得对任何 $(x, y, z) \in M$, 连 (x_0, y_0, z_0) 和 (x, y, z_0), 连 (x_0, y, z_0) 和 (x, y, z_0). 连 (x_0, y, z_0) 和 (x, y, z) 得到的折线全在 M 中, $\omega \in C^1 (\wedge^b T^* M)$, 则
$$H^3_R (M) = Z^3_R (M) / B^3_R (M) = 0 \text{, 即 } \quad d\omega = 0 \iff \omega \text{ 为 } C^1 \text{ 恰当微分形式.}$

由定理 8 只须证明: $d\omega = 0 \to \omega \text{ 为 } C^1 \text{ 恰当微分形式. 设 }$
$$\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy.$$

为求 η 使 $d\eta = \omega$, 我们可先从缺一项的 C^1-形式中去寻找(简 • 178 •
单！），例如缺 dz 项，令 $\eta = u dx + v dy$，其中 u, v 为待定函数。于是，

$$
P \frac{\partial y}{\partial z} + Q \frac{\partial z}{\partial x} + R dx \wedge dy = \omega = d \eta
$$

即

$$
\begin{align}
- \frac{\partial v}{\partial z} &= P \\
\frac{\partial u}{\partial z} &= Q \\
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} &= R
\end{align}
$$

由 (1) 得 $v(x, y, z) = - \int_{z_0}^{z} P(x, y, z_0) dz,$

由 (2) 得 $u(x, y, z) = \int_{z_0}^{z} Q(x, y, z_0) dz + f(x, y).$

其中 $f \in C^\infty (M; R)$ 是待定的，再选 f 使它满足 (3)，为此将 (4), (5) 代入 (3) 得

$$
- \int_{z_0}^{z} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dz - \frac{\partial f}{\partial y} = R
$$

因为 $0 = d \omega = \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx \wedge dy \wedge dz = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0,$

所以 (6) 成为

$$
R(x, y, z) - R(x, y, z_0) - \frac{\partial f}{\partial y} = \int_{z_0}^{z} \frac{\partial R}{\partial z} dz = - \frac{\partial f}{\partial y} = R(x, y, z),
$$

$$
\frac{\partial f}{\partial y} = - R(x, y, z_0),
$$

$$
f(x, y) = - \int_{z_0}^{z} R(x, y, z_0) dy,
$$

将 (7) 代入 (5) 得 u。通过直接计算可知，对

$$
\eta = u dx + v dy = \left(\int_{z_0}^{z} Q(x, y, z_0) dz - \int_{y}^{y} R(x, y, z_0) dy \right) dx
$$
\[-\left(\int_{z_0}^{z} P(x, y, z) \, dz \right) \, dy,\]

就应有 \(\omega = d\eta\).

注 7 关于 de Rham 上同调群的计算，Mayer-Vietoris 序列以及有关进一步的理论可参阅[Bott, R. and Tu, L. W.].

§ 3 \(C^\infty\) 流形的定向和 Stokes 定理

定义 1 设 \((M, \mathcal{D})\) 为 \(n\) 维 \(C^\infty\) 流形，\(\xi = \{TM, M, \pi, GL(n, \mathbb{R}), \mathbb{R}^n\}\) 为切丛，如果切丛 \(\xi\) 或 \(TM\) 作为 \(C^\infty\) 向量丛是可定向的（参阅第二章 §2 定义 7 和第二章 §3 定义 3），则称流形 \((M, \mathcal{D})\) 为可定向的；如果切丛作为 \(C^\infty\) 向量丛是不可定向的，则称流形 \((M, \mathcal{D})\) 为不可定向的。

第二章 §3 定义 3 中的转换映射为

\[
g_{a\alpha}(p) = \begin{pmatrix}
\frac{\partial y^1}{\partial x^1} & \ldots & \frac{\partial y^1}{\partial x^n} \\
\vdots & \ddots & \vdots \\
\frac{\partial y^n}{\partial x^1} & \ldots & \frac{\partial y^n}{\partial x^n}
\end{pmatrix}
\in GL(n, \mathbb{R}),
\]

第二章 §2 定义 7, 8 和定理 3, 4, 5, 6, 7，对于 \(C^\infty\) 切丛自然是成立的，再根据第二章 §2 定理 3 可知，对于 \(n\) 维 \(C^\infty\) 流形 \((M, \mathcal{D})\)，上述定义 1 等价于

定义 1’ 设 \((M, \mathcal{D})\) 为 \(n\) 维 \(C^\infty\) 流形，如果存在 \(\mathcal{D}' \subset \mathcal{D}\) 满足:

1. \(\{U \mid (U, \varphi) \in \mathcal{D}'\}\) 复盖 \(M\);
2. 如果 \((U, \varphi), (U', \varphi') \in \mathcal{D}', (x^i) \in \mathcal{D}'_i, (y^j) \in \mathcal{D}'_j\)

则有

\[
\frac{\partial (x^1, \ldots, x^n)}{\partial (y^1, \ldots, y^n)} \bigg|_{\varphi_{\alpha}(U \cap U')} > 0,
\]

即

\(\cdot 180 \cdot\)
则称 \((M, \mathcal{D})\) 为可定向的。

如果存在 \(\mathcal{D}_1 \subset \mathcal{D}\) 满足(1) (2) 及 (3) 最大性: 如果 \((U, \phi) \in \mathcal{D}\)
与任何 \((U_1, \phi_1) \in \mathcal{D}\) 满足 (2), 则 \((U, \phi) \in \mathcal{D}_1\)。换句话说, \((U, \phi) \in \mathcal{D}\)
则至少存在一个 \((U_1, \phi_1) \in \mathcal{D}_1\), 它与 \((U, \phi)\) 不满足 (2)。则称
\(\mathcal{D}_1\) 为 \((M, \mathcal{D})\) 的一个定向。

一个定向流形指的是三序组 \((M, \mathcal{D}, \mathcal{D}_1)\), 其中 \(\mathcal{D}_1\) 为 \((M, \mathcal{D})\)
的一个定向。

如果 \((M, \mathcal{D})\) 不是可定向的，则称它为不可定向的。

显然, 如果 \(\mathcal{D}_1\) 满足 (1) (2), 则 \(\mathcal{D}_1 = \{(U, \phi) \mid (U, \phi) \in \mathcal{D}\}\) 且
与 \(\mathcal{D}\) 中的元素满足 (2) 为 \((M, \mathcal{D})\) 的一个定向。

此外, 如果 \(\mathcal{D}_1\) 为 \((M, \mathcal{D})\) 的一个定向, 则 \(\mathcal{D}_1 = \{(U, \rho_\alpha \circ \phi) \mid
(U, \phi) \in \mathcal{D}\}\) 为 \((M, \mathcal{D})\) 的另一个定向, 其中 \(\rho_\alpha : \mathbb{R}^n \to \mathbb{R}^n, \rho_\alpha (x^1, \cdots, x^{n-1}, x^n) = (x^1, \cdots, x^{n-1}, -x^n)\)。

利用 \(n\) 次 \(C^\infty\) 微分形式可以给出 \(C^\infty\) 流形可定向的充分条件
和必要条件。

定理 1 令 \((M, \mathcal{D})\) 为 \(n\) 维 \(C^\infty\) 流形。

(1) 如果存在 \(M\) 上的一个处处非 0 的 \(n\) 次 \(C^\infty\) 微分形式 \(\omega\),
则 \(M\) 是可定向的。

(2) 如果 \((M, \mathcal{D})\) 又是可定向的形紧流形, 则存在 \(M\) 上的处处
非 0 的 \(n\) 次 \(C^\infty\) 微分形式 \(\omega\).

- 181 -
证明 (1) 设 \((U, \varphi), \{x^i\} \in \mathcal{O}_1\) 且 \(U\) 为连通, 因而有 \(C^\infty\) 函数 \(f_0\) 使 \(U \rightarrow \mathbb{R}\) 使得 \(\omega = f_0 \, dx^1 \wedge \cdots \wedge dx^n\). 因为 \(\omega\) 处处非零, 且 \(f_0\) 在 \(U\) 上也处处非零. 根据连续函数的 0 值定理, \(f_0|_U > 0\) 或 \(f_0|_V < 0\), 令
\[
\mathcal{O}_1 = \{(U, \varphi) \in \mathcal{O} | f_0 > 0\}
\]
(其中 \(U\) 不必连通) 则 \(\mathcal{O}_1\) 为 \(M\) 上的一个定向.

任何 \(p \in M\), 如果在 \(p\) 的连通的局部坐标系中 \(f_0|_U < 0\), 则在 \(p\) 的新局部坐标系 \((U, \rho \circ \varphi)\) 中, \(f_0|_{\rho \circ \varphi} > 0\). 于是, \(\mathcal{O}_1\) 满足定义 1' 中的(1).

如果 \((U, \varphi), \{x^i\} \in \mathcal{O}_1, (V, \psi), \{y^i\} \in \mathcal{O}_1, \) 且 \(U \cap V \cong \mathbb{R}\), 则在 \(U \cap V\) 上有
\[
\frac{\partial (x^1, \ldots, x^n)}{\partial (y^1, \ldots, y^n)} \, dy^1 \wedge \cdots \wedge dy^n = dx^1 \wedge \cdots \wedge dx^n = \frac{f_0}{f_0} \, dy^1 \wedge \cdots \wedge dy^n,
\]
故
\[
\frac{\partial (x^1, \ldots, x^n)}{\partial (y^1, \ldots, y^n)} = \frac{f_0}{f_0} > 0.
\]
于是, \(\mathcal{O}_1\) 满足定义 1' 中的(2).

如果 \((V, \psi) \in \mathcal{O}_1\), 且与任何 \((U, \varphi) \in \mathcal{O}_1\) 满足定义 1' 中的(2), 则
\[
\frac{f_0}{f_0} = \frac{\partial (x^1, \ldots, x^n)}{\partial (y^1, \ldots, y^n)} > 0.
\]
又因 \(f_0 > 0\), 故 \(f_0 > 0\) 且 \((V, \psi) \in \mathcal{O}_1\), 这就证明了 \(\mathcal{O}_1\) 满足定义 1' 中的(3).

(2) 设 \(\mathcal{O}_1\) 为 \(M\) 的一个定向, 则 \(\{U \cap (U, \varphi) \in \mathcal{O}_1\}\) 为 \(M\) 的一个开覆盖, 因为 \(M\) 是紧的, 所以有局部有限的开基至 \(\{U_a \cap (U_a, \varphi_a) \in \mathcal{O}_1, a \in \Gamma\}\), 而 \(\{g_a | a \in \Gamma\}\) 为从属于它的单位分解. 设 \(\{\alpha^i\}\) 为 \((U_a, \varphi_a)\) 的局部坐标, 定义
\[
\omega = \sum_{a \in \Gamma} g_a \, d\alpha^1 \wedge \cdots \wedge d\alpha^n,
\]
- 182 -
显然 ω 为 M 上的 n 次 C^∞ 微分形式，只须证 ω 处处非 0。

对于任何 $p \in M$，取 p 的局部坐标系 $(U, \phi), \{y^i\} \in \mathcal{O}$，于是若 $p \in U \cap U_e$ 时，则在 $U \cap U_e$ 上有

$$dx^1 \wedge \cdots \wedge dx^a \cdot f_a dy^1 \wedge \cdots \wedge dy^n.$$

因为 $(U, \phi), (U_e, \phi_e) \in \mathcal{O}$，故 $f_a |_{U \cap U_e} > 0, f_a (p) > 0, f_a (p) g_a (p) \geq 0$，再由 $\sum_{a \in I} g_a (p) = 1$，必存在 $g_a (p) > 0$，且有 $f_a (p) g_a (p) > 0$

$$\sum_{a \in I} \omega_p \sum_{a \in I} g_a (p) dx^1 \wedge \cdots \wedge dx^a = (\sum_{a \in I} f_a (p) g_a (p) dy^1 \wedge \cdots \wedge dy^n)\equiv 0.$$

定理 2 设 (M, ω) 为 \mathbb{R}^{n+1} 中的 n 维 C^∞ 正则子流形，则

(1) M 存在连续映射向量场，即存在连续映射

$$N : M \to T \mathbb{R}^{n+1},$$

$$x \to N (x) \perp I_{x, x} (T_x M), N (x) \equiv 0,$$

其中 $I : M \to \mathbb{R}^{n+1}$ 为包含映射。

(3) M 上存在连续的单位法向量场。

证明 (3) \Rightarrow (2) 显然。

(2) \Rightarrow (1) 设 $\{x^i | i = 1, \cdots, n+1\}$ 为 \mathbb{R}^{n+1} 中的通常的整体坐标，

取 M 的连通的局部坐标系

$$(u_1, \phi_1), \{u^i | i = 1, \cdots, n\}$$

和 $(U_2, \phi_2), \{v^i | i = 1, \cdots, n\}$，使得

$$\left[\frac{\partial}{\partial u^1}, \cdots, \frac{\partial}{\partial u^n}, N \right] = \left[\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^{n+1}} \right]$$

(只要有一点满足此式，则由 U_1 连通，N 连续和 0 值定理推出此

183
式在 U_1 中成立，其中 $\frac{\partial}{\partial u^i} = I_{\cdot} \left(\frac{\partial}{\partial u^i} \right)$，

$$
\begin{bmatrix}
\frac{\partial}{\partial v^1}, & \cdots, & \frac{\partial}{\partial v^n}, & N
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial}{\partial x^1}, & \cdots, & \frac{\partial}{\partial x^{n+1}}
\end{bmatrix}.
$$

则当 $U_1 \cap U_2 = \emptyset$ 时，在 $U_1 \cap U_2$ 中有

$$
\begin{bmatrix}
\frac{\partial}{\partial v^1} \\
\frac{\partial}{\partial v^2} \\
\vdots \\
\frac{\partial}{\partial v^n} \\
N
\end{bmatrix}
\begin{bmatrix}
\frac{\partial u^1}{\partial v^1} & \cdots & \frac{\partial u^i}{\partial v^1} & \cdots & \frac{\partial u^n}{\partial v^1} \\
\frac{\partial u^1}{\partial v^2} & \cdots & \frac{\partial u^i}{\partial v^2} & \cdots & \frac{\partial u^n}{\partial v^2} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
\frac{\partial u^1}{\partial v^n} & \cdots & \frac{\partial u^i}{\partial v^n} & \cdots & \frac{\partial u^n}{\partial v^n} \\
0 & \cdots & 0 & 1 & N
\end{bmatrix}
$$

故

$$
\frac{\partial (u^1, \ldots, u^n)}{\partial (v^1, \ldots, v^n)} = \det
\begin{bmatrix}
\frac{\partial u^1}{\partial v^1} & \cdots & \frac{\partial u^n}{\partial v^1} & 0 \\
\frac{\partial u^1}{\partial v^2} & \cdots & \frac{\partial u^n}{\partial v^2} & \cdots & \vdots \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
\frac{\partial u^1}{\partial v^n} & \cdots & \frac{\partial u^n}{\partial v^n} & 0
\end{bmatrix} > 0,
$$

$$
D_1 = \{(U, \varphi), \{u^i\} : \begin{bmatrix}
\frac{\partial}{\partial u^1}, & \cdots, & \frac{\partial}{\partial u^n}, & N
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial}{\partial x^1}, & \cdots, & \frac{\partial}{\partial x^{n+1}}
\end{bmatrix}\}
$$

为 M 上的一个定向，从而 M 是可定向的。

(1) \Rightarrow (3) 设 $D_1 = \{(U_{\alpha}, \varphi_{\alpha}), \{u^i_{\alpha}\} : \alpha \in \Gamma\}$ 为 M 的一个定向，

$$(U_{\alpha}, \varphi_{\alpha}), \{u^i_{\alpha}\} \in D_1,$$

$$
\begin{bmatrix}
\frac{\partial}{\partial v_{\alpha}^1} \\
\vdots \\
\frac{\partial}{\partial v_{\alpha}^n}
\end{bmatrix} =
\begin{bmatrix}
c_{11} & \cdots & c_{1n+1}^i \\
\vdots & \cdots & \vdots \\
c_{n1} & \cdots & c_{nn+1}^i
\end{bmatrix}
\begin{bmatrix}
\frac{\partial}{\partial x^1} \\
\vdots \\
\frac{\partial}{\partial x^{n+1}}
\end{bmatrix}.
$$

• 184 •
令 \(N^i = (-1)^{i+n-1} \det \begin{pmatrix} c^0_{1i} & \cdots & c^0_{i-1} & c^0_{i+1} & \cdots & c^0_{n+1} \\ \vdots & & \vdots & \vdots & & \vdots \\ c^a_{1i} & \cdots & c^a_{i-1} & c^a_{i+1} & \cdots & c^a_{n+1} \end{pmatrix} \),

\[
N_a = \pm \frac{1}{\sqrt{\sum_{i=1}^{n+1} (N^i_a)^2}} (N^1_a, \ldots, N^{n+1}_a)
\]

其中 \(\pm 1 \) 选得使

\[
\left[\frac{\partial}{\partial u^1_\alpha}, \ldots, \frac{\partial}{\partial u^n_\alpha}, N_\alpha \right] = \left[\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^{n+1}} \right].
\]

由于 \(c^0_{ij} \) 为 \(U_\alpha \) 上的 \(C^\infty \) 函数，\(\text{rank}(c^0_{ij}) = n \)，可知 \(N_\alpha \) 是定义明确的，且为 \(U_\alpha \) 上的 \(C^\infty \) 函数。

如果 \((U_\beta, \varphi_\beta), \{u^i_\beta\} \in \mathcal{W} \)，类似可得到 \(U_\beta \) 上的 \(C^\infty \) 单位法向量场 \(N_\beta \)，使得

\[
\left[\frac{\partial}{\partial u^1_\beta}, \ldots, \frac{\partial}{\partial u^n_\beta}, N_\beta \right] = \left[\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^{n+1}} \right].
\]

于是

\[
\begin{pmatrix}
\frac{\partial}{\partial u^1_\beta} \\
\vdots \\
\frac{\partial}{\partial u^n_\beta} \\
N_\beta
\end{pmatrix}
= \begin{pmatrix}
\frac{\partial u^1_\beta}{\partial v^1} & \cdots & \frac{\partial u^n_\beta}{\partial v^1} & 0 \\
\vdots & & \vdots & \vdots \\
\frac{\partial u^1_\beta}{\partial v^n} & \cdots & \frac{\partial u^n_\beta}{\partial v^n} & 0 \\
0 & \cdots & 0 & \delta_{\beta \alpha}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial}{\partial u^1_\alpha} \\
\vdots \\
\frac{\partial}{\partial u^n_\alpha} \\
N_\alpha
\end{pmatrix},
\]

其中 \(\delta_{\beta \alpha} = \pm 1 \)。由

\[
\frac{\partial (u^1_\alpha, \ldots, u^n_\alpha)}{\partial (u^1_\beta, \ldots, u^n_\beta)} \delta_{\beta \alpha} = \det \begin{pmatrix}
\frac{\partial u^1_\beta}{\partial u^1_\alpha} & \cdots & \frac{\partial u^n_\beta}{\partial u^1_\alpha} & 0 \\
\vdots & & \vdots & \vdots \\
\frac{\partial u^1_\beta}{\partial u^n_\alpha} & \cdots & \frac{\partial u^n_\beta}{\partial u^n_\alpha} & 0 \\
0 & \cdots & 0 & \delta_{\beta \alpha}
\end{pmatrix} > 0
\]

185
和 $\frac{\partial (u_1, \cdots, u_n)}{\partial (u'_1, \cdots, u'_n)} > 0$ 推出 $\delta_{\alpha} = 1$. 因此，我们可以拼成一个 M 上的整体 C^∞ 单位法向量场。

现在我们用各种方法来证明一些 n 维 C^∞ 流形 (M, \mathcal{O}) 是可定向的还是不可定向的。

例 1 (1) 设 (M, \mathcal{O}) 为 n 维 C^∞ 可平行的流形，即存在整体的 C^∞ 基向量场 $\{X_i | i = 1, \cdots, n\}$，或切从 TM 为平凡向量丛，则 M 是可定向的。

更进一步，如果存在 M 上的整体 C^1（即连续）基向量场 $\{X_i | i = 1, \cdots, n\}$，则

$$\mathcal{O}_1 = \{(U, \varphi), \{x^i\} | \left[\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\right] = \left[\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\right] \}$$

为 M 上的一个定向

或者 $\mathcal{O} = \{o_p = [X_{1p}, \cdots, X_{np}] | p \in M\}$ 为 M 上的一个定向。

由第二章 §3 定理 8, Lie 群是可定向的。例如 \mathbb{R}^n, S^1, S^3 等是可定向的。

此外，由于 $S^1, P^1(\mathbb{R})$ 是可平行的，故也是可定向的。

(2) 设 (M, \mathcal{O}) 为 n 维 C^∞ 流形，且存在整体坐标 $\{x^i\}$，则

$$\left\{\frac{\partial}{\partial x^i}\right\}$$

为 M 上的整体 C^∞ 坐标基向量场，因而 M 是可定向的。

此时，

$$\mathcal{O}_1 = \{(U, \varphi), \{x^i\} \in \mathcal{O} | \left[\frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial y^n}\right],$$

$$= \left[\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\right], p \in U\}$$

或 $\mathcal{O} = \{o_p = \left[\frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial y^n}\right], p \in M\}$ 为 M 上的一个定向。

· 186 ·
例如 \mathbb{R}^n 中的开集 U 以它的通常直角坐标为其整体坐标，故 U 是可定向的。再如 S^1 有整体 C^∞ 基向量场 $\frac{\partial}{\partial \theta}$ 或 $X = (-x^2, x^1)$，故 S^1 是可定向的，但它没有整体坐标。

例 2 $S^n = \{(x^1, \cdots, x^{n+1}) \in \mathbb{R}^{n+1} | (x^1)^2 + \cdots + (x^{n+1})^2 = 1\}$ 是可定向的，下面我们用各种方法来证明它。

方法 1: 易证 $X = \sum_{i=1}^{n-1} x^i \frac{\partial}{\partial x^i}$ 为 S^n 上的 C^∞ 单位法向量场，由定理 2，S^n 是可定向的。

方法 2: 由第一章 §1 例 3，$\mathcal{C} = \{(U_1, \varphi_1), (U_2, \varphi_2)\}$，

$$(u^1, \cdots, u^n) = \left(\frac{u^1}{\sum_{i=1}^{n} (u^i)^2}, \cdots, \frac{u^n}{\sum_{i=1}^{n} (u^i)^2}\right),$$

则 Jacobi 行列式

$$J_{u^1, \cdots, u^n} = \left(\sum_{i=1}^{n} (u^i)^2\right)^{-1},$$

如果将 (u^1, u^2, \cdots, u^n) 改为 (u^2, u^1, \cdots, u^n)，则其 Jacobi 行列式 > 0，故 S^n 是可定向的。

方法 3: 由第一章 §1 例 3，$\mathcal{C} = \{(U^+_i, \varphi^+_i), (U^-_i, \varphi^-_i) \mid i = 1, \cdots, n+1\}$，$\varphi^+_i(x^1, \cdots, x^{n+1}) = (x^1, \cdots, \hat{x^i}, \cdots, x^{n+1})$，$\varphi^-_i(x^1, \cdots, x^{n+1}) = (x^1, \cdots, \hat{x^i}, \cdots, x^{n+1})$。如果取 $(-1)^{i-1}(x^1, \cdots, \hat{x^i}, \cdots, x^{n+1})$ 为 U^+_i 的局部坐标，$(-1)^i(x^1, \cdots, \hat{x^i}, \cdots, x^{n+1})$ 为 U^-_i 的局部坐标，其中 $(-1)^{i-1}$ 表示作 $i + 1$ 次对换，则相应的 Jacobi 行列式 > 0，故 S^+ 是可定向的。

方法 4: 构造 \mathbb{R}^{n+1} 上的 n 次 C^∞ 纤分形式

$$\eta = \sum_{i=1}^{n+1} (-1)^{i-1} x^i dx^i \wedge \cdots \wedge \hat{dx^i} \wedge \cdots \wedge dx^{n+1}.$$
因 $\sum_{i=1}^{n+1} (x^i)^2 = 1$，其中一个变量视作其余 n 个变量的函数，则两边微分得 $2 \sum_{i=1}^{n+1} x^i \, dx^i = 0$。显然，至少有一个 $x^i = 0$，不妨设 $x^{n+1} = 0$。于是，

$$ I^n \eta = \sum_{i=1}^{n+1} (-1)^{i-1} x^i \, dx^1 \wedge \cdots \wedge \mathring{dx}^i \wedge \cdots \wedge dx^n \wedge \\
\left(-\frac{\frac{\partial x^1}{\partial x^{n+1}} \cdots + \cdots + \frac{\partial x^n}{\partial x^{n+1}}}{x^{n+1}} \right) = (-1)^n x^{n+1} \, dx^1 \wedge \cdots \wedge dx^n \\
= \frac{\sum_{i=1}^{n+1} (x^i)^2}{x^{n+1}} \, dx^1 \wedge \cdots \wedge dx^n = (-1)^n \frac{dx^1 \wedge \cdots \wedge dx^n}{x^{n+1}}, $$

其中 $I : S^n \to \mathbb{R}^{n+1}$ 为包含映射。这就证明了 $I^n \eta$ 为 S^n 上的处处非 0 的 n 次 C^n 微分形式，由定理 1，S^n 是可定向的。

例 3 n 维复解析流形 (M, \mathcal{O}) 视作 $2n$ 维实解析流形是可定向的。由第一章 §1 例 5，Jacobi 行列式为

$$ \frac{\partial (w^1, \ldots, w^n, v^1, \ldots, v^n)}{\partial (x^1, \ldots, x^n, y^1, \ldots, y^n)} = \left(\frac{\partial (w^1, \ldots, w^n)}{\partial (x^1, \ldots, x^n)} \right)^2 > 0, $$

故 (M, \mathcal{O}) 为 $2n$ 维实解析可定向流形。

例 4 n 维实射影空间 $\mathbb{P}^n(\mathbb{R})$。当 n 为奇数时它是可定向的；当 n 为偶数时，它是不可定向的。

方法 1。由第一章 §1 例 4，

$$ \varphi_k : U_k \to \mathbb{R}^n, \\
\varphi_k([x^1, \ldots, x^{n+1}]) = \left(x^1, \ldots, \frac{x^{k-1}}{x^k}, \mathring{1}, \frac{x^{k+1}}{x^k}, \ldots, \frac{x^{n+1}}{x^k} \right) \\
= (s^k, \ldots, s^k \frac{\xi^{k-1}}{\xi^k}, s^k \frac{\xi^k}{\xi^{k+1}}, \ldots, s^k \xi^{n+1}), $$

$$ \mathcal{J}_{\varphi_k} \mathring{\eta} = \frac{\partial (s^k, \ldots, s^k \frac{\xi^{k-1}}{\xi^k}, s^k \frac{\xi^k}{\xi^{k+1}}, \ldots, s^k \xi^{n+1})}{\partial (s^k, \ldots, s^k \frac{\xi^{k-1}}{\xi^k}, s^k \frac{\xi^k}{\xi^{k+1}}, \ldots, s^k \xi^{n+1})} $$.

* 188 *
\[(-1)^{l+k} \left(\frac{1}{k^2} \right)^{n+1} \]

(1) 如果 \(n \) 为奇数，则

\[J_{\phi, \varphi} = (-1)^{l+k} \left(\frac{1}{k^2} \right)^{n+1} \begin{cases} > 0, & l \text{ 和 } k \text{ 奇偶性相同} \\ < 0, & l \text{ 和 } k \text{ 奇偶性相反} \end{cases} \]

由此可推出 \(\mathcal{D}'_1 = \{(U, \varphi), k \text{ 为奇数}; (U, \phi)) \}

(2) 且与 \(\mathcal{D}'_1 \) 中的元素满足定义 1’ 中的 (1)。由此确定的 \(\mathcal{D}'_1 \) 为 \(\mathcal{D}'_1 \) 中的元素可定向的，这就证明了 \(P^n(R) \) 是可定向的。

容易看出，\(\sigma: [0, 1] \to U \subseteq P^n(R), \sigma(t) = [t \rho + (1-t) q] \)

是连续 \([p] \) 和 \([q] \) 的一条道路，其中 \(p = (p^1, \ldots, p^{n+1}, 1, p^{n+1}, \ldots, p^{n+1}), q = (q^1, \ldots, q^{n-1}, 1, q^{n+1}, \ldots, q^{n+1}) \)。因而 \(U \subseteq P^n(R) \) 的道路连接的开集，\(k = 1, \ldots, n+1 \)。

如果 \(n \) 为偶数，则

\[J_{\phi, \varphi} = (-1)^{l+k} \left(\frac{1}{k^2} \right)^{n+1} \begin{cases} > 0, & l^{k+1} < 0, \\ < 0, & l^{k+1} > 0, \end{cases} \]

再根据第二章 §2 定理 6(2)，\(P^n(R) \) 是不可定向的。

方法 2. 设 \(\rho: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}, \rho(x) = -x \) 和 \(\rho_1: S^n \to S^n, \rho_1(x) = -x \) 为对径映射；\(I: S^n \to S^n, I(x) = x \) 为包含映射；\(\pi: S^n \to P^n(R) = S^n / \sim, \pi(x) = [x] \) 为投影映射。

因为 \(\rho^* \eta = \sum_{i=1}^{n+1} (-1)^{i-1} (-x^1)(-d\bar{x}^1) \wedge \cdots \wedge (-d\bar{x}^n) \wedge \cdots \wedge (-d\bar{x}^{n+1}) = (-1)^{n+1} \eta \) 和 \(\rho \circ I = I \circ \rho_1 \)（参阅例 2 方法 4），所以

\[\rho^* \circ I^* \eta = I^* \circ \rho^* \eta = I^*(((-1)^{n+1} \eta) = (-1)^{n+1} I^* \eta. \]

(1) 如果 \(n \) 为奇数，由 \(\rho_1^* (I^* \eta) = I^* \eta \) 和 \(\rho_1 \) 为局部微分同胚，
我们构造 \(P^n(R) = S^n / \sim \) 上的 \(n \) 次 \(C^\infty \) 微分形式 \(\omega \)，使得 \(I^* \eta = x^* \omega \)。
为此，设 \(U \subset S^n \) 为开集，使得 \(\pi_U : U \to \pi_U(U) \subset P^n(R) \)，\(\pi_U = \pi | U \) 为微分同胚。在 \(\pi_U(U) \) 中，定义

\[
\omega = (\pi_U^{-1})^*(I^* \eta).
\]

如果 \(\pi_U \) 为另一微分同胚且 \(\rho_1(U) = V \)，则

\[
\rho_1 \circ \pi_U^{-1} = \pi_U^{-1} \circ \rho_1^{-1} = (\pi_U \circ \rho_1)^{-1} = \pi_V^{-1}
\]

和 \((\pi_U^{-1})^*(I^* \eta) \circ \rho_1^*(I^* \eta) = (\pi_V^{-1})^*(I^* \eta) \)。这就证明了 \(\omega \) 为 \(P^n(R) \) 上的整体 \(n \) 次 \(C^\infty \) 微分形式，且明显地有 \(I^* \eta = \pi^* \omega \)。因为 \(I^* \eta \) 在 \(S^n \) 上处处非 0，所以 \(\omega \) 在 \(P^n(R) \) 上也处处非 0。根据定理 1，\(P^n(R) \) 为 \(n \) 维可定向的 \(C^\infty \) 微分流形。

（2）如果 \(n \) 为偶数，（反证）假设 \(P^n(R) \) 是可定向的，由定理 1，存在 \(P^n(R) \) 上的处处非 0 的 \(n \) 次 \(C^\infty \) 微分形式 \(\omega \)，因为

\[
g(x)(I^* \eta)_x = (gI^* \eta)_x = (x^* \omega)_x = (\rho_1^* \circ x^* \omega)_x = (\rho_1^* (gI^* \eta))_x = g(\rho_1(x))(\rho_1^* I^* \eta)_x = -g(-x)(I^* \eta)_x,
\]

其中 \(g \) 为 \(S^n \) 上处处非 0 的 \(C^\infty \) 函数，从 \((I^* \eta)_x \equiv 0 \) 推出 \(g(x) = -g(-x) \) 和 \(g(x) \cdot g(-x) < 0 \)。根据连续函数的 0 值定理，存在 \(\xi \in S^n \) 满足 \(g(\xi) = 0 \)，这与 \(g \) 在 \(S^n \) 上处处非 0 相矛盾，因而 \(P^n(R) \) 是不可定向的。

例 5 Möbius 带 \(M = f([0, 2\pi] \times (-\delta, \delta)) \) 是不可定向的，其中 \(f : [0, 2\pi] \times (-\delta, \delta) \to R^3 \)，使

\[
f(u, v) = \left(2 \cos u + v \sin \frac{u}{2} \cos u, 2 \sin u + v \sin \frac{u}{2} \sin u, v \cos \frac{u}{2}\right)
\]

\[
= (2 \cos u, 2 \sin u, 0) + v \left(\sin \frac{u}{2} \cos u, \sin \frac{u}{2} \sin u, \cos \frac{u}{2}\right)
\]

为 \(C^\infty \) 嵌入。

事实上，因为

\[
f'_u(u, 0) = (-2 \sin u, 2 \cos u, 0)
\]

- 190 -
\[f'(u, 0) = \left(\sin \frac{u}{2} \cos u, \sin \frac{u}{2} \sin u, \cos \frac{u}{2} \right) \]

\[
\begin{pmatrix} f_x & \frac{\partial}{\partial u} \\ f_y & \frac{\partial}{\partial v} \end{pmatrix} = \begin{pmatrix} -2\sin u & 2\cos u & 0 \\ \sin \frac{u}{2} \cos u & \sin \frac{u}{2} \sin u & \cos \frac{u}{2} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}
\]

法向量 \(N(u, 0) = f_x'(u, 0) \times f_y'(u, 0) = \left(\frac{2\cos \frac{u}{2} \cos u}{2}, \frac{2\cos \frac{u}{2} \sin u}{2} \right) \)

\[\| N(u, 0) \| = 2 \equiv 0. \] 再由 \(C = \{(2\cos u, 2\sin u, 0) \mid 0 \leq u \leq 2\pi\} \) 沿正向的，故存在 \(\delta > 0 \)，使得 \(f: [0, 2\pi] \times (-\delta, \delta) \rightarrow \mathbb{R}^3 \) 为嵌入。而 \(N(0, 0) = (2, 0, 0), N(2\pi, 0) = (-2, 0, 0) \)。故 \(N(u, 0) \) 沿圆 \(C \) 正向圆周后改变方向，根据定理 2，\(M \) 是不可定向的。

为了得到重要的 Stokes 定理，需要引进 \(q \) 维 \(C^\infty \) 流形 \(W \) 的开子流形 \(M \) 的 \(n-1 \) 维边界流形 \(\partial M \) 的诱导定向，为此先证下面定理。

定理 3 设 \((W, \mathcal{D})\) 为 \(q \) 维 \(C^\infty \) 可定向流形，定向为 \(\mathcal{D}_1, (M, \mathcal{D}_2) \) 为 \((W, \mathcal{D})\) 的开子流形，则

(1) \(M \) 是可定向的；

(2) 如果 \(M \) 在 \(W \) 中的边界点集 \(\partial M \) 为 \(W \) 的 \(n-1 \) 维正则子流形，则 \(\partial M \) 是可定向的。

证明 （1）设 \(\mathcal{D}_1 = \{ (U_a, \varphi_a) \mid \alpha \in \mu \} \)，显然 \(\mathcal{D}_{1\mathcal{M}} = \{ (M \cap U_a, \varphi_a |_{M \cap U_a}) \mid \alpha \in \mu \} \) 为 \(M \) 的一个定向。

(2) 因为 \(\partial M \) 为 \(W \) 的 \(n-1 \) 维正则子流形，由第一章 § 2 定理 3，对任何 \(p \in \partial M \)，存在 \(p \) 的局部坐标域 \((U, \varphi), \{x^i\}) \) 使得

\[\varphi(M \cap U) = \varphi(U) \cap \{x^a > 0\}, \]

\[\varphi(\partial M \cap U) = \varphi(U) \cap \{x^a = 0\} \]

令 \(\mathcal{D}_2 = \{ (U, \varphi), \{x^i\} \mid (U, \varphi) \in \mathcal{D}, \) 且满足 (1) \}。如果 \((U_a,

* 191 *
对\(\varphi, \{x^i\} \in \mathcal{O}_2, \{U, \varphi\}, \{y^i\} \in \mathcal{O}_2 \) 则在 \(U \cap U \) 中，

\[
\begin{bmatrix}
\frac{\partial}{\partial y^1}, & \cdots, & \frac{\partial}{\partial y^n}
\end{bmatrix}
\]

故由 \(y^n = y^n(x^1, \cdots, x^{n-1}, 0) \equiv 0 \) 推出

\[
\frac{\partial (y^1, \cdots, y^{n-1})}{\partial (x^1, \cdots, x^{n-1})} \cdot \frac{\partial y^n}{\partial x^n} \bigg|_{x^n = 0} = \frac{\partial (y^1, \cdots, y^n)}{\partial (x^1, y^1, x^n)} \bigg|_{x^n = 0} > 0.
\]

从

\[
\frac{\partial y^n}{\partial x^n} \bigg|_{x^n = 0} = \lim_{x^n \to 0} \frac{y^n(x^1, \cdots, x^{n-1}, x^n) - y^n(x^1, \cdots, x^{n-1}, 0)}{x^n - 0}
\]

\[
= \lim_{x^n \to 0} \frac{y^n(x^1, \cdots, x^n)}{x^n} \geq 0
\]

得到

\[
\frac{\partial (y^1, \cdots, y^{n-1})}{\partial (x^1, \cdots, x^{n-1})} \bigg|_{x^n = 0} > 0.
\]

于是，

\[
\{(\partial M \cap U, \varphi |_{\partial M \cap U}) | (U, \varphi) \in \mathcal{O}_2\}
\]

确定了一个定向，因而 \(\partial M \) 是可定向的。

定义 2 在定理 3 中，由

\[
\left\{ (-1)^n \left[\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^{n-1}} \right] \right\} (U, \varphi),
\]

\(\{x^i | i = 1, \cdots, n\} \in \mathcal{O}_2 \) 所确定的 \(\partial M \) 的定向称为由 \(W \) 的定向 \(\mathcal{O}_1 \) (因而由 \(M \) 的定向 \(\mathcal{O}_1|_M \) 确定的 \(\partial M \) 的诱导定向。

定向流形 \(M \) 上的微分形式的积分是数学分析中第二曲线, 曲...
面积分的推广。而这种积分的定义还必须应用近代数学中极其重要的单位分解的存在性。

定义 3 设 \((M, \mathcal{O})\) 为 \(n\) 维 \(C^\infty\) 仿射的可定向流形, \(\mathcal{O}\) 为其定向，记此定向流形为 \(\tilde{M}\). \(\omega\) 为 \(M\) 上的 \(n\) 次 \(C^\infty\) 外微分形式, \(\text{Supp} \omega = \{ x \in M | \omega(x) = 0 \}\) 为紧致集, \(\{ U_\alpha | (U_\alpha, \varphi_\alpha) \}, \{ x_\alpha^i \} \in \mathcal{O}, \alpha \in \mu\) 为 \(M\) 的局部有限的开覆盖, \(\{ g_\alpha | \alpha \in \mu \}\) 为从属于 \(\{ U_\alpha | \alpha \in \mu \}\) 的单位分解, 且 \(\text{Supp} g_\alpha\) 为紧致集, 在 \((U_\alpha, \varphi_\alpha), \{ x_\alpha^i \}\) 中,

\[
g_\alpha \omega = g_\alpha \cdot a_\alpha dx_2^1 \wedge \cdots \wedge dx_n^1,
\]

显然, \(\text{Supp} \ g_\alpha \omega \subset \text{Supp} \omega\) 为紧致集, 故

\[
\int_{\varphi_\alpha(U_\alpha)} (g_\alpha \cdot a_\alpha) \circ \varphi_\alpha^{-1}(x_2^1, \ldots, x_n^1) dx_2^1 \cdots dx_n^1
\]

为有限值, 我们称

\[
\int_M \omega = \int_M \left(\sum_{\alpha \in \mu} g_\alpha \right) \omega = \int_M \left(\sum_{\alpha \in \mu} g_\alpha \omega \right) = \sum_{\alpha \in \mu} \int_{\varphi_\alpha(U_\alpha)} (g_\alpha \cdot a_\alpha) \circ \varphi_\alpha^{-1}(x_2^1, \ldots, x_n^1) dx_2^1 \cdots dx_n^1
\]

为 \(\omega\) 在 \(\tilde{M}\) 上的积分, 其中 \((\varphi_\alpha^{-1})^* \omega = \varphi_\alpha(U_\alpha)\) 的 \(n\) 次 \(C^\infty\) 外微分形式

\[
(\varphi_\alpha^{-1})^* \omega = a_\alpha \circ \varphi_\alpha^{-1}(x_2^1, \ldots, x_n^1) dx_2^1 \wedge \cdots \wedge dx_n^1
\]

删除外积 \(\wedge\). 因为 \(\text{Supp} \omega\) 紧致和 \(\{ g_\alpha | \alpha \in \mu \}\) 关于单位分解的定义中的条件 (2), \(\text{Supp} \omega\) 只与有限个 \(\text{Supp} g_\alpha\) 相交, 因此上述的和中实际上只有有限项可能不为 0。引理 1 积分 \(\int_M \omega\) 的定义 \(\forall \{(U_\alpha, \varphi_\alpha), g_\alpha | \alpha \in \mu\}\) 的选取无关, 即积分的定义是合理的。

证明 设 \(\{ V_\beta | (V_\beta, \psi_\beta), \{ y_\beta^i \} \in \mathcal{O}, \beta \in \nu\}\) 为 \(M\) 的另一个局部有限的开覆盖, \(\{ f_\beta | \beta \in \nu\}\) 为从属于 \(\{ V_\beta | \beta \in \nu\}\) 的单位分解, 则在
\[U \cap V_b = \emptyset \text{ 中,} \]
\[
\omega = a_0 dx^1_0 \wedge \cdots \wedge dx^n_0 = b_0 dy^1_0 \wedge \cdots \wedge dy^n_0,
\]
\[
b_0 = \frac{\partial (x^1_0, \ldots, x^n_0)}{\partial (y^1_0, \ldots, y^n_0)} a_0, \quad \frac{\partial (x^1_0, \ldots, x^n_0)}{\partial (y^1_0, \ldots, y^n_0)} > 0.
\]

于是，
\[
\sum_{\alpha} \int_{\tau_0(M \cap U_\alpha)} (g \cdot f \cdot a_0) \circ \varphi^{-1}_\alpha (x^1_0, \ldots, x^n_0) \, dx^1_0 \cdots dx^n_0
\]
\[
= \sum_{\alpha} \sum_{\beta} \int_{\tau_0(M \cap U_\alpha \cap U_\beta)} (g \cdot f \cdot a_0) \circ \varphi^{-1}_\alpha (x^1_0, \ldots, x^n_0) \, dx^1_0 \cdots dx^n_0
\]
\[
= \sum_{\beta \in \tau_0(M \cap U_\beta)} \int_{\tau_0(M \cap U_\beta)} \psi^{-1}_\beta (y^1_0, \ldots, y^n_0) \, dy^1_0 \cdots dy^n_0
\]
\[
= \sum_{\beta \in \tau_0(M \cap U_\beta)} \int_{\tau_0(M \cap U_\beta)} (f \cdot g \cdot b_0) \circ \psi^{-1}_\beta (y^1_0, \ldots, y^n_0) \, dy^1_0 \cdots dy^n_0
\]
\[
= \sum_{\beta \in \tau_0(M \cap U_\beta)} \int_{\tau_0(M \cap U_\beta)} (f \cdot b_0) \circ \psi^{-1}_\beta (y^1_0, \ldots, y^n_0) \, dy^1_0 \cdots dy^n_0.
\]

其中第 3 个等号是由 Riemann 积分的变是代替公式得到的。

定理 4 设 \((M, \mathcal{O})\) 为 \(n\) 维 \(C^m\) 可定向的仿紧流形，\(\mathcal{O}\) 为其定向，
\(\bar{M}\) 为其定向流形，\(\omega\)，\(\omega_1\)，\(\omega_2\) 为 \(M\) 上的 \(n\) 次 \(C^m\) 测度形式，
Supp\(\omega\)，Supp\(\omega_1\)，Supp\(\omega_2\) 为紧致集，\(\lambda, \mu \in \mathbb{R}\)。

(1) \(\int_{-M} \omega = e \int_{M} \omega\)，其中 \(e = \pm 1\)，
\(\bar{M}\) 为与 \(\overline{M}\) 定向相反的定向流形。

(2) \(\int_{-M} (\lambda \omega_1 + \mu \omega_2) = \lambda \int_{M_1} \omega_1 + \mu \int_{M_2} \omega_2\)。

(3) 如果 \(M_1, M_2\) 为 \(M\) 的相交的开集，\(M = M_1 \cup M_2\)，
\(\bar{M}_1, \bar{M}_2\) 与 \(\bar{M}\) 的定向一致，则

* 194. *
\[\int_M \omega = \int_{\tilde{M}_1} \omega - \int_{\tilde{M}_2} \omega. \]

证明 由定义 3 和 Riemann 积分的性质立即得，下面只证

\[\int_{-M} \omega = -\int_M \omega. \]

设 \((U_x, \varphi_x)\) \(\{x^i\} \alpha \in \mu\) 为定义 3 中相对 \(\overline{M}\) 的定向局部坐标系，则 \((U_x, \rho_{\alpha} \circ \varphi_x)\) \(\{y^i\} \alpha \in \mu, y^i_x = x^i_x, i = 1, \ldots, n - 1, y^n_x = -x^n_x\)
为定义 3 中相对 \(-\overline{M}\) 的定向局部坐标系。\(g_\alpha \alpha \in \mu\) 为从属于它们的单位分解，则在 \(U_x\) 中，

\[\omega = a_\alpha dx^1_\alpha \wedge \cdots \wedge dx^n_\alpha = a_\alpha dy^1_\alpha \wedge \cdots \wedge dy^n_\alpha. \]

于是，

\[
\int_{-M} \omega = \sum_{\alpha \in \mu, x} \int_{\rho_{\alpha} \circ \varphi_x(M - U_x)} (g_\alpha \cdot a_\alpha) \circ (\rho_{\alpha} \circ \varphi_x)^{-1} \cdot (y^1_\alpha, \ldots, y^n_\alpha) dy^1_\alpha \cdots dy^n_\alpha \\
= -\sum_{\alpha \in \mu, x} \int_{\rho_{\alpha} \circ \varphi_x(M - U_x)} (g_\alpha \cdot a_\alpha) \circ \varphi_x^{-1}(x^1_\alpha, \ldots, x^n_\alpha) dx^1_\alpha \cdots dx^n_\alpha \\
= -\int_M \omega. \quad \text{半} \]

定理 5(变量代换) 设 \((M, \theta)\) 为 \(n\) 维 \(C^\infty\) 可定向的仿紧流形，\(f: M \rightarrow \mathbb{R}^n\) 为 \(C^\infty\) 微分同胚。\(\overline{\theta}_1\) 为 \(M_1\) 的定向，\(\overline{M}_1\) 为其定向流形，而 \((f(U_x), \varphi_x \circ f^{-1}) \cup (U_x, \varphi) \subset \overline{\theta}_1\) 为 \(\overline{M}_1\) 所给定的定向，记此定向流形 \(\overline{M}_2 = f_* \overline{M}_1\)，\(\omega\) 为 \(\overline{M}_2\) 上的 \(n\) 次 \(C^\infty\) 微分形式，Supp\(\omega\) 为紧致，则

\[
\int_{\overline{M}_1} f_* \omega = \int_{\overline{M}_2} \omega = \int_{\overline{M}_1} \omega. \]

证明 设 \((U_x, \varphi_x) \alpha \in \mu\) 为定义 3 中相对 \(\overline{M}_2\) 的定向局部坐标系，\(g_\alpha \alpha \in \mu\) 为从属于它的单位分解，则 \((f^{-1}(U_x), \varphi_x \circ f) \alpha \in \mu\) 为定义 3 中相对 \(\overline{M}_1\) 的定向局部坐标系，\(g_\alpha \circ f \alpha \in \mu\) 为从属于它的单位分解。于是，

- 195 -
\[
\int_M f^* \omega = \sum_{a \in \mathfrak{g}} \int_{r_a(M_2 \cap \mathfrak{g})} (g_a \circ f) \circ f^{-1} (\varphi_a^{-1}) (f^* \omega) \\
= \sum_{a \in \mathfrak{g}} \int_{r_a(M_2 \cap \mathfrak{g})} g_a \circ \varphi_a^{-1} (f^* \omega) - \int_{M_2} \omega.
\]

在 \(\mathbb{R}^n\) 中，变量代换公式为

\[
\int_{\mathfrak{g}} a(y) dy^1 \wedge \cdots \wedge dy^n = \int_{M} a(f(x)) \frac{\partial(y^1, \ldots, y^n)}{\partial(x^1, \ldots, x^n)} dx^1 \wedge \cdots \wedge dx^n.
\]

这比通常的 Riemann 积分变量公式

\[
\int_M a(y) dy^1 \cdots dy^n = \int_M a(f(x)) \left| \frac{\partial(y^1, \ldots, y^n)}{\partial(x^1, \ldots, x^n)} \right| dx^1 \cdots dx^n
\]
的优越性在于除去的了讨厌的绝对值号！

现在我们将定义 3 作一点推广，并可立即看出上述有关的定理也能类似推广，证明方法也是相同的，不再赘述。这种推广有利于 Stokes 定理的叙述和证明。

定义 4 设 \((W, \mathcal{O})\) 为 n 维 \(C^\infty\) 仿紧的可定向流形，\(\mathcal{O}_1\) 为其定向，记此定向流形为 \(\overline{W}\)；\(M\) 为 \(W\) 的开子流形，而由 \(\overline{W}\) 确定了定向流形 \(\overline{M}\)；\(\partial M\) 为 \(M\) 的边界，或者它是空集，或者它是 \(n-1\) 维 \(C^\infty\) 正则子流形，\(\omega\) 为 \(W\) 上的 \(n\) 次 \(C^\infty\) 几何形式。且 \(\text{Supp} \omega = \{x \in W | \omega(x) \neq 0\}\) 为紧致集。\(\{U_a | (U_a, \varphi_a), \{x_a\} \in \mathcal{O}_1, a \in \mu\}\) 为 \(W\) 上的开覆盖，\(\{g_a | a \in \mu\}\) 为从属于 \(\{U_a | a \in \mu\}\) 的广义单位分解（参阅第一章 § 3 定理 4，Supp \(g_a\) 未必紧致，但 \(\{\text{Supp} g_a | a \in \mu\}\) 是局部有限的）。在 \((U_a, \varphi_a), \{x_a\}\) 中，显然紧致集 \(\text{Supp} \omega\) 的闭子集 \(\text{Supp} g_a \omega \subseteq \text{Supp} g_a \subseteq U_a\) 为紧致集。以下 \(\int_M \omega\) 的定义和相应的定理的论述是与定义 3 完全类似的。
当取 $W = M, \partial M = \emptyset$ 时，定义 3 就成为它的特殊情形。

定理 6（Stokes 定理） 设 $(W, \partial W)$ 为 n 维 C^∞ 仿紧的可定向流形，∂W 为其向内，$M \subseteq W$ 为开子流形，∂M 为 M 的边界，或者为空集或者为 $n - 1$ 维 C^∞ 正则子流形。相应于 ∂W 的定向流形 $\overrightarrow{\partial W}$ 确定了 $\overrightarrow{\partial M}$ 和 ∂M 的诱导定向确定了 $\overrightarrow{\partial M}$. ω 为 W 上的 $n - 1$ 次 C^∞ 微分形式，$\text{Supp}\omega$ 是紧致的。$I: \partial M \to M$ 为包含映射，则

$$
\int_M d\omega = \int_{\partial M} I^* \omega = \left(\text{或} \int_{\partial M} \omega |_{\partial M}, I^* \omega (X_1, \ldots, X_{n-1}) \right)
$$

$$
= \omega |_{\partial M} (I_*(X_1, \ldots, I_*(X_{n-1}))
$$

在不致混淆的情形下，我们将 Stokes 定理记作 $\int_M d\omega = \int_{\partial M} \omega$. 若 $\partial M = \emptyset$, 右边积分理解为 0。

证明 因为 M 为 W 的开子流形和 ∂M 为 W 的 $n - 1$ 维正则子流形，故可选取局部座标系 $(U_\alpha, \varphi_\alpha) \subseteq \partial W, \alpha \in \mu$, 使得 $\partial M \cap U_\alpha \neq \emptyset$ 或者当 $\partial M \cap U_\alpha = \emptyset$ 时，

$$
\varphi_\alpha (M \cap U_\alpha) = \varphi_\alpha (U_\alpha) \cap \{ x \in \mathbb{R}^n | x^n > 0 \},
$$

$$
\varphi_\alpha (\partial M \cap U_\alpha) = \varphi_\alpha (U_\alpha) \cap \{ x \in \mathbb{R}^n | x^n = 0 \}.
$$

于是，在 W 上的一个从属于 $(U_\alpha, \varphi_\alpha) | \alpha \in \mu$ 的广义单位分解 $(g_\alpha | \alpha \in \mu)$，它还诱导了 ∂M 上的一个广义单位分解 $(g_\alpha | \alpha \in \mu)$，从

引理 2 $\int_M d(g_\alpha \omega) = \int_{\partial M} I^* (g_\alpha \omega)$.

立即得到（注意：除有限个 α 外，$g_\alpha \omega |_{M \cup \partial M} = 0$）

$$
\int_M d\omega = \int_M d \left(\sum_{\alpha \in \mu} g_\alpha \omega \right) = \sum_{\alpha \in \mu} = \sum_{\alpha \in \mu} \int_M d(g_\alpha \omega)
$$

$$
= \sum_{\alpha \in \mu} \int_{\partial M} I^* (g_\alpha \omega) = \int_{\partial M} I^* \left(\sum_{\alpha \in \mu} g_\alpha \omega \right) = \int_{\partial M} I^* \omega.
$$

* 197 *
最后证明引理 2。为此设 \((U, \varphi)\) 的局部坐标为 \(\{x^i\}\)。令
\[
g_a \omega := \sum_{i=1}^n (-1)^{i-1} a_i \, dx^1 \wedge \cdots \wedge \hat{dx}^i \wedge \cdots \wedge dx^n,
\]
则
\[
d(g_a \omega) = d \left(\sum_{i=1}^n (-1)^{i-1} a_i \, dx^1 \wedge \cdots \wedge \hat{dx}^i \wedge \cdots \wedge dx^n \right) = \sum_{i=1}^n \frac{\partial a_i}{\partial x^j} \, dx^1 \wedge \cdots \wedge \hat{dx}^i \wedge \cdots \wedge dx^n.
\]

(1) \(\mathcal{M} \cap U_a = \emptyset\).

因为 \(\varphi_a(Supp \, g_a \omega)\) 紧致，故存在充分大的 \(R\) 使 \(a_i\) 可延拓为

\[
[-R, R]^n = \{(x^1, \ldots, x^n) \mid -R \leq x^j \leq R, j = 1, \ldots, n\}
\]
上的 \(C^\infty\) 函数（此时 \(\varphi_a(Supp \, g_a \omega) \subset [-R, R]^n\)），使得

\[
a_i \big|_{[-R, R]^n} = \varphi_a(U_a) = 0.
\]

于是，
\[
\int_{\mathcal{M}} \! d(g_a \omega) = \int_{\varphi_a(\mathcal{M} \cap U_a)} \sum_{i=1}^n \frac{\partial a_i}{\partial x^j} \, dx^1 \cdots dx^n = \text{i.e.} \sum_{i=1}^n \int_{[-R, R]^n} \frac{\partial a_i}{\partial x^j} \, dx^1 \cdots dx^n \]
\[
= \sum_{i=1}^n \left[a_i \big|_{[-R, R]^n} \right]_{x^i = -R} \, dx^1 \cdots \hat{dx}^i \cdots dx^n = 0 = \int_{\partial \mathcal{M}} \! \delta = \int_{\partial \mathcal{M}} \! I^a(g_a \omega).
\]

(2) \(\partial \mathcal{M} \cap U_a \subset \emptyset\).

因为 \(\varphi_a(Supp \, g_a \omega) \cap \{x \in \mathbb{R}^n \mid x^n \geq 0\}\) 紧致，故存在充分大的 \(R\)，使 \(a_i\) 可延拓为

\[
[-R, R]^{n-1} \times (0, R] = \{(x^1, \ldots, x^n) \mid -R \leq x^j \leq R, j = 1, \ldots, n-1, 0 \leq x^n \leq R\}\] 上的 \(C^\infty\) 函数（此时 \(\varphi_a(Supp \, g_a \omega) \cap \{x \in \mathbb{R}^n \mid x^n \geq 0\} \subset \mathbb{R}^n\)。
$[-R,R]^{n-1} \times [0,R]$，使得

$$a_i \mid_{[-R,R]^{n-1} \times [0,R]} = 0.$$

于是，

$$\int_M g_o \omega = \int_{M \cap \mathcal{U}_\alpha} \sum_{i=1}^n \frac{\partial a_i}{\partial x^i} dx^i \cdots dx^n$$

$$= \sum_{i=1}^n \int_{[-R,R]^{n-1} \times [0,R]} \frac{\partial a_i}{\partial x^i} dx^i \cdots dx^n$$

$$= \sum_{i=1}^{n-1} \int_{[-R,R]^{n-2} \times [0,R]} a_i \bigg|_{x^n = -R} dx^i \cdots dx^{i+1} \cdots dx^n$$

$$+ \int_{[-R,R]^{n-2}} a_n \bigg|_{x^n = 0} dx^1 \cdots dx^{n-1}$$

$$= -(-1)^{n-1} \int_{\partial M} a_n (x^1, \cdots, x^{n-1}, 0) dx^1 \cdots dx^{n-1}$$

$$= -(-1)^{n} \int_{\partial M} \sum_{i=1}^n (-1)^{i-1} a_i \bigg|_{x^n = 0} dx^1 \cdots dx^i \cdots dx^{n-1}$$

$$= \int_{\partial M} \left(\sum_{i=1}^n (-1)^{i-1} a_i \bigg|_{x^n = 0} dx^1 \cdots dx^i \cdots dx^{n-1} \right)$$

其中第 5 个等号是用到 \mathcal{M} 的诱导定向的定义中的 $(-1)^n$。

在实际应用中，经常遇到 $M \cup \mathcal{M}$ 是紧致的，此时不必先假定 $\text{Supp} \omega$ 是紧致的，只需假定 ω 为 $U(W)$ 中开集 V 上的 $n-1$ 次 C^∞ 项分式，这里 $M \cup \mathcal{M} \subset U \subset W$。

由 $M \cup \mathcal{M}$ 紧致，在开集 V 中的开集 U，使 V 紧致且 $M \cup \mathcal{M} \subset V \subset U \subset W$，根据第一章 § 3 推论 1，存在 C^∞ 函数 $\varphi: W \rightarrow \mathbb{R}$，使 $0 \leq \varphi(x) \leq 1, x \in W; \varphi(x) = 1, x \in M \cup \mathcal{M}; \text{Supp} \varphi \subset V$。于是 $\varphi \omega$ 可视作 W 上的 $n-1$ 次 C^∞ 项分式，且 $\text{Supp} \varphi \omega$ 紧致。于是，对 $\varphi \omega$ 利用定理 6，
\[
\int_\mathcal{M} d\omega = \int_\mathcal{M} d(\varphi \omega) = \int_{\mathcal{M}} I^*(\varphi \omega) = \int_{\partial \mathcal{M}} I^* \omega.
\]

在数学分析中，Newton-Leibniz 公式，Green 公式，Stokes 公式，Gauss 公式统一成 Stokes 定理，它是现在证明的 Stokes 定理的特例。

例 6 于 \(\mathbb{R}^n \) 中 Stokes 定理的几个特殊情况（图 22）。

1. Newton-Leibniz 公式。

令 \(\mathcal{M} \subset \mathbb{R}^n \) 为 1 维 \(C^\infty \) 正则子流形，\(\partial \mathcal{M} = \{a, b\} \)，\(\bar{\mathcal{M}} \) 为 1 维 \(C^\infty \) 定向流形，\{ \(t \mid t_0 - \epsilon < t < t_1 + \epsilon, t_0 < t_1, \epsilon > 0 \} \} \) 为含 \(\bar{\mathcal{M}} \) 的定向局部坐标系。\(\overrightarrow{\partial \mathcal{M}} = \{-a, +b\} \) 为诱导定向所确定的流形。\(\omega = f, \tilde{d} \omega = df \)，则

\[
\int_{\mathcal{M}} df = \int_{\mathcal{M}} \sum_{i=1}^{n} \frac{\partial f}{\partial x^i} dx^i = \int_{t_0}^{t_1} \sum_{i-1}^{n} \frac{\partial f}{\partial x^i} \frac{dx^i}{dt} dt = \int_{a}^{b} \frac{df}{dt} dt
\]

\[
= f(x(t_1)) - f(x(t_0)) = f(b) - f(a)
\]

\[
= \int_{\overrightarrow{\partial \mathcal{M}}} f.
\]

更特殊地，\(\mathcal{W} = \mathbb{R}^1, \mathcal{M} = (a, b), \partial \mathcal{M} = (a, b), \bar{\mathcal{M}} = (a, b), \overrightarrow{\partial \mathcal{M}} = \{-a, +b\} \)

\[
\int_{\mathcal{M}} df = \int_{a}^{b} f'(x) dx = f(b) - f(a) = \int_{\overrightarrow{\partial \mathcal{M}}} f.
\]

2. Green 公式。

令 \(\mathcal{W} = \mathbb{R}^2, \mathcal{M} \) 为 \(\mathbb{R}^2 \) 中有界区域，\(\partial \mathcal{M} \) 为 \(C^\infty \) 封闭曲线，且为 1 维正则子流形。定向流形 \(\mathcal{W} \) 确定了 \(\bar{\mathcal{M}} \) 和诱导定向确定了流形

\(\overrightarrow{\partial \mathcal{M}} \). \(\omega = p dx + q dy \), \(d \omega = (\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y}) dx \wedge dy \)，则

\[
\int_{\mathcal{M}} d\omega = \int_{\mathcal{M}} (\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y}) dx \wedge dy = \int_{\bar{\partial \mathcal{M}}} p dx + q dy = \int_{\overrightarrow{\partial \mathcal{M}}} \omega.
\]

\(\star \)
(3) **Stokes公式**。

\[W = \mathbb{R}^3, \quad M \] 为 \(\mathbb{R}^3 \) 中 2 维 \(C^\infty \) 曲面，且为 2 维正则子流形，\(\partial M \) 为 \(C^\infty \) 封闭曲线，且为 1 维正则子流形。定向流形确定了 \(M \) 和诱导定向确定了 \(\partial M \)。\(\omega = pdx + qdy + r dz \),

\[
\begin{vmatrix}
 dy \wedge dz & dz \wedge dx & dx \wedge dy \\
 \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
 p & q & r \\
\end{vmatrix}
\]

\[
\int_M d\omega = \int_{\partial M} \frac{\partial}{\partial x} dy \wedge dz + \frac{\partial}{\partial y} dz \wedge dx + \frac{\partial}{\partial z} dx \wedge dy = \int_{\partial M} (pd + qdy + r dz) = \int_{\partial M} \omega.
\]

(4) **Gauss公式**。

\(W = \mathbb{R}^3, \quad M \) 为 \(\mathbb{R}^3 \) 中的有界开集，\(\partial M \) 为 2 维 \(C^\infty \) 闭曲面，且为 2 维 \(C^\infty \) 正则子流形。定向流形 \(\hat{M} \) 确定了 \(\hat{M} \) 和诱导定向确定了 \(\partial \hat{M} \)。\(\omega = pdy \wedge dz + qdz \wedge dx + rdx \wedge dy, \quad d\omega = \left(\frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} + \frac{\partial r}{\partial z} \right) dx \wedge dy \wedge dz \),

\[
\int_M d\omega = \int_{\partial M} \omega.
\]
\[
\int_{\mathcal{M}} d\omega = \int_{\mathcal{M}} \left(\frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} + \frac{\partial r}{\partial z} \right) dx \wedge dy \wedge dz
\]

\[
= \int_{\mathcal{M}} pdy \wedge dz + qdz \wedge dx + rdx \wedge dy.
\]
第四章 Sard 定理、Brouwer 度和 Poincaré-Hopf 指数定理

本章§1 证明了著名的 Sard 定理，并应用 Sard 定理和 Weierstrass 逼近定理证明了 Brouwer 不动点定理。§2 给出了从紧致 C^1 流形到连通 C^r 流形的 C^1 映射的 Brouwer 度的定义，然后再证明 Brouwer 度在 C^1 同伦下是不变的，作为度的进一步应用，引进了 C^r 流形上 C^m 向量场在其孤立零点处指数的概念，并证明了局部与整体，微分拓扑与代数拓扑相联系的极其深刻的 Poincaré-Hopf 指数定理。

§1 Sard 定理

Sard 定理指出临界值的集合总是“微小的”，它的 Lebesgue 测度为 0。

定义 1 设 (M_i, \mathcal{O}_i) 为 n_i 维 $C^r (r \geq 1)$ 流形, $i = 1, 2, f: M_1 \to M_2$ 为 C^k 映射, $1 \leq k \leq r$。

如果 $(\text{rank} f)_p < n_2$, $p \in M_1$, 则称 p 为 f 的临界点; 如果 $(\text{rank} f)_p = n_2$, $p \in M_1$ 则称 p 为 f 的正则点。

如果 $q \in M_2$, 使得 $f^{-1} (q)$ 至少包含一个临界点, 则称它为临界值; M_2 中非临界值的点称为正则值。

记 $C_f \subset M_1$ 为 f 的临界点集, 而 $R_f = M_1 - C_f$ 为 f 的正则点集。于是, $f(C_f) \subset M_2$ 为 f 的临界值集, 而 $M_2 - f(C_f)$ 为 f 的正则值集。

显然, 若 $n_1 < n_2$, 则 $M_1 = C_f$. 若 $q \in M_2 - f(M_1) \subset M_2 - f(C_f)$, 则 q 为正则值。
定义 2 设 $B \subseteq \mathbb{R}^n$, 如果对任何 $\epsilon > 0$, 总存在至多可数个方体 $C(x_i, r_i) = \{ x \in \mathbb{R}^n \mid |x^j - x_i^j| < r_i, \ j = 1, \ldots, n, \ i \in \mathbb{N} \}$, 使得 $B \subseteq \bigcup C(x_i, r_i)$, 且 $\sum \text{vol} C(x_i, r_i) = \sum (2r_i)^n < \epsilon$, 其中 $\text{vol} C(x_i, r_i)$ 表示 $C(x_i, r_i)$ 的体积, 则称 B 为 \mathbb{R}^n 中的零测集, 记为 $\text{meas} B = 0$。此时 B 的 Lebesgue 测度也为 0。

从定义 2 可以看出, \mathbb{R}^n 中零测集的任何子集为零测集, 至多可数集为零测集, 至多可数个零测集的并为零测集。

定义 3 设 (M, \mathscr{O}) 为 n 维 $C^r (r \geq 1)$ 的 \mathbb{R} (具有可数拓扑基) 流形, $B \subseteq M$. 如果存在至多可数个 $(U_m, \varphi_m) \in \mathscr{O}, \ m \in \mathbb{N}$, 使 $B = \bigcup (B \cap U_m)$ 或 $B \subseteq \bigcup U_m$, 且 $\varphi_m (B \cap U_m)$ 为 \mathbb{R}^n 中的零测集, 则称 B 为零测集, 记作 $\text{meas} B = 0$。

由定义 2 和 3 立即可知: B 为零测集 \iff 对任何 $p \in B$, 存在 p 的局部坐标系 $(U_p, \varphi_p) \in \mathscr{O}$, 使得 $\varphi_p (B \cap U_p)$ 为 \mathbb{R}^n 中的零测集;

\iff 对于任何 $(U, \varphi) \in \mathscr{O}$, $\varphi (B \cap U)$ 为 \mathbb{R}^n 中的零测集。

定理 1 (Sard 定理) 设 (M_i, \mathscr{O}_i) 为 n_i 维 C^r 的 \mathbb{R} 形 $r \geq 1$, $i = 1, \ldots, f: M_1 \rightarrow M_2$ 为 C^r 映射, $1 \leq k \leq r$. 如果 $k \geq 1 - \max\{n_1 - n_2, 0\}$, 则 $\text{meas} f(C_i) = 0$.

证明参阅 [Sternberg, P47—55]。

我们对几个特殊情形 (如定理 2, 推论 1, 定理 3) 加以证明, 其方法是极其有用的。定理 2 设 $U \subseteq \mathbb{R}^n$ 为开集, $f: U \rightarrow \mathbb{R}^n$ 为 C^1 映射, $f = (f_1, \ldots, f_n)$, $\det Df(x) |_U = 0$, 则 $\text{meas} f(C_i) = \text{meas} (U) = 0$, 其中 $Df(x) = \left(\frac{\partial f_i}{\partial x^j} \right)$。

证明 只须证明对 U 中任一边平行坐标轴的方体 U_0, 都有
$\operatorname{meas} f(U_0) = 0$。为此，将 U_0 的每一边分成 N 等分，得到 U_0 的 N^n 个大小相同的小方体。在小方体内任意取定一点 x_0，则对该小方体内的任一点 x，有

$$f(x) = f(x_0) + Df(x_0)(x - x_0) + o\left(\frac{1}{N}\right).$$

因为 $f: U \to \mathbb{R}^n$ 为 C^1 映射，且 $\det Df(x)\big|_U = 0$，我们总可设（必要时作适当的正交变换）

$$Df(x_0) = \left(\begin{array}{c}
\frac{\partial f_i}{\partial x_j}(x_0) \\
\vdots \\
\frac{\partial f_n}{\partial x_j}(x_0)
\end{array}\right) = \left(\begin{array}{cccc}
* & & & \\
& & & \\
& & & \\
0 & \cdots & 0
\end{array}\right).$$

于是，对小方体内的任一点 x，

$$\left(\begin{array}{c}
f_1(x) - f_1(x_0) \\
\vdots \\
f_n(x) - f_n(x_0)
\end{array}\right) = \left(\begin{array}{c}
* \\
& \\
& \\
0 & \cdots & 0
\end{array}\right) \left(\begin{array}{c}
x_1 - x_1 \\
\vdots \\
x_n - x_n
\end{array}\right) + o\left(\frac{1}{N}\right).$$

因此，在 U_0 上，显然存在正的常数（与 N 无关）$K < +\infty$，使得上述每个小方体的象的（Lebesgue）测度不超过

$$K \cdot \left(\frac{1}{N}\right)^{n-1} \cdot o\left(\frac{1}{N}\right) = o\left(\frac{1}{N^n}\right).$$

这就得到了

$$0 \leq \operatorname{meas} f(U_0) \leq N^n \cdot o\left(\frac{1}{N^n}\right) \to 0 \text{（当} N \to +\infty\text{）},$$

即 $\operatorname{meas} f(U_0) = 0$。

推论 1 设 $U \subset \mathbb{R}^n$ 为开集，$m < n$，$f: U \to \mathbb{R}^n$ 为 C^1 映射，则 $\operatorname{meas} f(C_f) = \operatorname{meas} f(U) = 0$。

证明 设 $\tilde{f}: U \times \mathbb{R}^{n-m} \to \mathbb{R}^n$，$\tilde{f}(x^1, \cdots, x^m, x^{m+1}, \cdots, x^n) = f(x^1, \cdots, x^m)$. 显然，$\det D\tilde{f}\big|_{U \times \mathbb{R}^{n-m}} = 0$，由定理 2，$\operatorname{meas} f(U) = \operatorname{meas} \tilde{f}(U \times \mathbb{R}^{n-m}) = 0$。

定理 3 设 (M_1, \mathfrak{F}_i) 为 n_i 维 C^∞ 的 A^1 流形，$i = 1, 2, f: M_1 \to \cdots$ 205 \cdots.
证明 由 V_i 为 A_k 空间，$i = 1, 2$，只需证明：设 $U \subseteq \mathbb{R}^{n_1}$ 为
开集，$f: U \to \mathbb{R}^{n_2}$ 为 C^k 映射，C_f 为 f 在 U 中的临界点集，则
$\text{meas} f(C_f) = 0$.

现应用归纳法证明。注意定理对 $a_1 \geq 0, a_2 \geq 1$ 都有意义。令 $\mathbb{R}^0
由独点集组成，设当 $a_1 = 0$ 时定理为真，

$\text{meas} f(C_f) = 0.

令 $C_i = \{ x = (x_1, \ldots, x_i) \in U \mid \frac{\partial f}{\partial x_1 \ldots \partial x_i}(x) = 0, 1 \leq k \leq i \}$，显然，$C_1 \supseteq C_2 \supseteq \cdots \supseteq C_i \supseteq C_{i+1} \supseteq \cdots$ 我们分三步来证明：

(1) $\text{meas} f(C_f - C_1) = 0.

当 $a_2 = 1$，$C_f = \{ x \in U \mid (\text{rank} f)_x = 0 \} = \{ x \in U \mid \frac{\partial f}{\partial x_i}(x) = 0 \}$

$\subseteq C_1$，所以，$\text{meas} f(C_f - C_1) = \text{meas} f(\emptyset) = 0.

当 $a_2 = 2$，对任何 $x \in C_f - C_1$，由 $x \subseteq C_i$，则必存在某个导数，

$\frac{\partial f}{\partial x_i}(x) = 0.

考虑映射 $h: U \to \mathbb{R}^{n_1}$，$h(x) = (f_1(x), f_2(x), \ldots, f_{n_1}(x))$。因为 h 是
退化，由反函数定理，存在 x 的某个开邻域 V，使 $h: V \to h(V)$ 为 C^k 同胚，其逆映
为 $h^{-1}: h(V) \to V$。令 $g = f \circ h^{-1}: h(V) \to \mathbb{R}^{n_2}$，显然 $C_g = h(V \cap C_f)$，因此 g 的临界值集 $g(C_g) = (f \circ h^{-1})(h(V \cap C_f)) = f(V \cap C_f)$。

对于任何 $(t, x_2, \ldots, x_{n_1}) \in h(V)$，由 $g(t, x_2, \ldots, x_{n_1}) = f \circ h^{-1}(t, x_2, \ldots, x_{n_1})$，$f \circ h^{-1}(h(x)) = f(x) = (f_1(x), f_2(x), \ldots, f_{n_1}(x)) = (t, f_2(x), \ldots, f_{n_1}(x)) \in t \times \mathbb{R}^{n_2 - 1} \subseteq \mathbb{R}^{n_2}$. 令

$g: (t \times \mathbb{R}^{n_2 - 1}) \cap h(V) \to t \times \mathbb{R}^{n_2 - 1}$

表示 g 在 $t \times \mathbb{R}^{n_2 - 1}$ 上的限制。因为

$$
\left(\begin{array}{c}
\frac{\partial g}{\partial x_i} \\
\frac{\partial g}{\partial x_{i+1}}
\end{array} \right) =
\left(\begin{array}{c}
1 \\
\begin{array}{c}
0 \\
(\partial g_i)
\end{array}
\end{array} \right),
$$

206.

- \text{meas} f(C_f - C_1) = 0.

当 $a_2 = 1$，$C_f = \{ x \in U \mid (\text{rank} f)_x = 0 \} = \{ x \in U \mid \frac{\partial f}{\partial x_i}(x) = 0 \}$

$\subseteq C_1$，所以，$\text{meas} f(C_f - C_1) = \text{meas} f(\emptyset) = 0.

当 $a_2 = 2$，对任何 $x \in C_f - C_1$，由 $x \subseteq C_i$，则必存在某个导数，

$\frac{\partial f}{\partial x_i}(x) = 0.

考虑映射 $h: U \to \mathbb{R}^{n_1}$，$h(x) = (f_1(x), f_2(x), \ldots, f_{n_1}(x))$。因为 h 是
退化，由反函数定理，存在 x 的某个开邻域 V，使 $h: V \to h(V)$ 为 C^k 同胚，其逆映
为 $h^{-1}: h(V) \to V$。令 $g = f \circ h^{-1}: h(V) \to \mathbb{R}^{n_2}$，显然 $C_g = h(V \cap C_f)$，因此 g 的临界值集 $g(C_g) = (f \circ h^{-1})(h(V \cap C_f)) = f(V \cap C_f)$。

对于任何 $(t, x_2, \ldots, x_{n_1}) \in h(V)$，由 $g(t, x_2, \ldots, x_{n_1}) = f \circ h^{-1}(t, x_2, \ldots, x_{n_1})$，$f \circ h^{-1}(h(x)) = f(x) = (f_1(x), f_2(x), \ldots, f_{n_1}(x)) = (t, f_2(x), \ldots, f_{n_1}(x)) \in t \times \mathbb{R}^{n_2 - 1} \subseteq \mathbb{R}^{n_2}$. 令

$g: (t \times \mathbb{R}^{n_2 - 1}) \cap h(V) \to t \times \mathbb{R}^{n_2 - 1}$

表示 g 在 $t \times \mathbb{R}^{n_2 - 1}$ 上的限制。因为

$$
\left(\begin{array}{c}
\frac{\partial g}{\partial x_i} \\
\frac{\partial g}{\partial x_{i+1}}
\end{array} \right) =
\left(\begin{array}{c}
1 \\
\begin{array}{c}
0 \\
(\partial g_i)
\end{array}
\end{array} \right),
$$

206.

- \text{meas} f(C_f - C_1) = 0.
故 \((t, x_1, \ldots, x_n) \in C_i \iff (t, x_1, \ldots, x_n) \in C_i'\)。由归纳假设，\(\text{meas} g^i(C_i') = 0\)。于是，\(\text{meas}(g(C_i) \cap (t \times \mathbb{R}^{n_2-1})) = \text{meas} g^i(C_i') = 0\)。根据 Fubini 定理，得到 \(\text{meas} f(V \cap C_i) = \text{meas} g(C_i) = 0\)，所以 \(\text{meas} f(C_i - C_i') = 0\)。

(2) 对任何 \(z \in C_i - C_{i+1}\)，有 \(z \in C_{i+1}\)，则必存在某个 \(\frac{\partial^{i+1} f_z}{\partial x_{i_1} \cdots \partial x_{i_{i+1}}} (z) \equiv 0\)，再由 \(z \in C_i\) 知 \(\omega(x) = \frac{\partial^i f_z}{\partial x_{j_1} \cdots \partial x_{j_i}}(z)\) 为 \(z\) 的某开邻域 \(V\)，使得 \(h: V \rightarrow h(V)\) 为 \(C^\infty\) 同胚。注意，由 \(C_i, \omega, h\) 的定义，\(h(C_i \cap V) \subset \{0\} \times \mathbb{R}^{n_2-1}\)。令 \(g = f \circ h^{-1}: h(V) \rightarrow \mathbb{R}^{n_2}, \ g = g|\{0\} \times \mathbb{R}^{n_2-1}: (\{0\} \times \mathbb{R}^{n_2-1}) \cap h(V) \rightarrow \mathbb{R}^{n_2}\)。由归纳知 \(\text{meas} g(C_{i+1}) = 0\)。由 \(C_i, h, g\) 的定义，\(h(C_i \cap V) \subset C_{i+1}\)（因所有阶数 \(\leq i\) 的偏导数为 0，\(i \geq 1\)）。所以，

\[
0 = \text{meas} g(h(C_i \cap V)) = \text{meas} f \circ h^{-1}|_{\{0\} \times \mathbb{R}^{n_2-1}}(h(C_i \cap V))
= \text{meas} f(C_i \cap V),
\]

由于 \(C_i - C_{i+1}\) 被至多可数个这种开集 \(V\) 所覆盖，从而推得 \(\text{meas} f(C_i - C_{i+1}) = 0\)。

(3) 当 \(i > \frac{n_1}{n_2} - 1\) 时，\(\text{meas} f(C_i) = 0\)。

今 \(I \subset U\) 为边长等于 \(\delta\) 的闭方体。若 \(i > \frac{n_1}{n_2} - 1\)，则可证 \(\text{meas} f(C_i \cap I) = 0\)。因为 \(C_i\) 能被可数个这种立方体所覆盖，故 \(\text{meas} f(C_i) = 0\)。

设 \(x, x + \Delta x \in I\)，由 Taylor 公式有

\[
f(x + \Delta x) = f(x) + R(x, \Delta x)
\]

(1)

再由 \(I\) 的紧致性和 \(C_i\) 的定义得到 \(|R(x, \Delta x)| \leq C|\Delta x|^{i+1}\)，这里 \(C\) 为仅依赖于 \(f\) 和 \(I\) 的常数。
现在将 I 重分为 \(r^{n_1} \) 个边长为 \(\frac{\delta}{r} \) 的小立方体，\(r \in \mathbb{N} \)。令 \(I_1 \) 为包含 \(x \in C_1 \) 的一个小方体，则对任何一个 \(x + \Delta x \in I_1 \)，有 \(|\Delta x| \leq \sqrt{\frac{n_1 \delta}{r}} \)。

根据（1）式，\(f(I) \) 包含以 \(f(x) \) 为中心，边长为 \(2C \left(\sqrt[4]{\frac{n_1}{n_0}} \frac{\delta}{r} \right)^{i+1} \) 的方体中，因此 \(f(C_1 \cap I) \) 包含在最多 \(r^{n_1} \) 个方体的并中，这些方体的总体积

\[
V \leq r^{n_1} \left(2C \left(\sqrt[4]{\frac{n_1}{n_0}} \frac{\delta}{r} \right)^{i+1} \right)^{n_2}
\]

当 \(\frac{i}{n_1} \to \frac{1}{n_0} \)

故 \(\text{meas} f(C_1 \cap I) = 0 \)。

综合（1）、（2）、（3）得到

\[
0 \leq \text{meas} f(C_i) \leq \text{meas} f(C_i - C_1) + \sum_{j=1}^{i-1} \text{meas} f(C_i - C_{i+j}) - \text{meas} f(C_i) = 0,
\]

\[
\text{meas} f(C_i) = 0.
\]

注 1 只证第 1、第 2 步而不证第 3 步不能推出定理结论，因为 \(\text{meas} \left(\sum_{i=1}^{n} C_i \right) \) 不知是否为 0。

推论 2 （A. B. Brown） 设 \(f: M_1 \to M_2 \) 满足定理 1 的条件，则正则值集 \(M_2 - f(C_i) \) 在 \(M_2 \) 中是处处稠密的。

证明 对于任何 \(p \in M_2 \) 和 \(q \) 的任何开邻域 \(U_p \)，由 Sard 定理，

\[
\text{meas} f(C_i) = \text{meas} (f(C_i) \cap U_p) = 0,
\]

故 \(\text{meas} (U_p - f(C_i) \cap U_p) = \text{meas} U_p = 0 \)。所以存在 \(q \in U_p - f(C_i) \cap U_p \subset M_2 - f(C_i) \)，这就证明了 \(M_2 - f(C_i) \) 在 \(M_2 \) 中是处处稠密的。

定理 4 设 \((M, \mathcal{D}_i) \) 为 \(n_i \) 维 \(C^r \) 流形（\(r \geq 1 \)），\(i = 1, 2 \)。设 \(f: M_1 \to M_2 \)。
M_2 为 C^r 映射，$q \in M_2$ 为 f 的正则值 ($n_1 \geq n_2$)，则 $f^{-1}(q) \subset M_1$ 或为空集或为 $n_1 - n_2$ 维 C^r 正则子流形。

证明 因为 $q \in M_2$ 为 f 的正则值，故对任何 $p \in f^{-1}(q)$，
$(\text{rank} f)_p = n_2$，该存在 M_1 中的 p 的开邻域 U_p 使得 $(\text{rank} f)|_{U_p} = n_2$，有 $\text{rank} f|_{U_p} = n_2$。根据第一章 § 2 定理 4 可知 $f^{-1}(q)$
或为空集，或为 M_1 中 $n_1 - n_2$ 维 C^r 正则子流形。下面我们来直接
证明该定理，设 $p \in f^{-1}(q)$，因为 q 为 f 的正则值，故 $(\text{rank} f)_p = n_2$，
$f_p : T_p M_1 \rightarrow T_q M_2$ 为满射，且 Kernel f_p 为 $n_1 - n_2$ 维向量空
间。取 M_1 中的开集 M_1，使 $p \in \overline{M_1} \subset M_1$，且 $\overline{M_1} C^r$ 嵌入 R^k，不妨设
$M_1 \subset R^k$。

选取线性映射 $L : R^k \rightarrow R^{n_1 - n_2}$，使 L 在 f_p 的核空间 Kernel
$f_p = (f_p)^{-1}(0) \subset T_p M_1 \subset R^k$ 上非退化。现在定义 C^r 映射 F
$M_1 \rightarrow M_2 \times R^{n_1 - n_2}$，$F (x) = (f(x), L(x))$，显然，$F_p(X) = (f_p(X),
L(X))$，$X \in T_p M_1$，这里切向量按坐标观点定义。于是，$F_p$ 为
非退化的。根据反函数定理，F 将 p 的某个开邻域 $U C^r$ 同胚地映
到 $(q, L(p)) = (f(p), L(p))$ 的一个开邻域 V 上。应该注意的是
$f^{-1}(q)$ 在映射 F 下映射到超平面 $q \times R^{n_1 - n_2}$ 中，F 将 $f^{-1}(q) \cap U$
C^r 同胚地映到 $(q \times R^{n_1 - n_2}) \cap V$ 上。这就证明了 $f^{-1}(q) \subset M_1$ 或者
为空集，或者为 $n_1 - n_2$ 维 C^r 正则子流形。▌

在第三章 § 3 的 Stokes 定理中，我们已经碰到了“带边流形”
$M \cup \partial M$。下面我们给出它的确切定义。

定义 4 设闭的半空间 $H^a = \{(x', \cdots, x^n) \in R^n | x^n \geq 0\}$，其边界
$\partial H^a = \{(x', \cdots, x^{n-1}, 0) | x' \in R, j = 1, \cdots, a-1\} = R^{a-1} \times \{0\} \subset R^n$。

如果 M 为 T_2 空间，且对任何 $p \in M$，都存在 p 在 M 中的开
邻域 U 和同胚 $\varphi : U \rightarrow \varphi(U)$，其中 $\varphi(U) \subset R^a$ 或 H^a，且为开集，称
M 为 n 维带边拓扑流形或 C^r 带边流形。

∂M 是在同胚 φ 下 M 中所有对应于 ∂H^a 的点的那些点构成

$\cdot 209 \cdot$
的集合，应用 Brouwer 区域不变性定理，\(\partial M \) 是确界的，即 \(p \in M \)，
若有两个上述的同胚 \(\varphi_1, \varphi_2 \)，则 \(\varphi_1(p) \in \partial H^m \iff \varphi_2(p) \in \partial H^n \)。称
\(\partial M \) 中的点为带边流形 \(M \) 的边界点，\(\partial M \) 为边界，\(M - \partial M \) 中的点
为内点。

如果将第一章 §1 定义 2 中的拓扑流形改为带边拓扑流形，
将沿碰到带边界点的局部坐标之间的 \(C^r \) 映射，总认为延拓到 \(\mathbb{R}^n \)
中某开集上是 \(C^r \) 类的映射，于是可以得到 \(C^r (r \geq 1) \) 带边微分流
形的定义。

不难看出 \(\partial M \) 为一个完全确定的 \(n - 1 \) 维 \(C^r \) 流形，而内部
\(M - \partial M \) 为一个 \(n \) 维 \(C^r \) 流形。

定理 5 设 \((M, \mathcal{O}) \) 为 \(n \) 维 \(C^r \) \((r \geq 1) \) 流形，\(g: M \to \mathbb{R} \) 为 \(C^r \)
函数，\(\alpha \) 为 \(g \) 的正则值，\(N = \{ x \in M | g(x) \geq 0 \} \) 为 \(n \) 维 \(C^r \) 带边流
形，其边界为 \(g^{-1}(0) \)。

证明 如果 \(p \in N \)，且 \(g(p) > 0 \)，由 \(g \) 的连续性，存在 \(p \) 在 \(M \) 中
的开邻域 \(U_p \)，使得 \(g|_{U_p} > 0 \)，故 \(U_p \subseteq N \)。

如果 \(p \in N \)，\(p \in g^{-1}(0) \)，因为 \(0 \) 为 \(g \) 的正则值，故 \(\text{rank} g \equiv 1 \)，
\(g_{*p}: T_p M \to T_0 \mathbb{R} \) 为满射，且 \(\text{Ker} g_{*p} \) 为 \(n - 1 \) 维向量空间。取 \(M \)
的开集 \(\overline{M} \) 使 \(p \in \overline{M} \subseteq M \)，且 \(\overline{M} \subseteq \mathbb{R}^k \) 嵌入 \(\mathbb{R}^n \)，不妨设 \(\overline{M} \subseteq \mathbb{R}^k \) 选一个
线性映射 \(L: \mathbb{R}^k \to \mathbb{R}^{n-1} \)，使 \(L \) 在 \(\text{Ker} g_{*p} \) 上非退化。

现在定义 \(C^r \) 映射 \(G: \overline{M} \to \mathbb{R} \times \mathbb{R}^{n-1} = \mathbb{R}^n \)，\(G(x) = (g(x), \ L(x)) \)，显然，\(G_{*p}(x) = (g_{*p}(x), L(X)) \)，\(X \in T_p \overline{M} \)，于是，\(G_{*p} \) 是
非退化的。根据反函数定理，\(G \) 将 \(p \) 的某个开邻域 \(U \subseteq \overline{M} \) 同胚地映
到 \((0, L(p)) = (g(p), L(p)) \) 的一个开邻域 \(V \) 上，需注意的是
\(g^{-1}(0) \) 在映射 \(G \) 下映到超平面 \(\{(0) \times \mathbb{R}^{n-1} \} \) 中，且 \(G \) 将 \(g^{-1}(0) \cap U \subseteq \overline{M} \)
同胚地映到 \(\{(0) \times \mathbb{R}^{n-1} \} \cap V \) 上。这就证明了 \(N = \{ x \in M | g(x) \geq 0 \} \)
为 \(n \) 维 \(C^r \) 带边流形，其边界为 \(g^{-1}(0) \)。此外

下面将定理 4 推广到带边流形。

* 210 *
定理 6 设\((M_1, \mathcal{O}_1)\)为\(n_1\)维\(C^r\)\((r \geq 1)\)带边流形，\((M_2, \mathcal{O}_2)\)为\(n_2\)维\(C^s\)流形，\(n_1 > n_2\), \(f: M_1 \rightarrow M_2\)为\(C^s\)映射。如果对\(f\)而言以及对限制映射\(f|_U\)而言，\(q \in M_2\)都是正则点，则\(f^{-1}(q) \subset M_1\)为\(n_1\)维\(C^r\)带边流形，\(\partial(f^{-1}(q)) = f^{-1}(q) \cap \partial M_1\)。

证明 因为要证明的是一个局部性质，所以只须证明特殊情形：\(q \in R^n\)为\(f: H^n \rightarrow R^n\)的正则值。

如果\(p \in f^{-1}(q)\)为\(H^n\)的一个内点，如定理 4，\(f^{-1}(q)\)在\(p\)的一个开邻域中为\(n_1-n_2\)维\(C^r\)正则子流形。

如果\(p \in f^{-1}(q)\)为\(H^n\)的边界点，选取\(p\)在\(R^n\)中的一个开邻域\(U\)和\(C^s\)映射\(g: U \rightarrow R^n\)，使得\(g|_{\partial H^n} = f|_{\partial H^n}\)。因为\(p\)为\(f\)的图也是\(g\)的正则点，故我们可以假定\(g\)在\(U\)中无临界点（否则用更小的开邻域代替\(U\)），因此，\(g^{-1}(q) \subset R^n\)为\(n_1-n_2\)维\(C^s\)正则子流形。

设\(\pi: g^{-1}(q) \times R\)为坐标投影，\(\pi(x^1, \ldots, x^n) = x^n\)。因为\(g^{-1}(q)\)在点\(p \in \pi^{-1}(0)\)处的切空间等于\(g_*p = f_*p: R^n \rightarrow R^n_2\)的核空间\(\ker g_*p = \ker f_*p\)。因此\(g_*p(T_p g^{-1}(q)) = 0\)。又因维数\(\dim(T_p g^{-1}(q)) = n_1 - n_2 = \dim(\ker g_*p)\)，所以\(T_p g^{-1}(q) = \ker g_*p = g_*\frac{\partial}{\partial x^n}(q)\)。由假定\(f|_{\partial H^n}\)在\(p\)点处是正则的，故\(f_*\frac{\partial}{\partial x^n}(0) \cap T_p(\partial H^n) = (f_*\frac{\partial}{\partial x^n})\frac{\partial}{\partial x^n}(0)\)为\(n_1 - n_2 - 1\)维向量空间，而\(\dim(f_*\frac{\partial}{\partial x^n}(0)) = n_1 - n_2\)，则\(f_*\frac{\partial}{\partial x^n}(0) = g_*\frac{\partial}{\partial x^n}(0) \cap R^{n_1-1} \times \{0\}\)。因为\(\pi_*\frac{\partial}{\partial x^n}(0) = R^{n_1-1} \times \{0\}\)，所以存在\(X \in T_p g^{-1}(q)\)，使\(\pi_*X \neq 0\)，这就证明了\((\text{rank } \pi)_x = 1\)，从而\(0\)为\(\pi\)的一个正则值（必要的话用更小的邻域代替\(U\)）。

根据定理 5，\(g^{-1}(q) \cap H^n = f^{-1}(q) \cap U = \{x \in g^{-1}(q) | x(0) \geq 0\}\)为\(n_1-n_2\)维\(C^s\)的带边流形，其边界为\(\pi^{-1}(0)\)。这就完成了定理的证明。
例 1 例 11 中，

$$\mathcal{S}^n = \{ x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} (x^i)^2 = 1 \} \subset \mathbb{R}^{n+1}$$

为 \(n \) 维 \(C^0 \) 正则子流形。现另证如下：考虑 \(C^0 \) 映射 \(f : \mathbb{R}^{n+1} \to \mathbb{R} \)，

$$f(x) = \sum_{i=1}^{n+1} (x^i)^2,$$

显然任意 \(q = 0 \) 都是 \(f \) 的正则值，由定理 5，

$$\mathcal{S}^n = f^{-1}(1)$$

为 \(\mathbb{R}^{n+1} \) 中的 \(n \) 维 \(C^0 \) 正则子流形。

例 2 设 \(g : \mathbb{R}^{n+1} \to \mathbb{R} \) 为 \(C^0 \) 映射，0 为 \(g \) 的正则值，由定理 5，

$$\mathcal{D}^{n+1} = \{ x \in \mathbb{R}^{n+1} \mid g(x) = 1 - \sum_{i=1}^{n+1} (x^i)^2 \geq 0 \}$$

为 \(\mathbb{R}^{n+1} \) 中的 \(n+1 \) 维 \(C^0 \) 塔边流形，其边界为 \(g^{-1}(0) = \{ x \in \mathbb{R}^{n+1} \mid g(x) = 1 - \sum_{i=1}^{n+1} (x^i)^2 \} = \mathcal{S}^n \)，它是 \(n \) 维 \(C^0 \) 正则子流形。

应用 Sard 定理和定理 6 可以证明下面的定理 7，由此可证明定理 8 和经典的 Brouwer 不动点定理。

定理 7 设 \(M \) 为紧致的 \(n \) 维 \(C^0(r \geq 1) \) 塔边流形，则不存在 \(C^1 \) 映射 \(f : M \to \partial M \)，使 \(f|_{\partial M} = \text{Id}_{\partial M} \)。

证明（反证）假设存在 \(C^1 \) 映射 \(f : M \to \partial M \)，使 \(f|_{\partial M} = \text{Id}_{\partial M} \)。

由 Sard 定理，存在 \(q \in \partial M \) 为 \(f \) 的正则值，自然 \(g \) 也是 \(f|_{\partial M} = \text{Id}_{\partial M} \) 的正则值，由定理 6，

$$f^{-1}(q) \text{ 为 } M \text{ 的 1 维 } C^1 \text{ 塔边流形，其边界为 } \partial f^{-1}(q) = f^{-1}(q) \cap \partial M = \{ q \} \text{，但 } f^{-1}(q) \text{ 也是紧致的，而紧致 1 维 } C^1 \text{ 流形必为有限个圆周和闭线段的 } C^1 \text{ 同胚象的不相交的 并（参阅 J. W. 米尔诺，熊金城译，62—64 页）。所以 } \partial f^{-1}(q) \text{ 必定由偶数个点组成，这与 } \partial f^{-1}(q) = \{ q \} \text{ 为独点集相矛盾，} \land \text{ 并。}$$

例 3 因为 \(D^{n+1} = \{ x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} (x^i)^2 \leq 1 \} \) 是以单位球面 \(\mathcal{S}^n \)

212
为边界的 $n+1$ 维 C^0 紧致带边流形，$n \in \{0\} \cup \mathbb{N}$，作为定理 7 的特殊情形，$\text{Id}_{\mathbb{S}^n}$ 不能延拓为 C^1 映射 $f: \mathbb{D}^{n+1} \rightarrow \partial \mathbb{D}^{n+1} = \mathbb{S}^n$.

定理 8 设 $g: \mathbb{D}^{n+1} \rightarrow \mathbb{D}^{n+1}$ 为 C^1 映射，则 g 必有不动点，即存在 $x \in \mathbb{D}^{n+1}$，使 $g(x) = x$.

证明（反证）假设 g 没有不动点，则对任何 $x \in \mathbb{D}^{n+1}$，令 $f(x) \in \mathbb{S}^n$ 为连 $g(x)$ 和 x 的直线交 \mathbb{S}^n 且离 x 较远的那个点，令

$$ f(x) = x + tu = x + t \frac{x - g(x)}{\|x - g(x)\|}, $$

则

$$ 1 = \langle f(x), f(x) \rangle = \langle x + tu, x + tu \rangle = \langle x, x \rangle + 2t \langle x, u \rangle + t^2 \langle u, u \rangle = \langle x, x \rangle + 2t \langle x, u \rangle + t^2, $$

$$ t^2 = 2 \langle x, u \rangle + t \langle x, x \rangle + 1 = 0, $$

因为 $t > 0$，故

$$ t = -2 \langle x, u \rangle + \sqrt{4 \langle x, u \rangle^2 - 4 \langle x, x \rangle^2 - 4} $$

$$ = -\langle x, u \rangle + \sqrt{\langle x, u \rangle^2 - \langle x, x \rangle + 1}. $$

由 $u = \frac{x - g(x)}{\|x - g(x)\|}$ 为 x 的 C^1 映射，故 t 为 x 的 C^1 函数和 $f: \mathbb{D}^{n+1} \rightarrow \mathbb{S}^n$ 为 C^1 映射，且 $f|_{\mathbb{D}^{n+1}} = g|_{\mathbb{S}^n} = \text{Id}_{\mathbb{S}^n}$，这与定理 7 的结论相矛盾。

定理 9（Brouwer不动点定理）设 $g: \mathbb{D}^{n+1} \rightarrow \mathbb{D}^{n+1}$ 为连续映射，则 g 必有不动点，即存在 $x \in \mathbb{D}^{n+1}$，使 $g(x) = x$.

证明 任给 $\varepsilon > 0$，由 Weierstrass逼近定理（参阅 [Dieudonné, J., p133]），存在多项式映射 $P_i: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$，使 $|P_i(x) - g(x)| < \varepsilon$, $x \in \mathbb{D}^{n+1}$。然而 P_i 可将 \mathbb{D}^{n+1} 的点变为 \mathbb{D}^{n+1} 外的点。

令 $P(x) = \frac{P_i(x)}{1 + \varepsilon}$，显然 $\|P(x)\| = \left|\frac{P_i(x)}{1 + \varepsilon}\right| \leq \frac{|g(x)| + \varepsilon}{1 + \varepsilon} < 1 + \varepsilon$

$$ = 1, \ P(D^{n+1}) \subset D^{n+1}, \text{且} $$

$$ \|P(x) - g(x)\| = \left|\frac{P_i(x)}{1 + \varepsilon} - g(x)\right| \leq \left|\frac{P_i(x)}{1 + \varepsilon} - P_i(x)\right| + \left|P_i(x) - g(x)\right| $$

$\cdot 213 \cdot$
\[-g(x) \leq |P_1(x)| \cdot \frac{\varepsilon}{1 + \varepsilon} + \varepsilon (1 + \varepsilon) \cdot \frac{\varepsilon}{1 + \varepsilon} + \varepsilon = 2\varepsilon, \]

\[x \in D^{n+1}.\]

(反证) 假设 \(g(x) = x, x \in D^{n+1}\). 则连续函数 \(|g(x) - x|\) 在紧致集 \(D^{n+1}\) 上达到最小值 \(\mu = \min\{\|g(x) - x\| : x \in D^n\} = |g(\xi) - \xi| > 0, \xi \in D^n\). 如上选多项式映射 \(P: D^{n+1} \to D^{n+1}\), 使 \(\|P(x) - g(x)\| < \mu\), \(x \in D^{n+1}\). 易见，

\[\|P(x) - x\| \geq |g(x) - x| - \|P(x) - g(x)\| \geq \mu - |P(x) - g(x)| > 0,\]

所以，\(P(x) \neq x\), 即 \(C^n\) 映射 \(P: D^{n+1} \to D^{n+1}\) 无不动点，这与定理 8 的结论相矛盾。

注 2 从定理 9 的证明方法看出，为了证明关于连续映射的一个命题，首先对 \(C^k (k \geq 1)\) 映射证明，然后用逼近定理过渡到连续映射情形。

§ 2 Brouwer 度

本节给出从紧致 \(C^1\) 流形到连通 \(C^1\) 流形的 \(C^1\) 映射的 Brouwer 度的定义，然后再证明 Brouwer 度在 \(C^1\) 同伦下是不变的。

引理 1 设 \(M\) 为 \(n\) 维 \(C^1\) 流形，\(i = 1, 2\). \(f: M_1 \to M_2\) 为 \(C^1\) 映射，\(y \in M_2\) 为 \(f\) 的正则值，\(M_1\) 紧致，则 \(f^{-1}(y)\) 为有限集(包括空集)。

证 1 (反证) 假设 \(f^{-1}(y)\) 为无限集，则存在不同的 \(x_k \in f^{-1}(y), k = 1, 2, \ldots\). 因为 \(f^{-1}(y)\) 作为紧致空间 \(M_1\) 的闭子集总是紧致的，故 \(x_k\) 必有收敛子列，不妨设 \(x_k\) 收敛于 \(x_0\)，且 \(x_0 \in f^{-1}(y)\). 因为 \(y\) 为 \(f\) 的正则值，由反函数定理，存在 \(x_0\) 的开邻域 \(U\)，使 \(f: U \to f(U)\) 为 \(C^1\) 同胚，故 \(f|_U\) 为一一映射。但因 \(\lim_{k \to \infty} x_k = x_0\)，存在 \(N \in \mathbb{N}\)，当 \(k > N\) 时，\(x_k \in U\)，此时，\(f(x_k) = f(x_0)\)，这与 \(f|_U\) 为一一映射相矛盾。

证 2 不失一般性，只须对 \(U, f(U)\) 为 \(R^n\) 中开集加以证明。因
\[0 = f(x_k) - f(x_0) = Df(x_0)(x_k - x_0) + o(\|x_k - x_0\|),\]

故

\[x_k - x_0 = -Df(x_0)^{-1} \cdot o(\|x_k - x_0\|),\]

其中取 \(x_k \neq x_0\)，则有

\[1 = \left\| Df(x_0)^{-1} \cdot o(\frac{\|x_k - x_0\|}{\|x_k - x_0\|}) \right\| \to 0 (k \to +\infty),\]

矛盾。 证

定义 1 设 \(M_i\) 为 \(n\) 维定向 \(C^1\) 流形，\(i = 1, 2\)，\(M_1\) 是紧致的，
\(M_2\) 是连通的，\(f: M_i \to M_i\) 为 \(C^1\) 映射。则对于任一 \(f\) 的正则值
\(y \in M_1 - f(C_r)\)，称

\[\deg(f; y) = \sum_{x \in f^{-1}(y)} \text{sign } f_{xx}\]

为 \(f\) 关于正则值 \(y\) 的 Brouwer 度。其中 \(x \in f^{-1}(y)\) 为 \(f\) 的正则点，
所以 \(f_{+x}: T_x M_1 \to T_{f(x)} M_2\) 为有向向量空间之间的线性同构

\[\text{Sign } f_{xx} = \begin{cases} +1, & f_{xx} \text{ 保持定向} \\ -1, & f_{xx} \text{ 反转定向} \end{cases}\]

由引理 1，\(f^{-1}(y)\) 为有限集，故上述 \(\sum_{x \in f^{-1}(y)}\) 是有意义的。如果 \(f^{-1}(y) = \emptyset\)，自然定义 \(\deg(f; y) = 0\)。显然，\(\deg(f; y)\) 为整数。

引理 2 \(\deg(f; y)\) 为定义在 \(M_2\) 的稠密开子集 \(M_2 - f(C_r)\) 上
的局部常值函数，且它在 \(M_2 - f(C_r)\) 的每个道路连通分支（也是
连通分支）上为常值函数。

证明 由 §1 推论 2，\(M_2 - f(C_r)\) 在 \(M_2\) 中处处稠密。易见正
则点集 \(M_1 - C_r\) 为 \(M_1\) 中的开集，故 \(C_r\) 为 \(M_1\) 中的闭集。又因 \(M_1\)
紧致，所以 \(M_1\) 也紧致。这就推出了连续映射 \(f\) 下的象既临界值集
\(f(C_r)\) 为 \(M_2\) 的紧致子集，故它为 \(M_2\) 的闭集，从而 \(M_2 - f(C_r)\) 为
\(M_2\) 中的开集。

为证明 \(\deg(f; y)\) 作为 \(y\) 的函数（其中 \(y\) 只取正则值！）是局部
常值的，只须构造 \(y\) 的一个开邻域 \(V \subset M_2\)，使得对于任何 \(y' \in V\) 有
\(\deg(f; y') = \deg(f; y)\)。由引理 1，设 \(x_1, \ldots, x_\ell\) 为 \(f^{-1}(y)\) 的全部
点，选取这些点的两两不相交的开邻域 U_1, \ldots, U_k，使 $x_i \in U_i$，

$\text{Sign } f_{x_i} |_{U_i} = \text{Sign } f_{x_i}$ 且 $f \mid C^1$ 同胚地将 U_i 映到 M_2 中的开集 V_i 上，于是，令

$$ V = \bigcap_{i=1}^k V_i - f(M_1 - \bigcup_{i=1}^k U_i). $$

类似于 $f(C_i)$ 的证法可知 $f(M_1 - \bigcup_{i=1}^k U_i)$ 为 M_2 的紧致集和闭集，

因此 V 为 M_2 中的开集，显然，$y \in V$ 且 $\deg(f; y)_V = \deg(f; y)$。

设 W 为 $M_2 - f(C_i)$ 的任一连通分支，令

$$ W_1 = \{ y \in W \mid \deg(f; y') = \deg(f; y) \}, $$

$$ W_2 = \{ y \in W \mid \deg(f; y') \neq \deg(f; y) \}, $$

由 $\deg(f; \cdot)$ 为局部常值函数，故 W_1, W_2 为开集，又因 $y \in W_1$ 和 W 连通以及 $W = W_1 \cup W_2, W_1 \cap W_2 = \emptyset$，所以 $W_2 = \emptyset, W_1 \cup W_2 = W$，即 $\deg(f; \cdot)$ 在 $M_2 - f(C_i)$ 的每个（路径）连通分支上为常值函数。

引理 3 设 M_1 为 $n+1$ 维 C^1 带等向紧致流形，∂M_1 为 M_1 的边界，它是 M_1 的 n 维 C^1 正则紧致流形，以诱导定向为其定向，M_2 为 n 维连通定向流形。如果 C^1 映射 $f: \partial M_1 \to M_2$ 可以延伸为 C^1 映射 $F: M_1 \to M_2$，则对于 f 的每个正则值 y，必有 $\deg(f; y) = 0$。

证明 先设 y 是 $f = F |_{\partial M}$ 的正则值又是 F 的正则值。紧致的 1 维 C^1 带等向流形 $F^{-1}(y)$ (由 §1 定理 6) 为闭线段和圆周的 C^1 同胚象的不相同有限并。只有弧（闭线段的 C^1 同胚象）有边界点，且在 ∂M_1 上。令 A_1, \ldots, A_k 为 $F^{-1}(y)$ 中的弧的全体，而 $\partial A_i = \{ a_i, b_i \}, i = 1, \ldots, k$。下面证明：$\text{Sign } f_{a_i} + \text{Sign } f_{b_i} = 0$。因此，$\deg(f; y) = \sum_{i=1}^k (\text{Sign } f_{a_i} + \text{Sign } f_{b_i}) = \sum_{i=1}^k 0 = 0$。

* 216 *
一般地，设 \(y \) 为 \(f \) 的正则值但不是 \(F \) 的正则值。由引理 2，
\(\deg(f; y) \) 在 \(y \) 的某个开邻域 \(U \) 中为常数。因此，我们可以在 \(U \) 中取到 \(F \) 的一个正则值 \(z \)（由引理 2 正则值的稠密性），从而

\[
\deg(f; y) = \deg(f; z) = 0.
\]

这就证明了引理 3。
引理 4 设 M_1 为 n 维紧致定向 C^1 流形，M_2 为 n 维连通定向 C^1 流形，$F: [0, 1] \times M_1 \to M_2$ 为连结 C^1 映射 $f(x) = F(0, x)$ 与 $g(x) = F(1, x)$ 之间的 C^1 同伦。对于 f, g 的任意共同的正则值 y，
\[\deg(f; y) = \deg(g; y) \] (图 24).

证明 由 $[0, 1]$ 的通常的定向和 M_1 的定向确定了积流形 $[0, 1] \times M_1$ 的定向（如果 t 为 $[0, 1]$ 的坐标，$o_x = [X_1(x), \ldots, X_n(x)]$ 满足 $x \in M_1$ 的定向，则 $\{\frac{\partial}{\partial t}, X_1(x), \ldots, X_n(x)\} | x \in M_1$ 为 $[0, 1] \times M_1$ 的定向），并且 $\{1\} \times M_1$ 具有由 $[0, 1] \times M_1$ 的定向确定的诱导定向，而 $\{0\} \times M_1$ 具有与 $[0, 1] \times M_1$ 的定向确定的诱导定向相反的定向。于是，由引理 3，
\[0 = \deg(F|_{[0, 1] \times M_1}, y) = \deg(g; y) - \deg(f; y), \]
则 \[\deg(f; y) = \deg(g; y) \]

定理 1 整数 $\deg(f; y)$ 不依赖于正则值 y 的选取。

证明 若 y, z 都是 $f: M_1 \to M_2$ 的正则值，由于 M_2 为连通的 n 维 C^1 流形，故根据第二章 §4 定理 6（相应的定理中将 C^∞ 改为 C^1，切向量改为坐标观点定义），选取同胚于 Id_{M_2} 的 C^1 同胚 $h: M_2 \to M_2$，使 $h(y) = z$。显然，h 保持 M_2 的定向，且
\[\deg(h \circ f; h(y)) = \sum_{x \in (h \circ f)^{-1}(h(y))} \text{Sign}(h \circ f)_x \]
\[
\sum_{x \in f^{-1}(y)} \text{Sign}(h \cdot f(x) \cdot f(x)) = \sum_{x \in f^{-1}(y)} \text{Sign} f(x)
\]

\[= \deg(f; y).\]

如果 \(F : [0, 1] \times M_2 \to M_2 \) 为连通 \(h \) 和 \(\text{Id}_{M_2} \) 的 \(C^1 \) 同伦，则 \(G : [0, 1] \times M_2 \to M_2, \quad G(t, x) = F(t, f(x)), \quad G(0, x) = F(0, f(x)) = h \cdot f(x), \quad G(1, x) = F(1, f(x)) = \text{Id}_{M_2}(f(x)) = f(x), \quad \text{于是, } G \) 为连结 \(h \cdot f \) 和 \(f \) 的 \(C^1 \) 同伦。根据引理 4，\(\deg(h \cdot f; z) = \deg(f; z) \)，从而 \(\deg(f; y) = \deg(h \cdot f; h(y)) = \deg(h \cdot f; z) = \deg(f; z) \).

定义 2 称定理 1 中与正则值 \(y \) 无关的整数 \(\deg(f; y) \) 为 \(f \) 的度，记作 \(\deg f \).

定理 2 如同引理 4, \(F \) 为连结 \(f \) 和 \(g \) 的 \(C^1 \) 同伦，则

\[\deg f = \deg g.\]

证明 因 \(\text{meas } f(C_f) = 0 = \text{meas } g(C_g) \)，故 \(\text{meas } (f(C_f) \cup g(C_g)) = 0 \)，于是，存在 \(y \in M_2 - (f(C_f) \cup g(C_g)) \) 为 \(f \) 和 \(g \) 的正则值。由定理 1 和引理 4 有

\[\deg f = \deg(f; y) = \deg(g; y) = \deg g.\]

例 1 定义 1 中，(1) 常值映射 \(c : M_1 \to M_2, c(x) = y_0 \)，取

\[\deg c = \deg(c; y) = \sum_{x \in c^{-1}(y)} \text{Sign} c(x) = 0.\]

(2) 如果 \(f : M_1 \to M_2 \) 为 \(C^1 \) 同胚，则

\[\deg(f; y) = \sum_{x \in f^{-1}(y)} \text{Sign} f(x) = \text{Sign} f(x) = \begin{cases} +1, & f \text{保正正向,} \\ -1, & f \text{反转向正.} \end{cases}\]

(3) 如果 \(M_1 = M_2 = M \) 为紧致连通的 \(C^1 \) 流形，\(f : M \to M \) 为反转定向的 \(C^1 \) 同胚，则 \(f \) 不 \(C^1 \) 同伦于 \(\text{Id}_M \)。 (反证) 假设 \(f \) 同伦于 \(\text{Id}_M \)，则由引理 4,

\[-1 = \deg(f, y) = \deg(\text{Id}_M; y) = 1, \quad \text{矛盾.}\]

例 2 应用引理 3 可证 § 1 定理 7，(反证) 假设存在 \(C^1 \) 映射...
\(f : M \to \mathbb{M} \) 使 \(f|_{M} = \text{Id}_{M} \). 由引理 3, 对 \(f|_{M} \) 的正则值 \(y \) 有

\[
0 = \deg(f|_{M}; y) = \deg(\text{Id}_{M}; y) = \text{Sign}(\text{Id}_{y})_{*} = 1, \quad \text{矛盾.}
\]

例 3 \(f : S^1 \to S^1 \), \(e^y = f(e^{ix}) = e^{i\theta}, \theta \in \mathbb{Z} \). 则 \(\frac{dy}{d\theta} = k \), 因 \(\frac{\partial}{\partial \theta} \) 确定了 \(S^1 \) 的定向, 故

\[
\deg f = \deg(f; e^{ix}) = \begin{cases}
0, & k = 0, \\
\sum_{i=0}^{k-1} \text{Sign} f_{e^{i\theta}} (e^{i\theta} \cdot (\frac{2\pi}{k} \cdot \theta)) + k, & k \neq 0
\end{cases}
\]

\[
= \begin{cases}
0, & k = 0, \\
|k| \cdot \text{Sign} k, & k \neq 0
\end{cases}
\]

例 4 反射 \(r : S^n \to S^n \) 定义为 \(r(x_1, \ldots, x^{n+1}) = (x_1, \ldots, -x^2, \ldots, x^{n+1}) \). 易见它是反转定向的 \(C^n \) 同胚．

对径映射 \(r : S^n \to S^n \), \(r(x) = -x = r_1 \circ r_2 \cdots \circ r_{n+1}(x) \) 的度

\[
\deg r = \sum_{x \in r^{-1}(y)} \text{Sign} r_x = \text{Sign} r_x (-y) = (-1)^{n+1}.
\]

于是，当 \(n \) 为偶数时，\(S^n \) 的对径映射 \(r \) 不 \(C^1 \) 同伦于 \(\text{Id}_{S^n} \). (反证)

假设 \(r \) \(C^1 \) 同伦于 \(\text{Id}_{S^n} \)，则由定理 2，

\[
-1 = (-1)^{n+1} = \deg r = \deg \text{Id}_{S^n} = 1, \quad \text{矛盾}
\]

例 5 \(S^n \) 上有处处非 0 的 \(C^1 \) 切向量场 \(\iff \exists \) 为奇数．

\(\iff \) 设奇数 \(n = 2m - 1 \)，则令

\[
X(x_1, \ldots, x^{2m}) = (x^1, -x^2, x^3, -x^4, \ldots, x^{2m}, -x^{2m-1}),
\]

因为 \(\langle x, X \rangle = 0 \), 故 \(X(x) \) 为 \(S^n \) 在 \(x \) 的切向量, 显然 \(X \) 是 \(S^n \) 上的 \(C^\infty \) 单位切向量场．

(\(\implies \)) 如果 \(S^n \) 上有一个处处非 0 的 \(C^1 \) 切向量场 \(X \)，则 \(F : [0, 1] \times S^n \to S^n, F(\theta, x) = x \cos \pi \theta + \frac{X(x)}{\|X(x)\|} \sin \pi \theta \) 为连结 \(F(0, x) = x - \text{Id}_{S^n}(x) \) 与 \(F(1, x) = -x = r(x) \) 的 \(C^1 \) 同伦（注意 \(\langle F(\theta, x), F(\theta, x) \rangle = \cos^2 \pi \theta + \sin^2 \pi \theta = 1 \)）．于是，\(S^n \) 的对径映射 \(r \) \(C^1 \) 同伦… 220
于IdSn。由例4，当n为偶数时这是不可能的，因此，n必为终数。

\section*{§3 C^r切向量场的指数和 Poincaré-Hopf 定理}

指数定理

作为度的概念的进一步应用，现在研究C^r流形上的C^r切向量场在其孤立零点处的指数和Poincaré-Hopf定理。为定义指数概念，需先证几个引理。

引理1 设U∈R^n为开集，X: U→TU=U×R^n为C^r切向量场，p∈U为X的孤立零点。如果{x^i}为R^n的通常的直角坐标系，

\[\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases} \]

\[[X(x)] = \sqrt{\sum_{i=1}^{n} a^i(x) \frac{\partial}{\partial x_i} \cdot \sum_{i=1}^{n} a^j(x) \frac{\partial}{\partial x_j}} = \sqrt{\sum_{i=1}^{n} a^i(x)^2}, \]

\[S^{n-1}(r) = \{x ∈ R^n \mid \|x \| = r\} ⊂ U, \]

则映射

\[X(\hat{x}) = \frac{X(x)}{|X(x)|} : S^{n-1}(r) \rightarrow S^{n-1} \]

的度 deg X | S^{n-1}(r) 与上述 r 的选取无关，称为 X 在 p 的指数。

证明 设 0 < r_1 < r_2，S^{n-1}(r_i) ⊂ U，i = 1, 2。令 F: [0, 1] × S^{n-1} → S^{n-1}, F(t, y) = X((1-t)r_1 + tr_2) \cdot F(0, y) = X(r_1) = X(x) | s^{n-1}(r_1), F(1, y) = X(r_2) = X(x) | s^{n-1}(r_2)。根据§2定理2，

\[\deg X | S^{n-1}(r_1) = \deg F(1, \cdot) = \deg F(0, \cdot) = \deg X | s^{n-1}(r_2). \]

引理2 设f: R^n→R^n为保持定向的C^r微分同胚，且f(p) = p，

则存在连接 f 和Id_n的C^r同胚 F: [0, 1] × R^n→R^n, F(t, p) = p。

证明 先假定f(0) = 0，令 G: [0, 1] × R^n→R^n，

\[G(t, x) = \begin{cases} f(tx), & 0 < t < 1, \\ t, & t = 0. \end{cases} \]

\[\lim_{u \to 0^+} f(ux), t = 0. \]
其中 \(\lim_{u \to 0} \frac{f(u)z}{u} = \lim_{u \to 0} \frac{f(u)z - f(0)}{u - 0} \)

\[= \lim_{u \to 0} \left(\sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}(0)u x_i \right) + o(\|uz\|) \]

\[= \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}(0) u x_i. \]

由第二章 §3 定理 1 的证明可看出，
\[f(x) = \sum_{i=1}^{n} f_i(x) x_i. \]

\[\cdots, f_n \text{ 为 } C^\infty \text{ 函数。则对所有的 } t \in \mathbb{R}, G(t, x) = \sum_{i=1}^{n} f_i(tx) x_i, \]
\[G(0, x) = \sum_{i=1}^{n} f_i(0) x_i = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}(0) x_i, G(1, x) = f(x). \]

于是，\(f \in C^\infty \) 同痕于线性映射

\[\sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}(0) x_i = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(0) & \cdots & \frac{\partial f_1}{\partial x_n}(0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(0) & \cdots & \frac{\partial f_n}{\partial x_n}(0) \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}. \]

由第二章 §1 可知，存在 \(C^0 \) 映射 \(\sigma: [0, 1] \to \text{GL}(n, \mathbb{R})^* \)，使
\[\sigma(0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(0) \\ \vdots \\ \frac{\partial f_n}{\partial x_1}(0) \end{pmatrix}, \sigma(1) = I_n \text{ (n 阶单位矩阵)} . \]

但是，如果应用 2 维平面的旋转和与归纳法可得，必有一 \(C^\infty \) 道路将 \(O(n)^* \) 中任一点 (行列式为 1 的正交矩阵) 与 \(I_n \) 相连。因此，上述的 \(\sigma \) 可以取 \(C^\infty \) 映射。于是，
\[H: [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n, H(t, x) = \sigma(t) x \]为连接 \(H(0, x) = \sigma(0) x \)

\[= \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}(0) x_i \]和 \(H(1, x) = \sigma(1) x = I_n x = x = \text{Id}_{\mathbb{R}^n}(x) \) 的 \(C^\infty \) 同痕。根据 \(C^\infty \) 同痕的传递性，存在连接 \(f \) 和 \(\text{Id}_{\mathbb{R}^n} \) 的 \(C^\infty \) 同痕 \(F: [0, 1] \to \mathbb{R}^n \)。
对于一般保持定向的 C^∞ 微分同胚 $f: \mathbb{R}^n \to \mathbb{R}^n$, 有显然有 $F(t, 0) = 0$。

对于一般保持定向的 C^∞ 微分同胚 $f: \mathbb{R}^n \to \mathbb{R}^n$, 有显然有 $F(t, 0) = 0$。由上面的证明知，存在 C^∞ 同胚 $K: [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$, 使 $K(0, y) = f(p + y) - f(p)$, $K(1, y) = \text{Id}_{\mathbb{R}^n}(y)$. 于是，$F: [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$, $F(t, x) = K(t, x - p) + f(p) = K(t, x - p) + p$, $F(t, p) = p$, $F(0, x) = K(0, x - p) + p = f(x)$, $F(1, x) = K(1, x - p) + p = \text{Id}_{\mathbb{R}^n}(x)$, 它就是连接 f 和 $\text{Id}_{\mathbb{R}^n}$ 的所要求的 C^∞ 同胚。

推论 1 设 $U \subseteq \mathbb{R}^n$ 为凸开集，$p \in U$, $f: U \to \mathbb{R}^n$, $f(p) = p$ 为保持定向的 C^∞ 嵌入，则存在 C^∞ 映射 $F: [0, 1] \times U \to \mathbb{R}^n$, 使得 $F(0, x) = f_e(x) = f(x)$, $F(1, x) = f_1(x) = \text{Id}_x(x)$, $F(t, p) = f(t)(p) = p$, 而 $F(t, \cdot) = f_t(\cdot): U \to \mathbb{R}^n$ 为单参数嵌入族。

证明 类似引理 2 的证明，只须相应的部分改为

$G, H, F: [0, 1] \times U \to \mathbb{R}^n$,

$f: U \to \mathbb{R}^n$,

$K: [0, 1] \times \{ y \subseteq \mathbb{R}^n \mid p \subseteq y \subseteq U \} \to \mathbb{R}^n$。

引理 3 设 $U, V \subseteq \mathbb{R}^n$ 为开集，$f: U \to V$ 为 C^∞ 微分同胚，X 为 U 上的 C^∞ 切向量场，它在 f 下对应于 V 上的 C^∞ 切向量场为

$Y = f_* \circ X \circ f^{-1}$,

则 X 在孤立零点 p 处的指数等于 Y 在 $f(p)$ 处的指数。

证明 由于 C^∞ 切向量场在孤立零点处的指数在平移 $f(x) = x + h$ 下不变，故不妨设 $p = f(p) = 0$。

因为 C^∞ 切向量场在孤立零点 p 处的指数完全由该切向量场在充分靠近 p 的小球面上的值决定，故不失一般性，U 为凸开集。

当 f 保持定向时，由推论 1，可构造 C^∞ 的单参数嵌入族

$F(t, \cdot) = f_t(\cdot): U \to \mathbb{R}^n$, 使得 $f_0 = f$, $f_1 = \text{Id}_U$, $f_t(0) = 0$, 从 F 的 C^∞ 性和 $[0, 1]$ 的紧致性可知，存在 $r > 0$, 使得

$S^{n-1}(r) \subset \bigcap_{t \in [0, 1]} f_t(U)$.

• 223 •
令与 U 上的 C^∞ 切向量场 X 相对应的 $f_\ast(U)$ 上的 C^∞ 切向量场为 $X_f = f_\ast X \circ f_\ast^{-1}$. 这些切向量场在点 O 为中心的充分小的球面上都是非零的, 设此球面为 $S^{n-1}(r)$. 因此,

$$X_f(x) = \frac{X_f(x)}{|X_f(x)|} : [0, 1] \times S^{n-1}(r) \to S^{n-1}$$

为连接 $X_0(x) = \frac{f_\ast X \circ f_\ast^{-1}(x)}{|f_\ast X \circ f_\ast^{-1}(x)|} = Y(x)$ 和 $X_1(x) = \frac{X(x)}{|X(x)|} = X(x)$ 的 C^∞ 同伦. 根据 §2 定理 2, $\deg Y(x) |_{S^{n-1}(r)} = \deg X(x) |_{S^{n-1}(r)}$, 这就证明了 X 在孤立零点处的指数等于 Y 在 0 的指数.

当 $f = \rho, \rho(x^1, \cdots, x^n) = (x^1, \cdots, x^{n-1}, -x^n)$ 为反射时, 显然 $Y = \rho \ast X \circ \rho^{-1} = \rho \ast X \circ \rho^{-1}$, $Y = \frac{Y}{|Y|} = \frac{\rho \ast X \circ \rho^{-1}}{|\rho \ast X \circ \rho^{-1}|} = \rho \ast \frac{X}{|X|} \circ \rho^{-1} = \rho \ast X \circ \rho^{-1}$. 由此可从切向量与积分曲线在 C^∞ 微分同胚下的关系可知 $\deg Y |_{S^{n-1}(r)} = \deg X |_{S^{n-1}(r)}$.

当 f 为任何反转定向的 C^∞ 微分同胚时, $f \circ \rho$ 为定定向的 C^∞ 微分同胚且 $Y = f_\ast \circ X \circ f_\ast^{-1} = (f \circ \rho \circ \rho)^{-1}$, $(f \circ \rho)$.

由上而已证的结果立即看出 Y 与 $\rho \ast X \circ \rho^{-1}$ 在 0 点处的指数相等, $\rho \ast X \circ \rho^{-1}$ 与 X 在 0 点处的指数相等, 故 Y 与 X 在 0 点处的指数也相等.

定义 1 设 X 为 n 维 C^∞ 流形 (M, \emptyset) 上的 C^∞ 切向量场, $p \in M$ 为 X 的孤立零点 (即 X 在 p 的某开邻域中只有一个零点). 任选 p 的局部坐标系 $(U, \varphi) \in \emptyset$, 我们定义 X 在 p 点的指数为 $\varphi \ast X \circ \varphi^{-1}$ 在 $\varphi(p)$ 点的指数. 由引理 3 它与 p 的局部坐标系 $(U, \varphi) \in \emptyset$ 的选取无关, 因此上述指数的定义是确切的, 并记为 $\text{Ind}_p X$.

* 224 *
例1 设 \(M = C = R^2 \) 为复平面，\(X(z) = z^k (k \in \mathbb{N}) \) 确定了 \(M \)上的一个 \(C^\infty \) 切向量场，0 为其孤立零点。由 §2 例3，

\[
\text{Ind}_0 X = \text{deg} X(z) |_{s^1} = k.
\]

类似地，\(X(z) = z^k (k \in \mathbb{N}) \) (\(\| z \| = 0, 0 \)) 确定了 \(M \) 上的又一个 \(C^\infty \) 切向量场，0 为其孤立零点。由 §2 例3，\(\text{Ind}_0 X = \text{deg} X(z) |_{s^1} = -k \) 或 0。

例2 设 \(S^n \subset R^{n+1} \) 为通常的 \(C^\infty \) 微分流形，\(X(x) = x \cdot x = 0 \) 为北极。因为 \(\langle x(x), x \rangle = \langle p, x \rangle - \langle p, x \rangle \cdot \langle x, x \rangle = 0 \)，故 \(X \) 为 \(S^n \) 上的 \(C^\infty \) 切向量场，它恰有两个孤立零点 \(p \) 与 \(-p \)。

先考虑孤立零点 \(p \)，设 \(U = S^n - (0, \cdots, 0, -1) \)，\(\varphi_1 : U \rightarrow \mathbb{R} \) \(x \mapsto (x^1, \cdots, x^n, 1) \) \(x \in \mathbb{R} \)，\(n = \varphi_1 (U) \) 为南极 \((-p) = (0, \cdots, 0, -1) \) 投影，则 \(\varphi_1 \times X \circ \varphi_1^{-1} \) 为 \(\varphi_1 (U) \) 上的 \(C^\infty \) 切向量场，它在每一点的切向量都指向中心 \((0, \cdots, 0, 1) \)。因此，由 §2 例4，

\[
\text{Ind}_p X = \text{Ind}_{\varphi_1(p)} \varphi_1 \times X \circ \varphi_1^{-1} = \text{deg} \frac{\varphi_1 \times X \circ \varphi_1^{-1}}{\varphi_1 \times X \circ \varphi_1^{-1}} |_{s^{n-1}} = (-1)^n.
\]

类似地，\(\text{Ind}_{-p} X = \text{Ind}_{\varphi_2} (-p) \varphi_2 \times X \circ \varphi_2^{-1} = \text{deg} \frac{\varphi_2 \times X \circ \varphi_2^{-1}}{\varphi_2 \times X \circ \varphi_2^{-1}} |_{s^{n-1}} = \text{deg} z |_{s^{n-1}} = 1 \)，其中 \(\varphi_2 \) 为北极投影。

定义 1（Poincaré-Hopf 指数定理） 设 \(M \) 为 \(n \) 维 \(C^\infty \) 紧致流形，\(X \) 为 \(M \) 上只具有孤立零点的 \(C^\infty \) 切向量场 (因而孤立零点只有有限个)，则

\[
\sum_{x \in \text{Is}} \text{Ind}_x X = X(M) = \sum_{i = 0}^n (-1)^i b_i (M),
\]

其中 \(X(M) \) 为 \(M \) 的 Euler 示性数，\(b_i (M) \) 为 \(M \) 的第 \(i \) 个 Betti 数，

即同调群 \(H_i (M; \mathbb{R}) \) 的秩。
注1 Poincaré-Hopf 定理指出，C^∞切向量场的指数和是 M的一个拓扑不变量。它不依赖于 C^∞切向量场的特殊选取。另外，C^∞切向量场在孤立零点处的指数是其局部性质，而本定理得到的结果却是整体性质，因此，这是反映局部和整体，微分拓扑与代数拓扑之间相联系的极其深刻的定理。这一定理的2维情形是由 Poincaré 在1885年证明的，全部定理证明是由 Hopf 在1928年完成的。另一证明参阅 [Bott, R. and Tu, L. W.]. 下面先证明一系列的引理。

引理4 (Hopf) 设 $U \subset \mathbb{R}^n$ 为 n 维 C^∞ 紧致带边流形，$X: U \to TU$ 为只具有孤立零点的 C^∞ 切向量场，并且在边界 ∂U 上 X 指向 U 的外面，则

$$\sum_{x \in \partial U} \text{Ind}_X x = \deg N,$$

其中 $N: \partial U \to S^{n-1}$, $x \mapsto N(x)$ (x 处的向外的单位法向量，然后移到 \mathbb{R}^n 的原点，图 25) 为 $n-1$ 维超曲面 ∂U 的 Gauss 映射。特别地，这指数和不依赖于 X 的选取。

证明 设 $x_1, \cdots, x_k \in U - \partial U = U^0$ 为 U 中 X 的全部孤立零点

(因为在 ∂U 上 X 指向 U 的外面，故 $X(x) \equiv 0, x \in \partial U$)，取 $\varepsilon > 0$，使得 ε-球体 $\overline{O(x_i, \varepsilon)} \subset U^0$, $i = 1, \cdots, k$，且彼此不相交，于是得到一个新的带边流形 $U - \bigcup_{i=1}^k O(x_i, \varepsilon)$. 显然，
\[
X(x) = \frac{X(x)}{|X(x)|} \cdot U - \bigcup_{i=1}^{k} O(x_i, e) \rightarrow S^{n-1}
\]

为 \(C^\infty\) 曼氏 \((X(x))\) 到 \(\mathbb{R}^n\) 的原点。因为 \(X|_{\partial} \subset C^\infty\) 同伦于 \(N\)（应用平面旋转），且每个小球面 \(\partial O(x_i, e)\) 上的诱导定向恰与 \(X\) 通常的定向相反，故再由 §2 引理 3 得到

\[
0 = \text{deg} X \mid_{\bigcup_{i=1}^{k} \partial O(x_i, e)} = \text{deg} X \mid_{\partial N} + \sum_{i=1}^{k} \text{deg} X \mid_{\partial O(x_i, e)}
\]

\[
= \text{deg} N - \sum_{i=1}^{k} \text{Ind}_{x_i} X,
\]

即 \(\sum_{x \in X^{-1}(0)} \text{Ind}_{x} X = \text{deg} N\)。∴

定义 2 设 \(X\) 为 \(n\) 维 \(C^\infty\) 流形 \(M\) 上的 \(C^\infty\) 切向量场，\(p\) 为 \(X\) 的孤立零点。在 \(p\) 的局部坐标系 \((U_1, \varphi_1), \{u^i\}\) 中，\(X = \sum_{i=1}^{n} a^i \frac{\partial}{\partial u^i}\),

\((a^1, \ldots, a^n) \mid_{p} = (0, \ldots, 0)\)，如果 \((\frac{\partial a^i}{\partial u^j}(p))\) 为非异矩阵，则称 \(p\) 为 \(X\) 的非退化零点，否则称为退化零点。容易验证上述定义与局部坐标系的选取无关。设 \((U_2, \varphi_2), \{v^i\}\) 为 \(p\) 的另一局部坐标系，

\(X = \sum_{k=1}^{n} b^k \frac{\partial}{\partial u^k}\) 则 \(b^k = \sum_{i=1}^{n} \frac{\partial v^k}{\partial u^i} a^i\),

\[
\left(\frac{\partial b^k}{\partial v^i}(p)\right) = \left(\sum_{i=1}^{n} \frac{\partial^2 v^k}{\partial u^i \partial u^s} \frac{\partial v^s}{\partial v^i} + \sum_{i,j=1}^{n} \frac{\partial v^k}{\partial u^i} \frac{\partial u^j}{\partial v^i} \frac{\partial u^j}{\partial v^i}\right) \mid_{p}
\]

\[
= \left(\frac{\partial v^k}{\partial u^i}\right) \left(\frac{\partial a^i}{\partial u^j}(p)\right) \left(\frac{\partial u^j}{\partial v^i}\right)\cdot
\]

显然，\(\left(\frac{\partial b^k}{\partial v^i}(p)\right)\) 非异 \iff \(\left(\frac{\partial a^i}{\partial u^j}(p)\right)\) 非异。

* 227 *
$$\text{Sign} \left(\frac{\partial b^i}{\partial u^i} (p) \right) - \text{Sign} \left(\frac{\partial a^i}{\partial u^i} (p) \right).$$

令 $Y = \varphi_1 \circ X \circ \varphi_1^{-1}$，它为 $\varphi_1(U_1)$ 上的 C^∞ 切向量场，将 Y 视作 $\varphi_1(U_1) \to \mathbb{R}^n, u \mapsto (a^1(u), \cdots, a^n(u))$ 的映射，则 p 为 X 的非退化零点 $\iff Y_{*,(p)} : \mathbb{R}^n \to \mathbb{R}^n$ 是非退化的。

引理 5 非退化零点 p 为 X 的孤立零点，且

$$\text{Ind}_p X = \begin{cases} +1, & \det J_{Y_{*,(p)}} = \det \left(\frac{\partial a^i}{\partial u^i} (p) \right) > 0, \\ -1, & \det J_{Y_{*,(p)}} = \det \left(\frac{\partial a^i}{\partial u^i} (p) \right) < 0, \end{cases}$$

其中 $J_{Y_{*,(p)}}$ 为 $Y_{*,(p)}$ 的 Jacobi 矩阵。

证明 因为 p 为 X 的非退化零点，故

$$\det J_{Y_{*,(p)}} = \det \left(\frac{\partial a^i}{\partial u^i} (p) \right) \neq 0,$$

由反函数定理，Y 可看成从 $\varphi_1(p)$ 的某开邻域 U_0 到 \mathbb{R}^n 中某开集的 C^∞ 微分同胚，且 $\varphi_1(p)$ 为 Y 的孤立零点，从而 p 为 X 的孤立零点，不失一般性，令 $\varphi_1(p) = 0$。

如果 $\det J_{Y_{*,(p)}} > 0$，即 Y 保持定向，由推论 1，$Y|_{U_0}$ 能 C^∞ 形变为 I_{V_0} 而不引入任何新的零点。因此，$\text{Ind}_p X = \text{Ind}_{\varphi_1(p)} Y = \text{Ind}_{V_0} Y = \text{Ind}_{V_0} I_{V_0} = +1$。

如果 $\det J_{Y_{*,(p)}} < 0$，即 Y 反转定向，则 $Y|_{U_0}$ 类似地能 C^∞ 形变为反向，故 $\text{Ind}_p X = -1$。

引理 6 设 p 为 n 维 C^∞ 正则子流形 $M \subset \mathbb{R}^k$ 上的 C^∞ 向量场 X 的孤立零点，将 X 看作 $M \to \mathbb{R}^n$ 的映射 $(X(x)$ 移到原点)，则 p 点的 Jacobi 映射 $X_{*,p} : T_p M \to T_{0} \mathbb{R}^n = \mathbb{R}^k$ 将 $T_p M$ 映到 $T_0 M \subset \mathbb{R}^k$（移到原点）。如果这个线性映射的行列式 $D \neq 0$，则 p 为 X 的孤立零点，且 $\text{Ind}_p X = \begin{cases} +1, & D > 0, \\ -1, & D < 0. \end{cases}$

* 228 *
证明 设 \((U, \varphi), \{u^i\}\) 为 \(p\) 的局部坐标系，\(h = \varphi^{-1} \circ \varphi(U) \to M\)，则
\[(t_i = h_{*u} \left(\frac{\partial}{\partial u^i} \right) = \frac{\partial h}{\partial u^i})\] 为切空间 \(T_{h(u)} M\) 的基。令 \(\sum_{j=1}^{n} a^j \frac{\partial}{\partial u^i} = \]
\[Y = \varphi_{*u}\left(X\right) = (h^{-1})_{*u} X \circ h(u), x = h(u) = \varphi^{-1}(y)。于是，X \circ h(u) = h_{*u}(Y) = \sum_{j=1}^{n} a^j h_{*u} \left(\frac{\partial}{\partial u^j} \right) - \sum_{j=1}^{n} a^j t_j\]
\[和 X_{*u}(t_i) = X_{*u} \circ h_{*u} \left(\frac{\partial}{\partial u^i} \right) = \frac{\partial (\sum_{j=1}^{n} a^j t_j)}{\partial u^i} = \sum_{j=1}^{n} \frac{\partial a^j}{\partial u^i} t_j + \sum_{j=1}^{n} a^j \frac{\partial t_j}{\partial u^i}\]
再根据 \(a^j(h^{-1}(p)) = a^j(\varphi(p)) = 0\) 得到

\[X_{*u}(t_i) = \sum_{j=1}^{n} \frac{\partial a^j}{\partial u^i}(h^{-1}(p)) t_j \in T_p M,\]

这就证明了 \(X_{*u}\) 为 \(T_p M \to T_p M\) 的线性映射且行列式 \(D = \det \left(\frac{\partial a^j}{\partial u^i}(h^{-1}(p)) \right)\)。向量场 \(Y\) 应用引理 5 并结合定义 2 得到，当 \(D = \det \left(\frac{\partial a^j}{\partial u^i}(h^{-1}(p)) \right) \neq 0\) 时，\(h^{-1}(p) - \varphi(p)\) 为 \(Y\) 的孤立零点。从而 \(p\) 为 \(X\) 的孤立零点，且

\[\text{Ind}_p X = \text{Ind}_{\varphi(p)} Y = \begin{cases} +1, & \det \left(\frac{\partial a^j}{\partial u^i}(h^{-1}(p)) \right) = D > 0; \\ -1, & \det \left(\frac{\partial a^j}{\partial u^i}(h^{-1}(p)) \right) = D < 0. \end{cases}\]

引理 7 设 \(M \subset \mathbb{R}^k\) 为 \(n\) 维紧致 \(C^\infty\) 流形，则存在 \(\varepsilon > 0\)，使得 \(U_\varepsilon = \{x \in \mathbb{R}^k \mid \exists y \in M \text{ 使得 } \|x - y\| \leq \varepsilon\}\) 为 \(k\) 维 \(C^\infty\) 带边流形。

如果 \(X\) 为 \(M\) 上的只具有非退化零点的任意 \(C^\infty\) 切向量场，则

\[\sum_{X(x)=0} \text{Ind}_x X = \text{deg} N,\]

* 229 *
其中 \(N : \partial U_e \to S^{k-1} \) 为 \(\partial U_e \) 的 Gauss 映射。特别地，这指数和不依赖于 \(C^\infty \) 向量场 \(X \) 的选取（图 26）。

证明：参阅 [J. W. 朱尔诺, 熊金城译, 59 页问题 11, 12, 110 页] 和 [Munkres, J. R., p. 51] 可知，存在 \(\varepsilon > 0, U_e \) 为 \(k \) 维 \(C^\infty \) 带边流形。

对于 \(x \in U_e, r(x) \in M \) 为 \(M \) 中离 \(x \) 最近的点，此时 \(x - r(x) \perp T_{r(x)} M \)（上表示正交或垂直，即对任何 \(v \in T_{r(x)} M, \langle x - r(x), v \rangle = 0 \)），且当 \(\varepsilon \) 充分小时，\(r(x) \) 为 \(C^\infty \) 映射。

考虑距离平方法函数 \(f(x) = \| x - r(x) \|^2 = \langle x - r(x), x - r(x) \rangle \)。

因为 \(x - r(x) \) 为 \(r(x) \) 处的法向量，\(\frac{\partial r}{\partial x_i} \) 为 \(r(x) \) 处的切向量，故

\[
\frac{\partial f}{\partial x^j} = 2 \sum_{i=1}^{k} \frac{(x^i - r_i(x))^2}{\partial x^i} = 2 \sum_{i=1}^{k} (x^i - r_i(x)) \left(\delta^j_i - \frac{\partial r_i}{\partial x^j} \right)
= 2(x^j - r_j(x)) - \langle x - r(x), \frac{\partial x}{\partial x^j} \rangle = 2(x^j - r_j(x)),
\]

于是，\(f \) 在 \(\mathbb{R}^k \) 中通常 (关于 \(\frac{\partial r}{\partial x^i}, \frac{\partial x}{\partial x^j} = \delta^i_j \)) 的梯度场为

\[
\operatorname{grad} f = \sum_{i=1}^{k} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i} = 2(x - r(x)).
\]

因此，等高超曲面 \(\partial U_e = f^{-1}(\varepsilon^2) \) 上每一点 \(x \) 的向外的单位法向量为

\[
N(x) = \frac{\operatorname{grad} f}{\| \operatorname{grad} f \|} = \frac{x - r(x)}{\varepsilon}.
\]

将 \(X \) 延拓为 \(U_e \) 上的 \(C^\infty \) 向量场 \(Y \)，使得

\[
Y(x) = (x - r(x)) + X(r(x)).
\]

因为 \(X(r(x)) \) 和 \(x - r(x) \) 分别为 \(r(x) \) 处关于 \(M \) 的切向量和法向。
量，所以当 $x \in U$ 时有

$$
\langle Y(x), N(x) \rangle = \langle \frac{x - r(x)}{\varepsilon}, \frac{x - r(x)}{\varepsilon} \rangle = \langle X(r(x)), \frac{x - r(x)}{\varepsilon} \rangle
$$

$$
= \varepsilon > 0,
$$

即 Y 在边界 ∂U 上指向外（法向量 $N(x)$ 的一边）。此外，显然有 $Y = 0 \iff (Y, Y) = \langle x - r(x), x - r(x) \rangle + \langle X(r(x)), X(r(x)) \rangle = x - r(x)$ 和 $X(r(x)) = 0$，这就证明了 Y 的零点和 X 的零点完全相同。

在零点 $p \in M$ 处，对于任何 $v \in T_p M$，取 C^∞ 曲线 $x(t) \in M$, $x'(0) = v$, 则 $Y(x(t)) = x(t) - r(x(t)) + X(r(x(t))) = x(t)$，

$$
\sum_{i=1}^k \frac{\partial Y}{\partial x^i} \frac{dx^i}{dt} = \sum_{i=1}^k \frac{\partial X}{\partial x^i} \frac{dx^i}{dt}, \quad Y_{*p}(v) = X_{*p}(v);
$$

而对于任何 $v \in T_p M$，取 $u \in T_p \mathbb{R}^k$ 使 $u \perp T_p M$ （p 点处关于 M 的法空间），有 $Y(p + tv) = (p + tv) - r(p + tv) + X(r(p + tv)) = tv + X(p)$，$Y_{*p}(v) = \sum_{i=1}^k \frac{\partial Y}{\partial x^i} (p)v^i = v$。于是，$\det J_{*p} \equiv \det J_{*p}$，再由引理 5 和 6，$\text{Ind} Y = \text{Ind}_p X$，最后，根据引理 4 得到

$$
\sum_{x(x) = 0} \text{Ind}_x X = \sum_{y(x) = 0} \text{Ind}_y Y = \deg N.
$$

既然引理 7 告诉我们指数和不依赖于 M 上的只具有非退化零点的 C^∞ 向量场的选取，而定理 1（Poincaré-Hopf 定理）又要求这指数和为 $\chi(M)$. 为此，我们寻找一个特殊的 C^∞ 函数

$$
f = L_y : M \to \mathbb{R}, f(x) = L_y(x) = \|x - p\|^2, p \in \mathbb{R}^k
$$

为固定点，使得 f 的梯度场 $X = \text{grad} f$ 具有上述性质。

定义 3 设 $M \subset \mathbb{R}^k$ 为 n 维 C^∞ 正则子流形，

$$
TM^\perp = \{(x, v) \in M \times \mathbb{R}^k \mid v \perp T_x M\} \subset \mathbb{R}^k \times \mathbb{R}^k = \mathbb{R}^{2k}.
$$

从下面应用局部坐标系的表示可看出，TM^\perp 为 M 上的秩为 $k - n$
的 \(C^\infty \) 向量丛的从空间，\(M \) 为底空间，\(R^{k-n} \) 为纤维空间，\(\pi: TM \rightarrow M \)，\(\pi(x,v) = x \) 为投影。\(\pi^{-1}(x) = T_xM = \{(x, v) \in \{x\} \times R^k | v \perp T_xM \} \subset R^{k-n} \) 为 \(x \) 处的纤维 (\(x \) 处的切空间)，它是 \(T_xM \) 的正交补，称此向量丛为 \(M \) 的法 (向量) 丛，它是 \(n + (k-n) = k \) 维 \(C^\infty \) 流形。

设 \((U, \varphi), \{u^1, \ldots, u^k\} \) 为 \(M \) 的任一局部坐标系，\(x(u) = (\varphi(u), u) \)，\(u = \left(\frac{\partial x}{\partial u^1}, \ldots, \frac{\partial x}{\partial u^k} \right) \) 形成 \(T_{x(u)}M \) 的基，而 \(-(P^{-1}Q)' \), \(I_{k-n} \) 的行向量恰为 \(T_{x(u)}M^{\perp} \) 的基，为方便不妨设矩阵 \(P(u) \) 非异，定义 \(\psi: U \times R^k \rightarrow R^n \times R^k, \psi(x, (v^1, \ldots, v^k)) = (\varphi(x), (v^1, \ldots, v^k) \left(-(P^{-1}Q)', I_{k-n} \right)^{-1} \), \((u, (y^1, \ldots, y^k)) \)。显然，\((U \times R^k, \psi) \) 为 \(M \times R^k \) 的局部坐标系，且 \((x(u), v) \in T_{x(u)}M \iff v = -(P^{-1}Q)', I_{k-n} \) 的行向量的线性组合 \(\leftarrow v = (y^1, \ldots, y^{n-k}, 0, \ldots, 0) \left(-(P^{-1}Q)', I_{k-n} \right) \)

\(\leftarrow \left(x, v \right) \) 对应的局部坐标 \((u, (y^1, \ldots, y^k)) \) 中，\(y^{k-n+1} = \cdots = y^k = 0 \)。因此，\(TM \) 为 \(M \times R^k \) 的 \(C^\infty \) 向量丛。

定义 4 设 \(E: TM \rightarrow R^k \)，
\(E(x, v) = x + v \) 显然，“端点”映射 \(E \) 关于 \(x, v \) 是 \(C^\infty \) 类的（图 27）。

如果 \((q, v) \in TM, y = q + v \)，\(E \) 在 \((q, v) \) 处的 Jacobi 矩阵的

![图 27](image-url)
秩为 $r < k$，则称 $y = q + v \in \mathbb{R}^k$ 为 (M, q) 的重数为 $\mu = k - r > 0$ 的焦点。如果存在 $q \in M$ 使 $y = q + v$ 为 (M, q) 的焦点，则称 y 为 M 的焦点。

引理 8 n 维 C^∞ 正则子流形 $M \subset \mathbb{R}^k$ 的焦点的集合 F 为 \mathbb{R}^k 中的零测集，即 $\text{meas} F = 0$。换句话说，对几乎所有的 $q \in \mathbb{R}^k$，点 q 不是 M 的焦点。

证明 因为 q 为 M 的焦点 \iff q 为 F；$TM^\perp \rightarrow \mathbb{R}^k$ 的临界值。根据 §1 Sard 定理，

$$\text{meas} F = \text{meas} \mathcal{E}(C^\infty) = 0.$$ ②

为了更好地理解焦点的概念，引进 n 维 C^∞ 正则子流形 $M \subset \mathbb{R}^k$ 关于局部坐标系 (u^1, \ldots, u^n) 的第 I, II 基本形式是方便的。

设 $x = x(u^1, \ldots, u^n) = (x^1(u), \ldots, x^n(u)) \in M$，第 I 基本形式 $(g_{ij}) = \left(\frac{\partial x^i}{\partial u^j} \right)$ 为 $n \times n$ 的正定实矩阵。第 II 基本形式 (l_{ij}) 为 $n \times n$ 对称向量场矩阵，其中 l_{ij} 是向量 $\frac{\partial^2 x}{\partial u^i \partial u^j}$ 关于 $T_x M \oplus T_{x(u)} M^\perp \rightarrow T_{x(u)} \mathbb{R}^k$ 的法分量，即 $l_{ij} = \left(\frac{\partial^2 x}{\partial u^i \partial u^j} \right)^\perp$。设 $v \in T_{x(u)} M^\perp$，则称 $\langle \langle v, l_{ij} \rangle \rangle = \langle \langle v, l_{ij} \rangle \rangle$ 为 M 在点 $x(u)$ 沿法向 v 的第 II 基本形式。

关于 λ 的 n 次方程 $\det(\lambda I - (g_{ij})^{-1} (\langle v, l_{ij} \rangle)) = 0$ 或 $\det(\lambda g_{ij} - (\langle v, l_{ij} \rangle)) = 0$ 的根 K_1, \ldots, K_n（即矩阵 $(g_{ij})^{-1} (\langle v, l_{ij} \rangle)$ 的特征值）称为 M 在点 $x(u)$ 沿法向 v 的主曲率。如果 $(g_{ij})^{-1} (\langle v, l_{ij} \rangle)$ 非奇异，从而 $(\langle v, l_{ij} \rangle)$ 也非奇异，则 $K_i \equiv 0, i = 1, \ldots, n$，并称 K_1, \ldots, K_n 为主曲率半径。

引理 9 设 $(q, v) \in TM^\perp$，则 $q + tv$ 为 (M, q) 的重数 $\mu > 0$ 的焦点 \iff 矩阵 $(g_{ij} - t (\langle v, l_{ij} \rangle))$ 奇异且其秩为 $k - \mu$。

213
证明 由定义 3 和 Schmidt 正交化过程可选取 $k - n$ 个关于 u 的 C^∞ 向量场 $W_a(u^1, \cdots, u^n) = W_a(u), \alpha = 1, \cdots, k - n$, 使得 $W_1, \cdots, W_{k - n}$ 为 $T_x(u)M$ 中的规范正交基 (彼此正交的单位向量), 在法丛 TM^\perp 上引进局部坐标系 $(u^1, \cdots, u^n, t^1, \cdots, t^{k - n})$ 如下: $(u^1, \cdots, u^n, t^1, \cdots, t^{k - n})$ 对应于点 $(x(u^1, \cdots, u^n), \sum_{\alpha = 1}^{k - n} t^\alpha W_a(u^1, \cdots, u^n)) \in TM^\perp$. 则映射 $E: TM^\perp \rightarrow \mathbb{R}^k$ 由 $(u^1, \cdots, u^n, t^1, \cdots, t^{k - n}) \mapsto y = x(u^1, \cdots, u^n) + \sum_{\alpha = 1}^{k - n} t^\alpha W_a(u^1, \cdots, u^n)$ 给出. 相应的 Jacobi 矩阵为

$$
\begin{pmatrix}
\frac{\partial y}{\partial u^1} \\
\vdots \\
\frac{\partial y}{\partial u^n} \\
\frac{\partial y}{\partial t^1} \\
\vdots \\
\frac{\partial y}{\partial t^{k - n}}
\end{pmatrix} =
\begin{pmatrix}
\frac{\partial x}{\partial u^1} + \sum_{\alpha = 1}^{k - n} t^\alpha \frac{\partial W_a}{\partial u^1} \\
\vdots \\
\frac{\partial x}{\partial u^n} + \sum_{\alpha = 1}^{k - n} t^\alpha \frac{\partial W_a}{\partial u^n} \\
W_1 \\
\vdots \\
W_{k - n}
\end{pmatrix}.
$$

将此矩阵的行向量与线性无关向量 $\frac{\partial x}{\partial u^1}, \cdots, \frac{\partial x}{\partial u^n}, W_1, \cdots, W_{k - n}$ 作内积得到 $k \times k$ 矩阵

$$
\begin{pmatrix}
\left(\frac{\partial x}{\partial u^1}, \frac{\partial x}{\partial u^1}\right) + \left(\sum_{\alpha = 1}^{k - n} t^\alpha \frac{\partial W_a}{\partial u^1}, \frac{\partial x}{\partial u^1}\right) & \left(\sum_{\alpha = 1}^{k - n} t^\alpha \frac{\partial W_a}{\partial u^1}, W_s\right) \\
0 & I_{k - n}
\end{pmatrix}.
$$

显然, 它的秩与 E 的 Jacobi 矩阵的秩在点 $x(u)$ 处是相同的, 也就是 $u < n$ 矩阵

* 234.*
\[
\left(\left(\frac{\partial x}{\partial u^i}, \frac{\partial x}{\partial u^j} \right) + \left(\sum_{a=1}^{k-n} t_a \frac{\partial W_a}{\partial u^i}, \frac{\partial x}{\partial u^j} \right) \right)
= \left(\frac{\partial x}{\partial u^i}, \frac{\partial x}{\partial u^j} \right) - \left(\sum_{a=1}^{k-n} t_a W_a \frac{\partial^2 x}{\partial u^i \partial u^j} \right)
= \left(\frac{\partial x}{\partial u^i}, \frac{\partial x}{\partial u^j} \right) - \left(\sum_{a=1}^{k-n} t_a W_a, t_{ij} \right)
= (g_{ij} - t \langle v, l_{ij} \rangle)
\]

的秩加上 \(k - n \)，其中 \(tv = \sum_{a=1}^{k-n} t_a W_a \) 并应用了恒等式

\[
0 = \frac{\partial}{\partial u^i} \left(W_a, \frac{\partial x}{\partial u^j} \right) = \left(\frac{\partial W_a}{\partial u^i}, \frac{\partial x}{\partial u^j} \right) + \left(W_a, \frac{\partial^2 x}{\partial u^i \partial u^j} \right).
\]
由此可知，\(q + tv \) 为 \((M, q)\) 的重数 \(\mu > 0 \) 的焦点 \(\leftrightarrow \) 矩阵 \((g_{ij} - t \langle v, l_{ij} \rangle)\) 奇异且其秩为 \(k - \mu \)。

引理 10 设 \(v \) 为 \(q \) 处的单位法向量，则 \((M, q)\) 沿点 \(q \) 处的法线 \(l = (q + tv | t \in \mathbb{R})\) 的焦点确切地为 \(q + K_t v, K_t \neq 0, 1 \leq i \leq n \)。因此，沿 \(l \) 至多只有 \((M, q)\) 的 \(n \) 个焦点（按重数计）。

证明 因为 \((g_{ij})\) 正定，故当 \((g_{ij} - t \langle v, l_{ij} \rangle)\) 奇异时，\(t \neq 0 \) 且
\[
\frac{1}{t} \text{det} \left(\lambda g_{ij} - \langle v, l_{ij} \rangle \right) = 0 \quad \text{的根，即} \quad \frac{1}{t} = K_t \quad \text{为矩阵} \quad (g_{ij})^{-1} \langle \langle v, l_{ij} \rangle \rangle \quad \text{的特征值。进而} \quad \text{焦点} \quad q + K_t v \quad \text{的重数} \quad \mu \quad \text{恰为} \quad K_t \quad \text{作为特征值的重数。}
\]

定义 5 设 \(M \) 为 \(n \) 维 \(C^r \) 流形，\(f : M \rightarrow \mathbb{R} \) 为 \(C^r \) 函数，\(p \in M \) 为 \(f \) 的临界点，即 \((\text{rank} f)_p < \text{dim} \mathbb{R} = 1 \)。因此，\((\text{rank} f)_p = 0 \) 且在 \(p \) 的任一局部坐标系 \((x^i)\) 中，

\[
\left(\frac{\partial f}{\partial x^1}(p), \cdots, \frac{\partial f}{\partial x^n}(p) \right) = (0, \cdots, 0).
\]

在 \(f \) 的临界点 \(p \in M \) 处，如果矩阵 \(\left(\frac{\partial^2 f}{\partial x^i \partial x^j}(p) \right) \) 是非异的，那么
称 \(p \) 为 \(f \) 的非退化的临界点，设 \(\{y^i\} \) 为 \(p \) 的另一局部坐标系，则由 \(\frac{\partial f}{\partial x^i}(p) = 0 \) 得到

\[
\left(\frac{\partial^2 f}{\partial y^i \partial y^j}(p) \right) = \left(\sum_{k=1}^{n} \frac{\partial^2 f}{\partial x^k \partial x^i}(p) \frac{\partial x^k}{\partial y^i} \frac{\partial x^i}{\partial y^j} + \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}(p) \frac{\partial^2 x^i}{\partial y^i \partial y^j} \right)
\]

从而

\[
\left(\frac{\partial^2 f}{\partial y^i \partial y^j}(p) \right) \text{非异} \Leftrightarrow \left(\frac{\partial^2 f}{\partial x^i \partial x^j}(p) \right) \text{非异}，且 \(p \) 为 \(f \) 的非退化临界点的定义与局部坐标系的选取无关。

定义 6 设 \(M \) 为 \(n \) 维 \(C^\infty \) 流形，\(p \) 为 \(C^\infty \) 函数 \(f: M \to \mathbb{R} \) 的临界点，我们定义 \(f \) 在 \(p \) 点的 Hessain 为 \(T_p M \) 上的对称双线性函数

\[
f_{**}: T_p M \times T_p M \to \mathbb{R}
\]

如下：如果 \(v, w \in T_p M \)，则将它们延拓为 \(M \) 上的 \(C^\infty \) 切向量场 \(\tilde{v}, \tilde{w} \)。令 \(f_{**}(v, w) = \tilde{v}(\tilde{w} f) \)，这里 \(\tilde{v} \cdot v \)。因为

\[
\tilde{v}(\tilde{w} f) - \tilde{w}(\tilde{v} f) = [v \cdot \omega] f = \sum_{i=1}^{n} a^i \left(\frac{\partial f}{\partial x^i} \right) = 0,
\]

故 \(f_{**}(v, w) = \tilde{v}(\tilde{w} f) - \tilde{w}(\tilde{v} f) = f_{**}(w, v) \)，即 \(f_{**} \) 是对称的。又因为 \(\tilde{v}(\tilde{w} f) = v(\omega f) \) 与 \(v \) 的延拓 \(\tilde{v} \) 无关，而 \(\tilde{w}(\tilde{v} f) = w(\omega f) \) 与 \(w \) 的延拓 \(\tilde{w} \) 无关，故 \(f_{**} \) 是定义确切的。

设 \(\{x^i\} \) 为 \(p \) 的局部坐标系，\(v = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \bigg|_p, w = \sum_{j=1}^{n} b^j \frac{\partial}{\partial x^j} \bigg|_p \)，

\[
\omega = \sum_{j=1}^{n} b^j \frac{\partial}{\partial x^j} (\text{严格地，应用第一章 §3 的引理，将} \sum_{j=1}^{n} b^j \frac{\partial}{\partial x^j} \text{延拓到} M \text{ 上})。
\]

则

\[
f_{**}(v, w) = v(\omega f) = v \left(\sum_{j=1}^{n} b^j \frac{\partial f}{\partial x^j} \right) = \sum_{i, j=1}^{n} a^i b^j \frac{\partial^2 f}{\partial x^i \partial x^j}(p),
\]

- 236 -
因此，矩阵\(\left[\frac{\partial^2 f}{\partial x_i \partial x_j} (p) \right] \)为双线性函数 \(f_{**} \) 在基 \(\left\{ \frac{\partial}{\partial x_i} \bigg|_p \right\} \) 下的表示。

我们称 \(\text{Ind } f_{**} = \text{Ind}_p f \cdot \max \{ \dim V \mid V \subseteq T_p M, V \text{ 为线性子空间}, f_{**} \text{ 在 } V \text{ 上负定} \} \) 为 \(f_{**} \) (或 \(f \) 在 \(p \)) 的指数。称 \(f_{**} \) 的零空间 \(\{ v \in T_p M \mid \text{对任何 } w \in T_p M, f_{**}(v, w) = 0 \} \) 的维数

\[\text{Nul } f_{**} = \dim \{ v \in T_p M \mid \text{对任何 } w \in T_p M, f_{**}(v, w) = 0 \} \]

为 \(f_{**} \) 的零性数。

引理 11 \(f \) 的临界点 \(p \) 是非退化的 \(\iff \) \(\text{Nul } f_{**} = 0 \)。

证明 (\(\Rightarrow \)) 设 \(v = \sum_{i=1}^{n} \alpha^i \frac{\partial}{\partial x^i} \bigg|_p \)，如果对任何 \(w = \sum_{i=1}^{n} \beta^i \frac{\partial}{\partial x^i} \bigg|_p \)，有

\[
0 = f_{**}(v, w) = \sum_{i,j=1}^{n} \alpha^i \beta^j \frac{\partial^2 f}{\partial x^i \partial x^j} (p)
\]

\[
= \begin{pmatrix} a^1, \cdots, a^n \end{pmatrix} \begin{pmatrix} \frac{\partial^2 f}{\partial x^i \partial x^j} (p) \end{pmatrix} \begin{pmatrix} \beta^1 \\ \vdots \\ \beta^n \end{pmatrix}, \text{ 因 } \begin{pmatrix} \frac{\partial^2 f}{\partial x^i \partial x^j} (p) \end{pmatrix}
\]

非奇异，故可取 \((b^1, \cdots, b^n) = (a^1, \cdots, a^n) \begin{pmatrix} \frac{\partial^2 f}{\partial x^i \partial x^j} (p) \end{pmatrix} \)，则必须 \((a^1, \cdots, a^n) \begin{pmatrix} \frac{\partial^2 f}{\partial x^i \partial x^j} (p) \end{pmatrix} = 0 \)。于是，\((a^1, \cdots, a^n) = (0, \cdots, 0) \)，\(v = 0 \)，即 \(\text{Nul } f_{**} = 0 \)。

(\(\Leftarrow \)) (反证) 假设 \(\begin{pmatrix} \frac{\partial^2 f}{\partial x^i \partial x^j} (p) \end{pmatrix} \) 奇异，则存在 \((a^1, \cdots, a^n) \neq (0, \cdots, 0) \)，使得 \((a^1, \cdots, a^n) \begin{pmatrix} \frac{\partial^2 f}{\partial x^i \partial x^j} (p) \end{pmatrix} = (0, \cdots, 0) \)，于是对任何

\((b^1, \cdots, b^n) \) 有 \(f_{**}(v, w) = (a^1, \cdots, a^n) \begin{pmatrix} \frac{\partial^2 f}{\partial x^i \partial x^j} (p) \end{pmatrix} \begin{pmatrix} b^1 \\ \vdots \\ b^n \end{pmatrix} = 0 \)。即 \(\text{Nul } f_{**} \neq 0 \)，这与已知 \(\text{Nul } f_{**} = 0 \) 相矛盾。&
Morse指出，f在p点的性质完全由f在p点的指数所描述。

引理12（Morse）设M为n维C^∞流形，$p\in M$为C^∞函数$f: M\to \mathbb{R}$的非退化临界点，则存在p的局部坐标系(U, φ)，$\{y^i\}$使得$y^i(p) = 0, i = 1, \ldots, n$和

$$f = f(p) - (y^1)^2 - \cdots - (y^n)^2 + (y^{n+1})^2 + \cdots + (y^n)^2,$$

其中$\lambda = \text{Ind}_pf$。由此公式明显看出p为f的孤立临界点。

证明 首先证明，如果f存在这样的表示，则$\lambda = \text{Ind}_pf$。因为

$$f(q) = f(p) - (y^1(q))^2 - \cdots - (y^n(q))^2 + (y^{n+1}(q))^2 + \cdots + (y^n(q))^2,$$

故f_{**}关于基$\left\{ \frac{\partial^2 f}{\partial y^i \partial y^j}(p) \right\}$的矩阵表示为

$$
\begin{pmatrix}
\lambda \text{ n-\lambda \text{ \lambda}} \\
-2 \\
\vdots \\
-2 \\
\vdots \\
-2 \\
\vdots \\
-2 \\
2 \\
2 \\
2 \\
2 \\
\end{pmatrix}
$$

因此，存在T_pM的一个λ维线性子空间，f_{**}在其上是正定的。同时存在一个T_pM的$n-\lambda$维线性子空间V_1，f_{**}在其上是正定的。如果存在T_pM的线性子空间$V_2, \dim V_2 > \lambda$，且f_{**}在其上是正定的，则f_{**}在$V_1 \cap V_2 \cong \{0\}$上既是正定又是负定，矛盾。这就证明了$\lambda = \text{Ind}_pf = \text{Ind}_pf$。

现在证明引理中的局部坐标系(y^i)是存在的。显然，可以假设$p = 0, f(p) = f(0) = 0$，由第二章定理1的证明可知，在p的某个局部坐标系(x^i)中，$f(x^1, \ldots, x^n) = \sum_{j=1}^{n} x^j f_j(x^1, \ldots, x^n)$。

.. 238..
\[f_j(x^1, \cdots, x^n) = \int_0^1 \frac{\partial f}{\partial x^j}(tx^1, \cdots, tx^n) dt, \quad f_j(0) = \frac{\partial f}{\partial x^j}(0), \]

其中 \((x^1, \cdots, x^n)\) 在 0 的某个凸开邻域里变动，因为 0 是 \(f\) 的临界点，
\[f_j(0) = \frac{\partial f}{\partial x^j}(0) = 0. \]

所以再一次应用第二章 §3 定理 1 的证明中的
公式到 \(f_j\) 得到

\[f_j(x^1, \cdots, x^n) = \sum_{i=1}^n x^i h_{ij}(x^1, \cdots, x^n), \]

其中 \(h_{ij}\) 为 \(C^\infty\) 函数，

\[h_{ij}(x^1, \cdots, x^n) = \int_0^1 \left(\frac{\partial}{\partial x^i} \left[\int_0^1 \frac{\partial f}{\partial x^j}(ux^1, \cdots, ux^n) du \right] \right) dt \]

\[= \int_0^1 \left(\left[\int_0^1 \frac{\partial^2 f}{\partial x^i \partial x^j}(ux^1, \cdots, ux^n) du \right] \right) dt, \]

易见 \(h_{ij} = h_{ji}\) 且 \(h_{ij}(0) = \frac{\partial^2 f}{\partial x^i \partial x^j}(0) \left[\int_0^1 u du \right] = \frac{1}{2} \frac{\partial^2 f}{\partial x^i \partial x^j}(0).\)

于是，

\[f(x^1, \cdots, x^n) = \sum_{i,j=1}^n x^i x^j h_{ij}(x^1, \cdots, x^n), \]

这式子提示我们应用

线性代数中二次形式化为对角形的归纳法得到本引理的结果。

假设存在 0 的开邻域 \(U_1\) 中的坐标 \(\{u^i\}\)，使得

\[f = \pm (u^1)^2 \pm \cdots \pm (u^{r-1})^2 + \sum_{i,j=r+1}^n u^i u^j H_{ij}(u^1, \cdots, u^n), \]

其中 \(H_{ij} = H_{ji}\)。显然，\(r = 1\) 时就是上述已证的结论。由定义 5，
\(H_{ij}(0), i, j \geq r\) 不全为 0，故可作一个后 \(n - r + 1\) 坐标的线性变换，不妨设 \(H_{rr}(0) = 0\)。于是，\(\sqrt{|H_{rr}(u)|}\) 在 0 的更小的开邻域
\(U_2 \subset U_1\) 中为非零的 \(C^\infty\) 函数，现在，引进新的坐标 \(\{v^i\}\)，

\[\begin{cases} v^i = u^i, & i \leq r, \\ v^r(u^1, \cdots, u^n) = \sqrt{|H_{rr}(u^1, \cdots, u^n)|} \end{cases} \]

\[\cdot 239 \cdot \]
\[f = \sum_{i \in r} \pm (v^i)^2 + \sum_{i, j \notin r+1} v^i v^j \beta_{ij}(v^1, \ldots, v^n). \]

这就完成了归纳证明。 #

定义 7 设 \(M \) 为 \(n \) 维 \(C^\infty \) 流形，\(g \) 为 \(M \) 上的 2 阶协变张量场，即对任何 \(p \in M, g_p = \langle \ , \ , \rangle_p : T_p M \times T_p M \rightarrow \mathbb{R} \) 为双（偏）线性函数，且满足：

1. \(g_p(X, Y) \geq 0; g_p(X, X) = 0 \iff X = 0 \) (正定性)；
2. \(g_p(X, Y) = g_p(Y, X) \) (对称性)；
3. \(g \) 为 \(C^\infty \) 张量场 (\(C^\infty \) 性)

其 \(X, Y \in T_p M \) 为任意切向量，则称 \(g = \langle \ , \ , \rangle \) 为 \(M \) 上的一个 Riemann 度量或内积，称 \((M, g)\) 为 \(n \) 维 \(C^\infty \) Riemann 流形。

设 \((U_a, \varphi_a), \{x^i\}) \) 为 \(p \in M \) 的局部坐标系，\(g_{ij} = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) \) 为 \(g \) 关于 \(\{x^i\}\) 的分量，由定义，显然 \(g_{ij} \) 以及它的逆矩阵 \((g^{ij}) \) 都为正定矩阵。如果 \(X = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i}, Y = \sum_{j=1}^n b^j \frac{\partial}{\partial y^j} \)，则

\[g(X, Y) = g\left(\sum_{i=1}^n a^i X_i, \sum_{j=1}^n b^j X_j\right) = \sum_{i,j=1}^n a^i b^j g_{ij}. \]

如果 \((U_b, \varphi_b), \{y^i\}) \) 为 \(p \in M \) 的另一局部坐标系，

\[g_{ij} = g\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right), \]

则

\[g_{ij} = g\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right) = g\left(\sum_{k=1}^n \frac{\partial x^k}{\partial y^i} \frac{\partial}{\partial x^k}, \sum_{l=1}^n \frac{\partial x^l}{\partial y^j} \frac{\partial}{\partial x^l}\right) \]

\[= g\left(\sum_{k=1}^n \frac{\partial x^k}{\partial y^i} \frac{\partial}{\partial x^k}, \sum_{l=1}^n \frac{\partial x^l}{\partial y^j} \frac{\partial}{\partial x^l}\right) \]

\[= \sum_{k=1}^n \frac{\partial x^k}{\partial y^i} g_{kl} \frac{\partial x^l}{\partial y^j} = g_{ij}. \]
\[
\sum_{k, l = 1}^{n} \frac{\partial x^k}{\partial y^i} \frac{\partial x^l}{\partial y^j} g_{k l},
\]

两边取逆矩阵得到

\[
\begin{pmatrix}
\tilde{g}_{11} \cdots \tilde{g}_{1n} \\
\vdots \\
\tilde{g}_{n1} \cdots \tilde{g}_{nn}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial x^1}{\partial y^1} \cdots \frac{\partial x^n}{\partial y^1} \\
\vdots \\
\frac{\partial x^1}{\partial y^n} \cdots \frac{\partial x^n}{\partial y^n}
\end{pmatrix}^{-1} \begin{pmatrix}
g_{11} \cdots g_{1n} \\
\vdots \\
g_{n1} \cdots g_{nn}
\end{pmatrix} \begin{pmatrix}
\frac{\partial x^1}{\partial y^1} \cdots \frac{\partial x^n}{\partial y^1} \\
\vdots \\
\frac{\partial x^1}{\partial y^n} \cdots \frac{\partial x^n}{\partial y^n}
\end{pmatrix}
\]

\[
\tilde{g}^{ij} = \sum_{k, l = 1}^{n} \frac{\partial y^i}{\partial x^k} \frac{\partial y^j}{\partial x^l} g_{kl}.
\]

读者即可给 $C^r (r \geq 1)$ Riemann 流形不变和坐标观点的定义

例 3 设 M_1 为 n_1 维 C^∞ 流形，(M_2, g) 为 n_2 维 C^∞ Riemann 流形，$f : M_1 \to M_2$ 为 C^∞ 没入。由第三章 § 1 定理知，$f^* g$ 为 M_1 上的 2 阶 C^∞ 协变张量场。又因为

\[
f^* g(X, X) = g(f_* X, f_* X) \geq 0;
\]

\[
f^* g(X, X) = g(f_* X, f_* X) = 0 \iff f_* X = 0 \iff X = 0 (f$ 为没入$);
\]

\[
f^* g(X, Y) = g(f_* X, f_* Y) = g(f_* X, X) = f^* g(Y, X),
\]

故 $f^* g$ 为 M_1 上的 C^∞ Riemann 度量。

特别当 $M_1 \subset M_2$，f 为包含映射且为嵌入，就将 $f^* g(X, Y) = g(f_* X, f_* Y)$ 简单记作 $g(X, Y)$。实际上，前面对于 Euclid 空间的正则子流形的内积 $\langle \cdot, \cdot \rangle$ 就是这样处理的。

定义 8 设 $(M, \langle \cdot, \cdot \rangle)$ 为 n 维 C^∞ Riemann 流形，我们定义 C^∞ 函数 f 在 M 上的梯度场 $\text{grad} f$：对任何 M 上的 C^∞ 切向量场 X，
\(\langle X, \text{grad} f \rangle = Xf \) （f 沿 X 方向的方向导数）。

显然，这定义不涉及局部坐标系，是完全确定的。在局部坐标系

\(\{x^i\} \) 中，设 \(\text{grad} f = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \)，则

\[
\sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} = \left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right) = \frac{\partial}{\partial x^j} f
\]

\[
= \frac{\partial f}{\partial x^j}, \quad \text{即} \quad a^i = \sum_{j=1}^{n} g^{ij} \frac{\partial f}{\partial x^j}.
\]

由此推出 \(a^i \) 为 \(x^i, \ldots, x^n \) 的 \(C^\infty \) 函数，故 \(\text{grad} f \) 为 \(M \) 上的 \(C^\infty \) 切向量场。

也可采用古典的坐标观点，通过直接验证

\[
\sum_{i=1}^{n} \left(\sum_{k=1}^{n} \frac{\partial f}{\partial y^k} \frac{\partial}{\partial y^i} \right) = \sum_{k=1}^{n} \frac{\partial y^1}{\partial x^i} \frac{\partial y^k}{\partial x^j} g^{ij} \frac{\partial f}{\partial x^k} \frac{\partial}{\partial x^i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} g^{ij} \frac{\partial f}{\partial x^j} \right) \frac{\partial}{\partial x^i},
\]

给出 \(f \) 的梯度场 \(\text{grad} f \) 的定义。

设 \(\sigma : M \to R \) 为 \(C^\infty \) 曲线，\(\sigma'(t) = \frac{d\sigma}{dt} \) 为沿 \(\sigma \) 的切向量场，则

\[
\left\langle \sigma', \text{grad} f \right\rangle = \sigma' f = \frac{d \langle f \circ \sigma \rangle}{dt}.
\]

引理 13 设 \((M, \langle \cdot, \cdot \rangle)\) 为 \(n \) 维 \(C^\infty \)Riemann 流形，\(f : M \to R \) 为 \(C^\infty \) 函数，则

(1) \(p \) 为 \(f \) 的临界点 \(\Leftrightarrow p \) 为 \(\text{grad} f \) 的零点；

(2) \(p \) 为 \(f \) 的非退化临界点 \(\Leftrightarrow p \) 为 \(\text{grad} f \) 的非退化零点。

证明 在 \(p \) 的局部坐标系 \(\{x^i\} \) 中，

\[
\text{grad} f = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} g^{ij} \frac{\partial f}{\partial x^j} \right).
\]

(1) \(p \) 为 \(f \) 的临界点，即 \(\frac{\partial f}{\partial x^i}(p) = 0, i = 1, \ldots, n \Leftrightarrow \sum_{j=1}^{n} g^{ii}(p) \).
\[\frac{\partial f}{\partial x^i}(p) = 0, \quad i = 1, \ldots, n, \] 即 p 为 grad f 的零点.

(2) 由(1)和

\[
\left(\frac{\partial^2 f}{\partial x^i \partial x^j}(p) \right) = \left(\frac{\partial}{\partial x^i} \left(\sum_{k=1}^{n} g^{kj}(p) \frac{\partial f}{\partial x^j}(p) \right) \right) = \left(\sum_{k=1}^{n} \frac{\partial}{\partial x^i} \left(p \right) \frac{\partial g^{kj}}{\partial x^j}(p) \right) \frac{\partial f}{\partial x^j}(p) + \sum_{j=1}^{n} g^{kj}(p) \frac{\partial^2 f}{\partial x^i \partial x^j}(p) = \left(g^{kj}(p) \right) \frac{\partial^2 f}{\partial x^k \partial x^j}(p),
\]

我们看到, p 为 grad f 的退化零点, 即 \(\left(\frac{\partial^2 f}{\partial x^i \partial x^j}(p) \right) \) 为非异矩阵带有

\[
\left(\frac{\partial^2 f}{\partial x^i \partial x^j}(p) \right) \text{为非异矩阵, 即 p 为 f 的退化临界点。}
\]

引理 14 设 M 为 n 维 \(C^\infty \) 流形, \(p \in M \) 为 \(C^\infty \) 函数 \(f: M \to \mathbb{R} \) 的
非退化临界点。则

\[\text{Ind}_p(\text{grad} f) = (-1)^{\text{Ind}_p f}. \]

证明 因为 p 为 \(C^\infty \) 函数 \(f: M \to \mathbb{R} \) 的非退化临界点, 由 引理
12, 存在 p 的局部坐标系 \((V, \varphi), (y^i) \), 使得 \(y^i(p) = 0, \quad i = 1, \ldots, n \)
和

\[f = f(p) - (y^1)^2 - \cdots - (y^i)^2 + (y^{i+1})^2 + \cdots + (y^n)^2, \]

其中 \(\lambda = \text{Ind}_p f \). 于是, grad f = \(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} g^{ij} \frac{\partial f}{\partial y^j} \right) \frac{\partial}{\partial y^i} \), 其坐标形
式为

\[
\begin{pmatrix}
 (g^{11} & \cdots & g^{1n}) \\
 \vdots & \ddots & \vdots \\
 (g^{n1} & \cdots & g^{nn})
\end{pmatrix}
\begin{pmatrix}
 \frac{\partial f}{\partial y^1} \\
 \vdots \\
 \frac{\partial f}{\partial y^n}
\end{pmatrix} =
\begin{pmatrix}
 a^1 \\
 \vdots \\
 a^n
\end{pmatrix}.
\]

设 \(\sigma: [0, 1] \to GL(n, \mathbb{R}) \) 为 \(C^\infty \) 映射, \(\sigma(0) = (g^i{}^j) \), \(\sigma(1) = I_n \),
则由 \(C^\infty \) 同伦

\[\therefore 243. \]
\[
\sigma(t) \left(\frac{\partial f}{\partial y^1}, \ldots, \frac{\partial f}{\partial y^n} \right)^\prime \Bigg/ \overline{\sigma(t) \left(\frac{\partial f}{\partial y^1}, \ldots, \frac{\partial f}{\partial y^n} \right)^\prime} \Bigg/ \|(-y^1, \ldots, -y^i, y^{i+1}, \ldots, y^n)\| \text{为连接} (y^i) - \Bigg/ \overline{(-y^1, \ldots, -y^i, y^{i+1}, \ldots, y^n)} \Bigg/ \text{的} C^\infty \text{同伦，而后者由 §2 例 4 可知}
\]

\[
\text{Ind}_p(\text{grad} f) = (-1)^i = (-1)^{\text{Ind}_p f}.
\]

引理 15 设 \(M\) 为 \(n\) 维 \(C^\infty\) 紧致流形，\(f: M \to \mathbb{R}\) 为只含非退化临界点的 \(C^\infty\) 函数 (称为 \(C^\infty\) Morse 函数)，则

\[
\chi(M) = \sum_{i=0}^{n} (-1)^i C_i(M; f) = \sum_{(\text{grad} f)_{x=0}} \text{Ind}_x(\text{grad} f),
\]

其中 \(C_i(M; f)\) 为 \(f\) 的指数为 \(i\) 的临界点的数目。

证明 设 \(Z \subset Y \subset X\)，我们有同调群和同态的正合序列 (参见 [Munkres, J. R., p141, p148, p224])

\[
\cdots \to H_{k+1}(X, Y; \mathbb{R}) \xrightarrow{j_{k+1}^*} H_k(Y, Z; \mathbb{R}) \xrightarrow{i_k^*} H_k(X, Z; \mathbb{R}) \xrightarrow{j_k} H_{k+1}(X, Y; \mathbb{R}) \to \cdots
\]

由抽象代数知识得到

\[
b_k(X, Z) - \dim H_k(X, Z; \mathbb{R}) = \dim \text{Im}(i_k) + \dim \text{Im}(j_k),
\]

\[
b_k(X, Y) = \dim H_k(X, Y; \mathbb{R}) = \dim \text{Im}(j_k) + \dim \text{Im}(o_k),
\]

\[
b_k(Y, Z) = \dim H_k(Y, Z; \mathbb{R}) = \dim \text{Im}(i_k) + \dim \text{Im}(o_{k+1})
\]

于是，

\[
b_k(X, Z) - b_k(X, Y) = \dim \text{Im}(i_k) + \dim \text{Im}(j_k) - \dim \text{Im}(j_k) - \dim \text{Im}(o_k) - \dim \text{Im}(i_k) - \dim \text{Im}(o_{k+1})
\]

\[
= -\dim \text{Im}(o_k) - \dim \text{Im}(o_{k+1}),
\]

和关于 Euler 示性数 \(\chi\) 有

\[
\chi(X, Z) - \chi(X, Y) - \chi(Y, Z) = \sum_{k=0}^{n} (-1)^k [b_k(X, Z) - b_k(X, Y) - b_k(Y, Z)] = -\dim \text{Im}(o_0) + (1)^{n+1} \dim \text{Im}(o_{n+1}) = 0.
\]

\(_244\)
即 \(\chi(X, Z) = \chi(X, Y) + \chi(Y, Z) \)。如果 \(X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n \)，则由归纳法得到

\[
\chi(X_m, X_0) = \sum_{k=1}^{n} \chi(X_k, X_{k-1}).
\]

设 \(b_1 < b_2 < \cdots < b_m \) 为 \(f \) 的全部临界值（因 \(M \) 紧致，故 \(f \) 的临界点和临界值是有限的）。根据 [Kahn, D. W., Lemma 8.2]，有

\[
C_i(M; f) = \sum_{h=1}^{n} \dim H_i(M_h, M_h; R),
\]
其中 \(M_h = \{ x \in M \mid f(x) \leq b \} \) 和 \(M_b = \{ x \in M \mid f(x) < b \} \)。选 \(a_i \) 使 \(a_1 < b_1 < a_2 < b_2 < \cdots < a_m < b_m < a_{m+1} \)。再根据 [Kahn, D. W., Lemma 8.4] 有

\[
\sum_{i=0}^{n} (-1)^i C_i(M; f) - \sum_{i=0}^{n} (-1)^i \sum_{h=1}^{n} \dim H_i(M_h, M_h; R)
\]

\[
= \sum_{i=0}^{n} (-1)^i \sum_{h=1}^{n} \dim H_i(M_{a_{i+1}}, M_{a_i}; R) = \sum_{i=0}^{n} \sum_{h=1}^{n} (-1)^i \dim H_i
\]

\[
(M_{a_{i+1}}, M_{a_i}; R) = \sum_{k=1}^{n} \chi(M_{a_{i+1}}, M_{a_i}; R) = \chi(M, \emptyset; R) = \chi(M).
\]

再由引理 14，

\[
\sum_{(g \cdot a f) \neq 0} \text{Ind}_f(\text{grad} f) = \sum_{i=0}^{n} (-1)^i C_i(M; f) = \chi(M).
\]

此引理也可参阅 [Milnor, J. W., p29, Theorem 5.2].

引理 16 设 \(M \subseteq \mathbb{R}^k \) 为 \(n \) 维 \(C^\infty \) 正则子流形，\(p \in \mathbb{R}^k, f = L_p: M \rightarrow \mathbb{R}, f(x) = (x - p)^2 \)，则

1. \(f \) 有临界点 \(g \Rightarrow q - p \perp T_p M \);

2. \(g \in M \) 为 \(f = L_p \) 的退化临界点 \(q \Rightarrow p \) 为 \((M, q) \) 的焦点。

此外，\(g \) 作为 \(f = L_p \) 的退化临界点的零性数等于 \(p \) 作为 \((M, q) \) 的
焦点的重数。

证明 (1) 设 \(u^i \ (i = 1, \cdots, n) \) 为 \(q \) 关于 \(M \) 的局部坐标系，则

\[
\begin{align*}
\frac{\partial^2 f}{\partial u^i \partial u^j} = & 2 \langle \frac{\partial x}{\partial u^i}, \frac{\partial x}{\partial u^j} \rangle + \langle \frac{\partial^2 x}{\partial u^i \partial u^j}, x-p \rangle
\end{align*}
\]

因此，\(f \) 有临界点 \(q \Leftrightarrow q - p \perp T_q M \).

(2) 因为

\[
\frac{\partial^2 f}{\partial u^i \partial u^j} = 2 \left\{ \langle \frac{\partial x}{\partial u^i}, \frac{\partial x}{\partial u^j} \rangle + \langle \frac{\partial^2 x}{\partial u^i \partial u^j}, x-p \rangle \right\}
\]

令 \(x = q, p \subset \{ v \} \) 代入上式，并由引理 9 得到

\(q \in M \) 为 \(f = L_p \) 的退化临界点 \(\Leftrightarrow \left(\frac{\partial^2 f}{\partial u^i \partial u^j} \right) = 2 (g_{ij} - t \langle v, l_{ij} \rangle) \) 为奇异矩阵 \(\Leftrightarrow p \) 为 \((M, q) \) 的焦点，因此，\(q \) 作为 \(f = L_p \) 的临界点的零性数恰好等于 \(p \) 作为 \((M, q) \) 的焦点的重数。

引理 17 设 \(M \subset \mathbb{R}^n \) 为 \(C^\infty \) 正则子流形，则对几乎所有的 \(p \in \mathbb{R}^n \)（除一个零测集外的集合），函数 \(L_p: M \to \mathbb{R} \) 无退化的临界点，即它若有临界点必是非退化的。更进一步，如果 \(M \) 紧致，则它的非退化临界点为有限集。

证明 由引理 8 和引理 16(2) 立即推出。

Poincaré–Hopf 定理的证明 根据第一章 §3 的嵌入定理，不妨设 \(n \) 维 \(C^\infty \) 紧致流形 \(M \subset \mathbb{R}^n \) 为 \(C^\infty \) 正则子流形，由引理 15 和引理 17，存在 \(M \) 上只含非退化临界点 \(p_1, \cdots, p_k \) 的 \(C^\infty \) 函数 \(f: M \to \mathbb{R} \)，且

\[
\sum_{(x, y) \neq 0} \text{Ind}_x(\text{grad } f) = \chi(M).
\]

由引理 7，如果 \(X \) 为 \(M \) 上只含非退化零点的任意 \(C^\infty \) 切向量场，则

\[246 \]
\[
\sum_{x \in \mathbb{R}^n \setminus 0} \text{Ind}_x X = \text{dim} \; N = \sum_{x \in \mathbb{R}^n \setminus 0} \text{Ind}_x (\text{grad } f) \cdot X(M).
\]

更一般地，如果 \(X \) 为 \(M \) 上只含孤立零点的 \(C^\infty \) 切向量场，由 \(M \) 的紧致性，孤立零点只有有限个，记为 \(p_1, \ldots, p_k \).

设 \(p \) 的局部坐标的 \((U, \varphi), \{x^i\}\)，使得 \(\varphi(p_i) = 0, O(0, 1) \subset \varphi(U) (O(0, r) \) 为 \(\mathbb{R}^n \) 中以 \(0 \) 为中心 \(r \) 为半径的开球) 和 \(U \) 中只含 \(X \) 的孤立零点 \(p_i \).

应用第一章 § 3 引理 1 中的 \(h \)，令 \(s : \mathbb{R}^n \to \mathbb{R} \) 为 \(s(x) = h(\|x\|^2) \)。显然，\(s \) 是 \(C^\infty \) 的且 \(s|_{\partial (e^{1/2})} = 1, s|_{\mathbb{R}^n \setminus O(0, 1)} = 0 \)。于是 \(\mu : M \to \mathbb{R} \)

\[
\mu(x) = \begin{cases} s(\varphi(x)), x \in U, \\
0, \quad x \in M \setminus U
\end{cases}
\]

为 \(C^\infty \) 函数，\(\mu|_{U_1} = 1, \mu|_{M \setminus U_2} = 0 \)，其中 \(U_1 = \varphi^{-1}(O(0, \frac{1}{2})) \)

\(U_2 = \varphi^{-1}(O(0, 1)) \)。令

\[
Y(x) = \begin{cases}
X(x), x \in M \setminus U \\
X(x) - \mu(x) \varphi^{\frac{1}{2}}(y), x \in U,
\end{cases}
\]

其中 \(y \in \mathbb{R}^n \) 为一固定向量 (\(\varphi_{\varphi^{\frac{1}{2}}}(y) \) 中，视 \(y \) 为 \(\mathbb{R}^n \) 中的常向量场)。显然，在 \(M \setminus U_2 \) 中 \(Y(x) = X(x) \)，它们有相同的零点。因为 \(U_2 \) 封闭，故当 \(y \) 充分小时，\(Y \) 在 \(U_2 \setminus U_1 \) 中本身无零点。根据 Sard 定理，还可选择 \(y \) 为 \(\varphi_* \circ X \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}^n \) 的足够小的正则值。于是 \(\varphi_* \circ Y \circ \varphi^{-1} = \varphi_* \circ X \circ \varphi^{-1} - y \cdot \mu \circ \varphi^{-1} = \varphi_* \circ X \circ \varphi^{-1} - y \) 只含非退化的零点，从而 \(Y \) 在 \(U_1 \) 中只含非退化的零点。应用 § 2 引理 3 和由

\[
\varphi_* \circ X \circ \varphi^{-1} - iy \cdot \mu \circ \varphi^{-1}
\]

为连接 \(\varphi_* \circ X \circ \varphi^{-1} \) 与 \(\varphi_* \circ Y \circ \varphi^{-1} = \varphi_* \circ X \circ \varphi^{-1} - y \cdot \mu \circ \varphi^{-1} \) 的 \(C^\infty \) 同伦，得到

* 24/*
\[\text{Ind}_p X = \text{Ind}_{(p)} \varphi_* X \circ \varphi^{-1} = \deg(\varphi_* X \circ \varphi^{-1}) \big|_{\varphi(0,1)} \]

\[= \deg(\varphi_* Y \circ \varphi^{-1}) \big|_{\varphi(0,1)} = \sum_{i=1}^k \deg(\varphi_* Y \circ \varphi^{-1}) \big|_{\varphi(0,\varphi(x_i),0)} \]

\[= \sum_{i=1}^k \text{Ind}_{x_i} X = \sum_{Y(x) = 0, x \in U_i} \text{Ind}_{x_i} Y, \]

其中 \(x_1, \ldots, x_k \) 为 \(Y \) 在 \(U_1 \) 中的所有非退化点，而 \(\bar{O}(\varphi(x_i), 0) \subset \mathbb{O} \left(0, \frac{1}{2} \right), i = 1, \ldots, k \) 为彼此不相交的开球。于是，

\[\sum_{X(x) = 0} \text{Ind}_x X = \sum_{Y(x) = 0} \text{Ind}_x Y. \]

反复应用上述过程得到，只含孤立零点的任意 \(C^\infty \) 切向量场 \(X \) 能换为一个只含非退化零点的 \(C^\infty \) 切向量场 \(Y \)，且

\[\sum_{X(x) = 0} \text{Ind}_x X = \sum_{Y(x) = 0} \text{Ind}_x Y = X(M), \]

这就完成了 Poincaré-Hopf 指数定理的全部证明。

例 4 在例 2 中具体给出了 \(S^n \) 上只有两个孤立零点 \(p \) 和 \(-p \) 的 \(C^\infty \) 切向量场 \(X(x) = p - (p, x)x, x \in S^n \)，由 Poincaré-Hopf 指数定理得到 \(S^n \) 的 Euler 示性数 \(X(M) = \text{Ind}_p X + \text{Ind}_{-p} X = 1 + (-1)^n \).

因此，再由第四章 § 2 例 5，\(S^n \) 上存在处处非 0 的 \(C^\infty \) 切向量场 \(\iff 0 = \sum_{X(x) = 0} \text{Ind}_x X = X(S^n) = 1 + (-1)^n \iff n \) 为奇数。

下面讨论 \(C^\infty \) 连通流形 \(M \) 上处处非 0 \(C^\infty \) 切向量场的存在性问题。先证几个引理。

引理 18 设 \((M, \mathcal{D}) \) 为 \(n \) 维 \(C^\infty \) 紧致流形，则 \(M \) 上有只含一个零点的 \(C^\infty \) 切向量场 \(X \).

证明 第一章 § 3 定理 6 指出，\(M \) 可视作 \(\mathbb{R}^{n+1} \) 中的 \(C^\infty \) 正
则子流形，\(I: M \to \mathbb{R}^{m(n+1)}\) 为包含映射。如果 \(g\) 为 \(\mathbb{R}^{m(n+1)}\) 中的通常 Riemann 度量，则 \((M, I^*g)\) 为 Riemann 子流形。

由引理 17，存在 \(C^\infty\) Morse 函数 \(f: M \to \mathbb{R}\)，即它只含非退化临界点（因而是孤立的），又因为 \(M\) 紧致，故它只有有限个非退化临界点，则 \(Y = \text{grad } f\) 只含有限个非退化零点。从紧致流形 \(M\) 上的 \(C^\infty\) 函数 \(f\) 必有最大和最小值点推出 \(Y = \text{grad } f\) 必有非退化零点，设 \(Y\) 的零点为 \(p_1, \ldots, p_m\)，当 \(i \neq j\) 时有 \(p_i \neq p_j\)。取定点 \(p \in U\) 和 \(p\) 的局部坐标系 \((U, \varphi)\)，使 \(\varphi(U) = \mathbb{R}^m, \varphi(p) = 0\)。根据第三章 § 4 推论 1，存在 \(C^\infty\) 同胚 \(\psi: M \to M\)，使 \(\psi(p_i) = q_i\)，其中 \(q_i, i = 1, \ldots, m\) 为 \(V = \varphi^{-1}(O(0, 1))\) 中的 \(m\) 个互不相同的点，则 \(M\) 上的 \(C^\infty\) 切向量场 \(\psi_i Y\) 只含非退化零点 \(q_1, \ldots, q_m \in V\) 和 \(Z_i = \varphi \circ \psi_i \circ \varphi^{-1}\) 为 \(\mathbb{R}^n\) 中只含非退化零点 \(\varphi(q_1), \ldots, \varphi(q_m) \in \varphi(V) = O(0, 1)\) 的 \(C^\infty\) 切向量场。令 \(f_1: \mathbb{R}^n \to \mathbb{R}\)

\[
f_1(r) = \begin{cases} 0, & 0 \leq r < 1, \\ e^r \cdot e^{-\frac{1}{r}}, & 0 < r < \frac{1}{2}, \\ 1, & 1 \leq r \leq e^\frac{1}{2}, \\ r, & r > 1, \end{cases}
\]

并构造 \(\mathbb{R}^n\) 上只含一个零点 0 的连续切向量场

\[
Z_2(x) = \begin{cases} 0, & \|x\| = 0, \\ Z_i \left(\frac{x}{\|x\|}\right) \cdot f(\|x\|), & 0 < \|x\| < \frac{1}{2}, \\ Z_i \left(\frac{x}{\|x\|}\right), & \frac{1}{2} \leq \|x\| \leq 1, \\ Z_i(x), & \|x\| > 1, \end{cases}
\]

根据 [Brücher, Th. and Jänich, K. p150] 的

扰动定理 设 \(f: M \to N\) 为 \(C^\infty\) 流形之间的连续映射，它在闭子集 \(A \subset M\) 的一个开邻域 \(U\) 上是 \(C^\infty\) 的，则存在任意靠近 \(f\) 的 \(C^\infty\)
映射 $h: M \to N$, 使得 $h|_A = f|_A$.

我们有充分靠近 Z_2 的 C^∞ 向量场 Z, 使得 $Z|_A = Z_2|_A$, 且在 $\mathbb{R}^n - O(0, 2)$ 上有 $Z = Z_2 = Z_1 = \varphi_* \psi_* Y$, 其中 $A = O(0, 1/4) \cup (\mathbb{R}^n - O(0, 2))$ 为 \mathbb{R}^n 中闭集。显然, Z 只含一个零点 0。于是，

$$X(q) = \begin{cases} \varphi_* \psi(q), q \in U, \\ \psi_* Y(q), q \in \overline{U}, \end{cases}$$

为 M 上的只含一个零点的 C^∞ 切向量场。

注 1 利用 [Bröcher, Th. and Jänich, K., p146] 的

Thom 截面横截性定理 设 $f: E \to M$ 为 C^∞ 流形之间的 C^∞ 映射，$s: M \to E$ 为 f 的 C^∞ 截面（即 $f \circ s = \text{Id}_M$，此时 f 为满射，纤维丛的截面为其特殊情形），$N \subset E$ 为 C^∞ 子流形，则存在任意靠近 s 的 C^∞ 截面 $t: M \to E$ 横截于 N。如果对于闭子集 $A \subset M$ 的所有点关于 s 的横截条件已满足，则可以选择截面 t 使得 $t|_A = s|_A$。

定理 2 C^∞ 紧致流形 (M, \emptyset) 上存在处处非 0 的 C^∞ 切向量场 $X \in X(M) = 0$。

证明 (\Rightarrow) 由 Poincaré-Hopf 指数定理 $\{x \in M | X(x) = 0\}$

$= \emptyset$, 故 $X(M) = \sum_{x \in M} \text{Ind}_x X = 0$。

(\Leftarrow) 由引理 18, 存在 M 上只含一个零点 p 的 C^∞ 切向量场 Y，再由 Poincaré-Hopf 指数定理, $\text{Ind}_p Y = X(M) = 0$。

设 (U, φ) 为 p 的局部坐标系, $\varphi(p) = 0$, $\varphi(U) = \mathbb{R}^n$, $Z = \varphi_* Y$ 为只含零点 $\varphi(p) = 0$ 的 \mathbb{R}^n 中的 C^∞ 切向量场, 其指数为 0。考虑 C^∞ 映射 $f: S^{n-1} \to S^{n-1}$, $f(x) = \frac{Z(x)}{|Z(x)|}$, 则 $\deg f = \text{Ind}_0 Z$.

- 250 -

Hopf 度数定理 设 M 为 n 维紧致、连通可定向的 C^∞ 流形，
则

$$f, g: M \to S^n, \quad C^\infty$$

同伦（记为 $f \simeq g$）等价于 $\deg f = \deg g$.

上述 $f: S^{n-1} \to S^{n-1}, \quad C^\infty$ 同伦于常值映射 $c \in S^{n-1}$，即存在 C^∞ 映射 $F: \mathbb{R} \times S^{n-1} \to S^{n-1}$，使得

$$F_t(x) = F(t, x) = \begin{cases} c, & t \leq \frac{1}{3}, \\ f(x), & t \geq \frac{2}{3}. \end{cases}$$

于是可由 F 构造一个连续映射 $G_1: \mathbb{R}^n \to S^{n-1}$，

$$G_1(x) = \begin{cases} c, & 0 \leq \|x\| < \frac{1}{3}, \\ \frac{1}{3} < \|x\| < 1, \\ \frac{Z(x)}{\|Z(x)\|}, & \|x\| \geq 1. \end{cases}$$

显然 $G_1|S^{n-1} = f$。根据扰动定理，在存在充分靠近 G_1 的 C^∞ 映射 G，
使得在闭集 $A = \overline{O(0, \frac{1}{4})} \cup (\mathbb{R}^n - O(0, 2))$ 上有 $G|_A = \lambda_1|_A$。再将 $\mathbb{R}^n - O(0, 1)$ 上的 C^∞ 函数 $|Z(x)|$ 延拓为 \mathbb{R}^n 上的恒正连续函数，使得

$$\lambda_1(x) = \begin{cases} 1, & x \in \overline{O(0, \frac{1}{2})}, \\ \|Z(x)\|, & x \in \mathbb{R}^n - O(0, 1). \end{cases}$$
再一次根据扰动定理，存在充分靠近 \(\lambda_i \) 的 \(\mathbb{R}^n \) 上的恒正 \(C^\infty \) 函数 \(\lambda \)，使在圆环 \(A = \left(0, \frac{1}{4} \right) \cup (\mathbb{R}^n - \mathbb{O}(0, 2)) \) 上，\(\lambda \big|_A = \lambda_i \big|_A \)，于是，

\((x)G(x) \) 为 \(\mathbb{R}^n \) 上非 0 的 \(C^\infty \) 切向量场且在 \(\mathbb{R}^n - \mathbb{O}(0, 2) \) 上有

\[
\tilde{\lambda}(x)G(x) = \lambda_i(x)G_i(x) = |Z(x)| \frac{Z(x)}{|Z(x)|} = Z(x) = (\varphi \cdot Y)(x).
\]

因此，

\[
X(y) = \begin{cases}
(\varphi^{-1}(\lambda \cdot G)(\varphi(y)), & y \in U, \\
Y(y), & y \notin U
\end{cases}
\]

为 \(\mathbb{R}^n \) 上的非 0 的 \(C^\infty \) 切向量场。

推论 2 设 \(M \) 为 \(2k + 1 \) 维 \(C^\infty \) 紧致流形，\(k \in \mathbb{N} \cup \{0\} \)，则 \(\chi(M) = 0 \)。

证明 由引理 17 和 13，存在只含非退化零点的 \(C^\infty \) 切向量场 \(X : \text{grad}f \)，再由 § 2 例 4 和 Poincaré-Hopf 指数定理得到

\[
\sum_{X(x) = 0} \text{Ind}_x X = \chi(M) = \sum_{X(x) = 0} \text{Ind}_x (-X)
\]

\[
= \sum_{X(x) = 0} (-1)^{2k + 1} \text{Ind}_x X,
\]

故 \(2 \sum_{X(x) = 0} \text{Ind}_x X = 0 \)，\(\sum_{X(x) = 0} \text{Ind}_x X = 0 \)。 #

注 1 如果 \(M \) 可定向，我们可以利用代数拓扑中的 Poincaré 对偶定理得到 \(H_t(M; \mathbb{R}) = H_{2k + 1 - t}(M; \mathbb{R}) \) 和

\[
\chi(M) = \sum_{t = 0}^{2k + 1} (-1)^t \dim H_t(M; \mathbb{R})
\]

\[
= \sum_{t = 0}^k \left[(-1)^t \dim H_t(M; \mathbb{R}) + (-1)^{2k + 1 - t} \dim H_{2k + 1 - t}(M; \mathbb{R}) \right]
\]

\(\cdot 252 \cdot \)
= 0.

如果 M 不可定向，则利用 $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ 同调群的 Poincaré 对偶和 Euler 示性数不依赖于系数群得到 $\chi(M) = \chi(M; \mathbb{Z}_2) = 0$.

例 5 假设 2 推论 2 的逆命题并不成立。例如 2 维环面 $T^2 = S^1 \times S^1$, 有处处非 0 的 C^∞ 切向量场 $\frac{\partial}{\partial \theta}$ 或 $\frac{\partial}{\partial \varphi}$ 和 $\chi(T^2) = \chi(S^1 \times S^1) = 0$, 但 $\dim T^2 = \dim (S^1 \times S^1) = 2$ 不为奇数.
第五章 向量丛上的 Riemann 度量和线性联络

这一章 §1 将第四章 §3 定义的 n 维 C^∞ 流形 M 的切丛上的 Riemann 度量推广到 C^r 向量丛上，并证明了仿射流形上 Riemann 度量的存在性定理。§2 引进向量丛上的线性联络、曲率张量、挠张量，并给出了 Cartan 结构方程。向量沿 C^∞ 曲线的平行移动和测地线概念的引入，使流形更增加了几何的色彩。§3 研究了 n 维 C^∞ Riemann 流形上的 Levi-Civita 联络（Riemann 联络），它就是挠张量为 0 和平行下保持内积不变的线性联络，证明了 Riemann 流形基本定理（Riemann 联络的存在唯一性定理）。此外，还介绍了 Riemann 载曲率和常 Riemann 载曲率的流形。§4 指出了如何由 Riemann 流形的 Riemann 联络诱导 Riemann 正则子流形的 Riemann 联络，还提出了 Riemann 正则子流形上的第 I、第 II 基本形式、Weingarten 映射、Gauss 曲率方程和 Codazzi-Mainardi 方程。对于 \mathbb{R}^n (n 为奇数) 中的 C^∞ 超曲面，Gauss 曲率只与第 I 基本形式有关而与第 II 基本形式无关的 Gauss 定理是一个极其深刻的定理。§5 介绍了 Lie 导数 L_x, 散度 div 和 Laplace 算子 Δ。§6 用活动标架研究了线性联络、Levi-Civita 联络、曲率和正则子流形的局部几何。

§1 向量丛上的 Riemann 度量

第四章 §3 定义给出了 n 维 C^∞ 流形 M 的切丛 $\xi = \{T_M, M, \pi, \text{GL}(n, \mathbb{R}), \xi\}$ 上的 Riemann 度量的概念，本节将此概念推广到 C^r 向量丛上。
定义1 设 $\xi = \{E, M, \pi, GL(m, R), R^n, \mathcal{B}\}$ 为 $C^r (\tau \in \mathbb{N} \cup \{0\})$ 向量丛，M 为 n 维 C^r 流形。$\otimes^{0,2}_E = \{\otimes^{0,2}_E E, M, \pi, GL(m^2, R), R^n, \mathcal{B}^{0,2}\}$ 为 ξ 的 $(0, 2)$ 型 C^r 张量丛，所谓 C^r 向量丛上一个 C^r Riemann 度量或内积即是在每个纤维上正定和对称的 C^r 线性映射 $g : \langle, \rangle : E \times E \rightarrow R, (X, Y) \mapsto g_p (X, Y) = \langle X, Y \rangle_p$ 满足：

(1) $g_p (X, X) \geq 0, g_p (X, X) = 0 \iff X = 0$(正定性)；

(2) $g_p (X, Y) = g_p (Y, X)$(对称性)；

(3) g 为 C^r 张量场（C^r 性），

其中 $X, Y \in E_p$ 为任意向量。

设 $(\pi^{-1}(U_a), \psi_a) \in \mathcal{B}$ 为 ξ 的局部平凡化，$X_i (x) = \psi^{-1}_a (x, e_i), i = 1, \cdots, m$ 为 $\pi^{-1}(x)$ 的基。$g_{ij} = g (X_i, X_j)$ 为 g 关于 $(\pi^{-1}(U_a), \psi_a)$ 的分量。由定义，显然 (g_{ij}) 和它的逆矩阵 (g^{ij}) 都为正定矩阵。如果 $X = \sum_{i=1}^{m} a^i X_i, Y = \sum_{j=1}^{n} b^j X_j$，则 $g(X, Y) = g \left(\sum_{i=1}^{m} a^i X_i, \sum_{j=1}^{n} b^j X_j \right) = \sum_{i, j=1}^{m} a^i b^j g_{ij}$。

如果 $(\pi^{-1}(U_b), \psi_b) \in \mathcal{B}$ 为 ξ 的另一局部平凡化，$X_i = \psi^{-1}_b (x, e_i), i = 1, \cdots, m$ 为 $\pi^{-1}(x)$ 的另一基。$\bar{g}_{ij} = g (\bar{X}_i (x), \bar{X}_j (x))$ 为 g 关于 $(\pi^{-1}(U_b), \psi_b)$ 的分量。则

$$
\bar{g}_{ij} = g (\bar{X}_i (x), \bar{X}_j (x)) = g \left(\sum_{k=1}^{m} d^k_i X_k, \sum_{l=1}^{n} d^l_j X_l \right) = \sum_{k, l=1}^{m} d^k_i d^l_j g_{kl},
$$

$$
\left(\begin{array}{c|c|c|c|c|c}
\bar{g}_{11} & \cdots & \bar{g}_{1m} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\bar{g}_{m1} & \cdots & \bar{g}_{mm} \\
\end{array} \right) = \left(\begin{array}{c|c|c|c|c|c}
d_1^1 & \cdots & d_1^n & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{array} \right) \left(\begin{array}{c|c|c|c|c|c}
g_{11} & \cdots & g_{1m} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
g_{m1} & \cdots & g_{mm} \\
\end{array} \right) \left(\begin{array}{c|c|c|c|c|c}
d_1^1 & \cdots & d_1^n & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{array} \right)
$$

- 255 -
其中 $C^{-1} = (c_{ij}^{-1})$, $D = (d_j^i)$. $C^{-1} = g_{ij}(x)^{-1}$. 如果在上述矩阵等式两边取逆矩阵，则得到

$$
\begin{pmatrix}
 g^{11} & \cdots & g^{1n} \\
 \vdots & \ddots & \vdots \\
 g^{m1} & \cdots & g^{mn}
\end{pmatrix}^{-1}
\begin{pmatrix}
 e_1 \\
 \vdots \\
 e_m
\end{pmatrix}
= \begin{pmatrix}
 e_1 \\
 \vdots \\
 e_m
\end{pmatrix}

\begin{pmatrix}
 g^{11} & \cdots & g^{1n} \\
 \vdots & \ddots & \vdots \\
 g^{m1} & \cdots & g^{mn}
\end{pmatrix}
\begin{pmatrix}
 c_{11} \\
 \vdots \\
 c_{mn}
\end{pmatrix}

\begin{pmatrix}
 g^{11} & \cdots & g^{1n} \\
 \vdots & \ddots & \vdots \\
 g^{m1} & \cdots & g^{mn}
\end{pmatrix}^{-1}
\begin{pmatrix}
 e_1 \\
 \vdots \\
 e_m
\end{pmatrix}
= \begin{pmatrix}
 e_1 \\
 \vdots \\
 e_m
\end{pmatrix}

\begin{pmatrix}
 c_{11} \\
 \vdots \\
 c_{mn}
\end{pmatrix}

\sum_{i=1}^n c_i e_i g^{ij}.

C^r 向量丛 ξ 上给定一个 Riemann 度量 $g = \langle , \rangle$，直观上就是将每一点的纤维赋以内积而 Euclid 化，同时要求从一点到另一点变化时保证 C^r 性。因此，它就是 Euclid 空间的推广。

定理 1 (Riemann 度量的存在性) 设 M 为 n^r 维 $C^r(x^r \cdot 1)$ 仿紧流形，则 C^r 向量丛 ξ 上 $(E, M, n, GL(m, R), \xi)$ 存在 C^r Riemann 度量。

证明 由第一章 § 3 定理，存在一个 M 上的坐标邻域的局部有限的开覆盖 $\{U_a | a \in \mu\}$ 以及从属于它的单位分解 $\{\rho_a | a \in \mu\}$. 在 $(x^{-1}(U_a), \psi_a) \in \xi$ 中，$X_i(x) = \psi_a^{-1}(x, e_i)$，令 $\langle X_i(x), X_j(x) \rangle_a = \delta_{ij}$. 则

$$
\begin{cases}
 \rho_a(x) \langle , \rangle_a, x \in U_a, \\
 0, \quad x \in M - \{y \in U_a | \rho_a(y) > 0\}
\end{cases}
$$

在 M 上是 C^r 的. 为方便，记它为 $\rho_a \langle , \rangle$. 于是，容易验证 $g = \langle , \rangle = \sum_{a \in \mu} \rho_a \langle , \rangle$ 为 ξ 上 E 上的一个 C^r Riemann 度量。}

推论 1 仿紧流形 M 上秩 m 的实向量丛 E 的构造群总可简化为 $O(m)$；它可简化到 $SO(m) = \{A \in O(m) | \det A = 1\}$ 向量丛是可定向的。

证明 在定理 1 中，设 $\{U_a\}$ 为仿紧流形 M 的一个局部有限的坐标邻域的开覆盖，它平凡化 E. $\{\rho_a\}$ 为从属于 $\{U_a\}$ 的单位分...
解，$X_t(x) = y^{-1}(x, e_t)$，由 Gram-Schmidt 正交化过程，可使
$(X_t(x))$ 变为关于整体 Riemann 度量 (\cdot, \cdot) 的规范正交基 $(X_t (x))$。
令平凡化映射 $\bar{\psi}_e: \pi^{-1}(U_e) \rightarrow U_e \times \mathbb{R}^n$, $\bar{\psi}_e(X_t(x)) = (x, e_t)$，则转换函数 $\bar{\psi}^{-1}_e$ 将规范正交基变为规范正交基。因而它取值在正交群 $O(n)$ 中。

因为 $\det \bar{\psi}_e(x) > 0 \Rightarrow \bar{\psi}_e(x) \in SO(m)$，故构造群可简化到 $SO(m) \cong 向量丛 E$ 是可定向的。∴

定义 1 中，当 ξ 为 n 维 C^∞ 流形 M 的切丛时，$X = \frac{\partial}{\partial x^i}$, $Y = \frac{\partial}{\partial y^i}$，
$m = n$，$C = (e_j^i) = g_{\xi} (p) = \left(\frac{\partial y^i}{\partial x^j} \right)$，$D = (d_j) = C^{-1} = g_{\xi} (p)^{-1} = \left(\frac{\partial x^i}{\partial y^j} \right)$. 于是，所有上面的公式与第四章 §3 定义 7 中相应的公式完全一致。此和，称 (M, g) 为 n 维 C^∞ Riemann 流形。

定义 2 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 n 维 C^∞ Riemann 流形，$X, Y \in T_p M$，称 $\|X\| = \sqrt{\langle X, X \rangle}$ 为 X 的模。如果 $X \equiv 0, Y \equiv 0$，根据 Schwartz 不等式 $\langle X, Y \rangle \leq \|X\| \|Y\|$ 可以定义 X 和 Y 之间的夹角 $\theta (0 \leq \theta \leq \pi)$ 为
$$\cos \theta = \frac{\langle X, Y \rangle}{\|X\| \|Y\|}.$$

设 $\sigma: [a, b] \rightarrow M$ 为 C^∞ 曲线，$\sigma'(t) = \sigma \left(\frac{d}{dt} \right)$ 为沿 σ 的切向量场，我们定义从 a 到 b 的 σ 的长为 $\langle a, b \rangle$:
$$|\sigma|_b^a = \int_a^b \sqrt{\langle \sigma'(t), \sigma'(t) \rangle} \, dt = \int_a^b \|\sigma'(t)\| \, dt$$
(因为被积函数连续，故积分存在有限)。

一般地，一条分段 C^∞ 曲线 σ (即 $\sigma: [a, b] \rightarrow M$ 连续，且 σ 在 $[t_i, t_{i+1}]$ 上为 C^∞ 曲线，$i = 1, 2, \ldots, k-1$, 其中 $a = t_1 < t_2 < \cdots < t_{k-1} < t_k = b$) 的长定义为

\[257\]
引理 1 若 σ^i 的定义不依赖于 $\sigma([a, b])$ 的参数的选取，

证明 设 $\varphi: [c, d] \to [a, b]$ 是 C^∞ 类的，$t = \varphi(u)$，$s = \varphi(c)$，
$b = \varphi(d)$，$y'(u) > 0$ 则 $(\sigma \circ \varphi)'(u) = y'(u) \sigma'(\varphi(u))$，于是，

$$
\int_c^d \sqrt{\langle \sigma'(t), \sigma'(t) \rangle} \, dt = \int_c^d \sqrt{\langle \sigma'(\varphi(u)), \sigma'(\varphi(u)) \rangle} \, y'(u) \, du = \int_c^d \sqrt{\langle (\sigma \circ \varphi)'(u), (\sigma \circ \varphi)'(u) \rangle} \, du.
$$

引理 2 设 (M, g) 为 n 维 C^∞ Riemann 流形，对任何 $p, q \in M$，令

$$
\rho(p, q) = \inf \{ |\sigma| | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线} \},
$$

则

$$
\rho(p, q) = \inf \{ |\sigma| | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线，且在各段上处处 } \sigma' \neq 0 \}.
$$

证明 因为 $\{ \sigma | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线，且在各段上处处 } \sigma' \neq 0 \} \subset \{ \sigma | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线} \}$，故

$$
\rho(p, q) = \inf \{ |\sigma| | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线} \} \leq \inf \{ |\sigma| | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线，且在各段上处处 } \sigma' \neq 0 \}.
$$

由下界定义，对任何 $\epsilon > 0$，存在连接 p 和 q 的分段 C^∞ 曲线 σ_1，使得 $|\sigma_1| \leq \rho(p, q) + \epsilon$。我们可以选择连接 p 和 q 的分段 C^∞ 曲线 σ_2，使得在各段上处处 $\sigma_2' \neq 0$，且

$$
\inf \{ |\sigma| | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线，且在各段上处处 } \sigma' \neq 0 \} - \epsilon \leq |\sigma_2| - \epsilon \leq |\sigma_1| \leq \rho(p, q) + \epsilon, \text{ 令 } \epsilon \to 0^+ \text{ 得到}
$$

$$
\inf \{ |\sigma| | \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线，且在各段上处处 } \sigma' \neq 0 \} \leq \rho(p, q).
$$

所以，

* 258 *
\(\rho(p, q) = \inf \{ |\sigma| : \sigma \text{ 为连接 } p \text{ 和 } q \text{ 的分段 } C^\infty \text{ 曲线, 且在各段上处处 } \sigma' \neq 0 \} \).

设 \(\sigma: [a, b] \to M \), 由 \([a, b]\) 紧致和 \(\sigma_1 \) 的 \(C^\infty \) 性，存在 \(a = t_0 < t_1 < \cdots < t_k = b \), 使得 \(\sigma_1([t_j, t_{j+1}]) \subset U_j \), 其中 \((U_j, \varphi_j)\) 为 \(M \) 上的局部坐标系，而 \(\varphi_j(U_j) \) 为 \(\mathbb{R}^n \) 中的凸开集，\(j = 0, 1, \ldots, k-1 \)。容易看出，不失一般性，可以假定 \(\sigma_1([a, b]) \subset U \), 这里 \((U, \varphi)\), \(\{ x^i \} \) 为 \(M \) 上的局部坐标系，\(\varphi(U) \) 为 \(\mathbb{R}^n \) 中的凸开集。

将 \([a, b]\) \(k \) 等分，使 \(\Delta t_j = t_{j+1} - t_j = \frac{b-a}{k} \)。现构造 \(\sigma_2 \) 如下：令

\[
\varphi \circ \sigma_2(t) = \varphi \circ \sigma_1(t_j) + \frac{t - t_j}{t_{j+1} - t_j} (\varphi \circ \sigma_1(t_{j+1}) - \varphi \circ \sigma_1(t_j)),
\]

\(t_j \leq t \leq t_{j+1}, j = 0, 1, \ldots, k-1 \),

\[
\varphi \circ \sigma_2(t) = (x^1 \circ \sigma_2(t), \ldots, x^n \circ \sigma_2(t)).
\]

由中值定理，当 \(t_j \leq t \leq t_{j+1} \) 时，

\[
\frac{dx^i \circ \sigma_2}{dt} = \frac{1}{t_{j+1} - t_j} (x^i \circ \sigma_1(t_{j+1}) - x^i \circ \sigma_1(t_j)) = \frac{dx^i \circ \sigma_1}{dt}(t_j^*),
\]

\(t_j \leq t_j^* \leq t_{j+1} \).

于是，应用连续函数在紧致集上的一致连续性和可积性的定义，当 \(k \) 充分大时，有

\[
|\sigma_2|_{L^2} = \sum_{s=0}^{k-1} |\sigma_2|_{L^2} = \sum_{j=0}^{k-1} \int_{t_j}^{t_{j+1}} \sqrt{g(\sigma_2^2(t), \sigma_2^2(t))} dt
\]

\[
= \sum_{j=0}^{k-1} \int_{t_j}^{t_{j+1}} \sqrt{g_{ij}(\varphi \circ \sigma_2(t))} \frac{dx^i \circ \sigma_2}{dt} \frac{dx^j \circ \sigma_2}{dt} dt
\]

\[
= \sum_{j=0}^{k-1} \int_{t_j}^{t_{j+1}} \sqrt{g_{ij}(\varphi \circ \sigma_2(t))} \frac{dx^i \circ \sigma_1}{dt}(t_j^*) \frac{dx^j \circ \sigma_1}{dt}(t_j^*) dt
\]

\[
\leq \sum_{j=0}^{k-1} \int_{t_j}^{t_{j+1}} \left(\sqrt{g_{ij}(\varphi \circ \sigma_1(t_j))} \frac{dx^i \circ \sigma_1}{dt}(t_j) \frac{dx^j \circ \sigma_1}{dt}(t_j) + \frac{\varepsilon}{2(b-a)} \right) dt
\]

\[\star\ 259 \star\]
\[
= \sum_{j=0}^{k-1} \sqrt{g_{ij}(\varphi \circ \sigma_1(t_j))} \frac{dx^i \circ \sigma_1(t_j)}{dt} \frac{dx^j \circ \sigma_1(t_j)}{dt} \Delta t_j + \frac{\varepsilon}{2}
\]

\[
\leq \sum_{j=0}^{k-1} \int_{t_j}^{t_{j+1}} \sqrt{g(\sigma_1'(t), \sigma_1'(t))} \, dt + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = |\sigma_1|_2^n + \varepsilon,
\]

注意，如果有 \(\sigma_1(t_j) = \sigma_1(t_{j+1}) \)，则构造 \(\sigma_2 \) 时可消去这一段。特别，为避免恒有 \(\sigma_1(t_j) = \sigma_1(t_{j+1}) \)，我们预先取 \(\sigma_1 \) 为常值映射。

由上证明得到

\[|\sigma_2| - \varepsilon \leq |\sigma_1|, \quad \forall \]

引理 3 设 \((M, g) = (M, \langle \cdot, \cdot \rangle) \) 为 \(n \) 维 \(C^\infty \) Riemann 流形。对任何 \(p \in M \)，取 \(p \) 的局部坐标系 \((U, \varphi) = \{x^i\} \)，使得 \(\varphi(p) = 0 \)，则存在 \(a > 0, R \geq r > 0 \)，满足

\[r \| \varphi(q) \| \leq \rho(p, q) \leq R \| \varphi(q) \| \quad (q \in \varphi^{-1}(A), \quad A = \{x \in \mathbb{R}^n \mid \|x\| \leq a\}).\]

证明 选择 \(a > 0 \)，使 \(A = \{x \in \mathbb{R}^n \mid \|x\| \leq a\} \subset \varphi(U) \)，在紧致集合

\[B = \{(q, X_q) \mid \varphi(q) \in A, \quad X_q = \sum_{i=1}^{n} \lambda^i \frac{\partial}{\partial x^i}, \quad \sum_{i=1}^{n} (\lambda^i)^2 = 1\};\]

上，

\[\|X_q\| = \sqrt{\langle X_q, X_q \rangle} = \sqrt{\sum_{i, j=1}^{n} g_{ij}(q) \lambda^i \lambda^j}\]

为一个连续函数，它达到最大值 \(R \) 和最小值 \(r > 0 \)。

（1）如果 \(\sigma \) 为 \(\varphi \circ \sigma \) 的象在 \(A \) 中的任意一条分段 \(C^\infty \) 曲线，并且在各段上 \(\sigma' \equiv 0 \)，所以若选取曲线 \(\varphi \circ \sigma \) 的弧长为参数，\(\sigma' = \sum_{i=1}^{n} \lambda^i \frac{\partial}{\partial x^i}, \quad \sum_{i=1}^{n} (\lambda^i)^2 = 1 \)。为方便起见，令 \(\sigma(0) = p, \sigma(b) = q \)。显然，\((\sigma(t), \sigma'(t)) \in B, t \in (0, b) \)。于是，

\[\star 260 \star\]
\[|\sigma| = \int_0^b \sqrt{\langle \sigma'(t), \sigma'(t) \rangle} \, dt \geq \int_0^b \sqrt{\sum_{i,j=1}^3 g_{ij} \dot{x}_i \dot{x}_j} \, dt \]
\[\geq \int_0^b r \, dt = rb \geq r|\varphi(q)|. \]

如果 \(\sigma \) 为任何一条分段 \(C^2 \) 曲线，且在各段上处处 \(\sigma' \equiv 0 \)。令 \(q_1 \) 为 \(\sigma' \) 与 \(\varphi^{-1}(\{x \in \mathbb{R}^n \mid |x| = a\}) \) 的第一个交点，则
\[|\sigma| \geq \int_0^a \sqrt{\langle \sigma'(t), \sigma'(t) \rangle} \, dt \geq r \cdot a \geq r|\varphi(q_1)|. \]

由 \(\rho(p, q) \) 的定义，有 \(\rho(p, q) \geq r|\varphi(q)| \).

（2）取特殊的 \(\sigma \)，使 \(\varphi \circ \sigma \) 为连接 \(0 \) 和 \(\varphi(q) \) 的直线段。于是，
\[\rho(p, q) \leq |\sigma| = \int_0^{\varphi(q)} \sqrt{\langle \sigma'(t), \sigma'(t) \rangle} \, dt \leq \int_0^{\varphi(q)} R \, dt = R \cdot \varphi(q). \]

定理 2 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为连通的 Riemann 流形，\(\rho \) 如引理 2 中所述，则 \((M, \rho)\) 为度量（距离）空间，并且由 \(\rho \) 所诱导的拓扑和流形 \(M \) 上的拓扑一致。

证明 先证 \(\rho \) 为 \(M \) 上的度量。
（1）因为 \(|\sigma| \geq 0 \)，所以 \(\rho(p, q) \geq 0 \)。

设 \(\sigma^k \) 为连续 \(p \) 和 \(p \) 的分段 \(C^2 \) 曲线，并且 \(\varphi \circ \sigma^k \) 为 \(A \) 中长度等于 \(\frac{1}{k} \) 的直线段。于是，
\[|\sigma^k| = \int_0^1 \sqrt{\langle (\sigma^k)'(t), (\sigma^k)'(t) \rangle} \, dt \leq \int_0^1 R \, dt = R \cdot \frac{1}{k}, \]

这就推出了
\[0 \leq \rho(p, p) \leq \inf \{ |\sigma^k| \mid k = 1, 2, \ldots \} \leq \inf \left\{ \frac{R}{k} \mid k = 1, 2, \ldots \right\} = 0, \]
\[\rho(p, p) = 0. \]

此外，如果 \(p \sim q \)，则可选择充分小的 \(a \geq 0 \)，使得它满足引理 2 的条
件，并且使 p 的局部坐标域 $U_i, U_j, \varphi^{-1}(A), q \in U_i$. 于是，

$$\rho(p, q) = \inf |\sigma|$$

为连续 p 和 q 的分段 C^∞ 曲线，且在各段上处处 $\sigma' \neq 0$，则 $\sigma_1(u) - \sigma((1-u)b + ua)$ 为连接

$$\sigma_1'(0) = \sigma_1'(1) = \sigma_2(b) 	imes q$$

的分段 C^∞ 曲线，且在各段上处处 $\sigma_1' \neq 0$. 容易验证 $|\sigma_1| = |\sigma_2|$. 再由 ρ 的定义立即可得 $\rho(p, q)$

$$\rho(q, p).$$

(3) 取连接 p 和 q 的分段 C^∞ 曲线 σ_1^k, 再取连接 q 和 r 的分段 C^∞

曲线 σ_2^k, 使它们在各段上处处有 $(\sigma_1^k)' = 0, (\sigma_2^k)' = 0, 并且 \lim_{k \to +\infty} |\sigma_1^k| = \rho(p, q), \lim_{k \to +\infty} |\sigma_2^k| = \rho(q, r)$. 于是，

$$\sigma^k(t) = \sigma_1^k(t), a \leq t \leq b$$

$$\sigma_2^k(t) = \begin{cases} \frac{c - d}{b - e}t + \frac{bd - ce}{b - e} & b < t \leq c \\ \sigma_2^k(t) & c < t \leq d \\ \frac{c - d}{b - e}t + \frac{bd - ce}{b - e} & d < t \leq e \\ \end{cases}$$

为一条连接 p 和 r 的分段 C^∞ 曲线，且在各段上处处 $(\sigma^k)' = 0$. 于是，

$$\rho(p, r) \leq |\sigma^k| = |\sigma_1^k| + |\sigma_2^k|,$$

令 $k \to +\infty$，则有 $\rho(p, r) \leq \rho(p, q) + \rho(q, r)$.

最后，从引理 3 的公式 $\|\varphi(q)\| \leq \rho(p, q) \leq \|\varphi(q)\|$ 推出，由

\[\rho \] 诱导的拓扑和流形 M 的拓扑是一致的，

定理 3 设 M 为连通的 n 维 C^∞ 流形，则

(1) M 为 A_2 空间；

I (2) M 是 σ 紧的；

I (3) M 是紧的；

I (4) 在 M 上存在 Riemann 度量；

I (5) M 为度量空间。

262
证明 (1)\(\Rightarrow\) (2) 由第一章 §3 定理 1(2)。
(2)\(\Rightarrow\) (3) 由第一章 §3 定理 1(1)。
(3)\(\Rightarrow\) (4) 由定理 1。
(4)\(\Rightarrow\) (5) 由定理 2。
(5)\(\Rightarrow\) (1) 参阅 [《数理林》，第 290-292 页]。

引理 4 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(n\) 维 C\(^\infty\) Riemann 流形，则在任何局部坐标系 \((U, \varphi), \{e^i\}\) 中，必存在 C\(^\infty\) 的规范正交基。

证明 根据 Gram-Schmidt 正交化过程，设

\[
\begin{align*}
Y_1 &= \frac{\partial}{\partial x^1} \\
Y_2 &= \lambda_{12} \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^2} \\
Y_3 &= \lambda_{13} \frac{\partial}{\partial x^1} + \lambda_{23} \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3} \\
& \vdots \\
Y_n &= \lambda_{1n} \frac{\partial}{\partial x^1} + \cdots + \lambda_{n-1,n} \frac{\partial}{\partial x^{n-1}} + \frac{\partial}{\partial x^n}.
\end{align*}
\]

由 \(\langle Y_i, Y_j \rangle = 0\) (\(i \neq j\)) 可推出 \(\langle \frac{\partial}{\partial x^i}, Y_j \rangle = 0\) (\(i < j\)) 即

\[
\lambda_{ij} \left\langle \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^i} \right\rangle + \lambda_{i,j-1} \left\langle \frac{\partial}{\partial x^{j-1}}, \frac{\partial}{\partial x^i} \right\rangle + \cdots + \lambda_{i,1} \left\langle \frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^i} \right\rangle = 0,
\]

\(i = 1, \ldots, j - 1\)。于是，可推出 \(\lambda_{ji}(j = 2, 3, \ldots, n, i < j)\) 为 \(\left\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right\rangle\) 的有理函数，因而 \(Y_i\) 在 \(U\) 上是 C\(^\infty\) 的。令 \(e_i = \frac{Y_i}{\|Y_i\|} = \frac{Y_i}{\sqrt{\langle Y_i, Y_i \rangle}}\)，则

\(\{e_i \mid i = 1, \ldots, n\}\) 为 \(U\) 上的 C\(^\infty\) 规范正交基。

引理 5 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(n\) 维 Riemann 流形。\(\{e_i \mid i = 1, \ldots, n\}\) 和 \(\{e_i \mid i = 1, \ldots, n\}\) 为 \(T_p M\) 的规范正交基。而
\{e^i| i=1, \ldots, n\} 和 \{e^i| i=1, \ldots, n\} 分别为它们的对偶基。如果 \\
\overrightarrow{[e_1, \ldots, e_n]} = \overrightarrow{[\bar{e}_1, \ldots, \bar{e}_n]}（定向相同），则 \\
e^1 \wedge \cdots \wedge e^n = \bar{e}^1 \wedge \cdots \wedge \bar{e}^n.

此外，如果 p 的局部坐标系 \((U, \varphi), \{x^i\}\) 与 \([e_1, \ldots, e_n]\) 一致，
即 \overrightarrow{[e_1, \ldots, e_n]} = \begin{pmatrix} \frac{\partial}{\partial x^1} & \cdots & \frac{\partial}{\partial x^n} \end{pmatrix}_p，则
\quad e^1 \wedge \cdots \wedge e^n = \sqrt{\text{det} (g_{ij})} dx^1 \wedge \cdots \wedge dx^n，
其中 \(g_{ij} = \langle \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^j} \rangle\).

证明 令
\[\begin{pmatrix} \bar{e}_1 \\ \vdots \\ \bar{e}_n \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix} \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix}, \]
其中 \((c_{ij})\) 为正交矩阵，且 \(\text{det}(c_{ij}) = 1\)。如果
\[\begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} = \begin{pmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & \ddots & \vdots \\ d_{n1} & \cdots & d_{nn} \end{pmatrix} \begin{pmatrix} \bar{e}_1 \\ \vdots \\ \bar{e}_n \end{pmatrix}, \]
则 \((d_{ij})\) 是 \((c_{ij})'\) 的逆矩阵，于是 \((d_{ij})\) 也为正交矩阵，且 \(\text{det}(d_{ij}) = 1\)。
这就证明了
\[e^1 \wedge \cdots \wedge e^n = \left(\sum_{i=1}^n d_{i1} e^i \right) \wedge \cdots \wedge \left(\sum_{i=1}^n d_{in} e^i \right), \]
\[= \sqrt{\text{det} (d_{ij})} e^1 \wedge \cdots \wedge e^n = e^1 \wedge \cdots \wedge e^n. \]

设 \(\frac{\partial}{\partial x^i} = \sum_{j=1}^n a_{ij} e_j\)，则
\[g_{ij} = \left\langle \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^i} \right\rangle = \left\langle \sum_{j=1}^n a_{ij} e_j, \sum_{s=1}^n a_{js} e_s \right\rangle = \sum_{i=1}^n a_{ii} a_{jj}, \]

* 264 *
即 \((g_{ij}) = (a_{ik})(a_{kl})',\) 所以
\[\det (a_{ii}) = \sqrt{\det (g_{ij})} > 0.\]

由于 \(e^i = \sum_{i=1}^n a_{ij} dx^j,\) 故
\[e^1 \wedge \cdots \wedge e^n = \left(\sum_{i,j} a_{ij} dx^j \right) \wedge \cdots \wedge \left(\sum_{i,j} a_{ij} dx^j \right) = \det (a_{ij}) dx^1 \wedge \cdots \wedge dx^n = \sqrt{\det (g_{ij})} dx^1 \wedge \cdots \wedge dx^n.\]

定义 3 设 \((M, g)\) 为 \(n\) 维 \(C^\infty\) 可定向的 Riemann 流形，由引理 4 和 5，在 \(M\) 上确定了一个处处非 0 的 \(C^\infty\) \(n\) 形式，它在每个与 \(M\) 的定向 \(\sigma = \{o_p | p \in M\}\) 一致的局部坐标系 \((U, \varphi), \{x^i\}\) 中（即
\[\left[\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right] \sigma\) 可表示为
\[e^1 \wedge \cdots \wedge e^n = \sqrt{\det (g_{ij})} dx^1 \wedge \cdots \wedge dx^n,\]
我们称它为 \(M\) 上的由定向 \(\sigma = \{o_p | p \in M\}\) 确定的体积元，记作 \(dV\)
（例 3 表明 \(dV\) 只是闭形式而不必为恰当微分形式）。当 \(n=1\) 时，称为弧长元，记作 \(ds\); 当 \(n=2\) 时，称为面积元，记作 \(dA\)

定义 4 设 \((M, g)\) 为 \(n\) 维 \(C^\infty\) Riemann 流形（\(M\) 不必是可定向的），我们定义绝对体积元为
\[|dV| = \sqrt{\det (g_{ij})} dx^1 \cdots dx^n\]
（在局部坐标系 \(\{x^i\}\) 中的表示）。

设 \(f\) 为 \(M\) 上具有紧致支点（\(\text{Supp} f = \{x \in M | f(x) \neq 0\}\)）的连续函数，更进一步可以定义第一型积分
\[\int_M f dV = \sum_{x \in M \setminus \text{Supp} f} \int_{\varphi^{-1}(x) \cap U} (f \circ \varphi^{-1}) \cdot (\rho_a \circ \varphi^{-1}) \cdot \sqrt{\det (g_{ij})} dx^1 \wedge \cdots \wedge dx^n,\]
容易验证，它与 \(M\) 上的局部有限的局部坐标系 \((U_a, \varphi_a), \{x^i_a\}\)
\(\alpha \in \mu \) 以及从属于它的单位分解 \(\{ \rho_\alpha \mid \alpha \in \mu \} \) 的选取无关。对于 \(M \) 上的任意连续函数 \(f \)，令

\[
f^+(x) = \begin{cases} f(x), & f(x) \geq 0, \\ 0, & f(x) < 0. \end{cases}
\]

\[
f^-(x) = \begin{cases} 0, & f(x) > 0, \\ -f(x), & f(x) \leq 0. \end{cases}
\]

如果 \((M, g)\) 为 \(n \) 维 \(C^\infty \) 连通 Riemann 流形，根据定理 3，\(M \) 是 \(\sigma \) 紧的，因此存在 \(\tilde{M} \) 中的开集 \(M_k \)，使得 \(\tilde{M} \) 紧致，\(M = \bigcup_{k=1}^{\infty} M_k \) 且 \(M_1 \subset M_2 \subset M_3 \subset \ldots \)。当

\[
\lim_{k \to +\infty} \int_{M_k} f^+ \, dV = \lim_{k \to +\infty} \int_{M_k} f^- \, dV
\]

中至少有一个有限时，定义

\[
\int_{M} f \, dV = \lim_{k \to +\infty} \int_{M_k} f^+ \, dV - \lim_{k \to +\infty} \int_{M_k} f^- \, dV
\]

为 \(f \) 在 \(M \) 上的广义第一型积分。明显地，它是第一型积分的推广。值得注意的是这定义与 \(\{ M_k \mid k = 1, 2, \ldots \} \) 的选取无关，且广义积分值可为 \(+\infty \) 或 \(-\infty \)。

当 \(f = 1 \) 时，称

\[
\int_{M} 1 \, dV = \sum_{\alpha = 0}^{\infty} \int_{(M \cap U_\alpha)} (\rho_\alpha \circ \varphi_\alpha^{-1}) \sqrt{\det(g_{ij})} \, dx^1_\alpha \wedge \cdots \wedge dx^n_\alpha
\]

为 \(M \) 的体积。它也可为 \(+\infty \)。1 维和 2 维情形，“体积”通常称为“长度”和“面积”。

特别当 \(M \) 为 \(n \) 维 \(C^\infty \) 紧致 Riemann 流形时，上述的 \(\lim_{k \to +\infty} \int_{M_k} f^+ \, dV \)，\(\lim_{k \to +\infty} \int_{M_k} f^- \, dV \) 以及 \(\int_{M_k} f \, dV \) 都为有限值。还可选取 \(M_k = M \)。

如果 \(\tilde{M} \) 为定向流形，\(dV = e^1 \wedge \cdots \wedge e^n \) 为体积元，则

\[
\int_{M} f \, dV = \int_{\tilde{M}} f e^1 \wedge \cdots \wedge e^n.
\]

\[\cdot 266 \cdot\]
为区别起见，我们称定向流形 \mathcal{M} 上的外微分形式 ω 的积分

$$
\oint_{\mathcal{M}} \omega
$$

为第二型积分。

例1 设 $\xi = (E, M, \pi, \text{GL}(m, \mathbb{R}), \mathbb{R}^m, \mathfrak{s})$ 为 $C^r (r \in \mathbb{N} \cup \{0\})$ 向量丛，M 为 n 维 C^r 流形，$g : M \to \otimes^{0,2} E$ 为 ξ 的 C^r Riemann 度量，$F \subset E$ 是秩为 k 的子向量丛，$F^\perp \subset E$ 是其正交补丛，用自然的方法 g 视作 F 和 F^\perp 上的 Riemann 度量。

设 $(\pi^{-1}(U), \psi) \in \mathfrak{s}$ 使得 $\psi(F \upharpoonright \nu) = U \times \mathbb{R}^k \subset U \times \mathbb{R}^m, \{e_i \mid i = 1, \ldots, m\}$ 为 \mathbb{R}^m 的标准基向量，$X_i(x) = \psi(x, e_i), i = 1, \ldots, m$ 为 $E \upharpoonright \nu$ 上的 C^r 切面，$\{X_i(x) \mid i = 1, \ldots, m\}$ 为 $\pi^{-1}(x)$ 的基。借助于 Gram-Schmidt 正交化过程得到 $E \upharpoonright \nu$ 的 C^r 切面 $X_i(x), i = 1, \ldots, m$，使得对任何 $x \in U, \{X_i(x) \mid i = 1, \ldots, m\}$ 为 E_x 的规范正交基，而 $\{X_i(x) \mid i = 1, \ldots, k\}$ 张成 $F_x, \{X_i(x) \mid i = k + 1, \ldots, m\}$ 张成 F^\perp_x。因此，

$$
\overline{\psi} : \pi^{-1}(U) = E \upharpoonright \nu \to U \times \mathbb{R}^m,
$$

$$
\sum_{i=1}^{m} \lambda_i X_i(x) \mapsto (x, \lambda^1, \ldots, \lambda^m)
$$

定义了一个从图卡 $(\pi^{-1}(U), \overline{\psi}) \in \mathfrak{s}$，使得

$$
\overline{\psi}(F \upharpoonright \nu) = U \times \mathbb{R}^k, \overline{\psi}(F^\perp \upharpoonright \nu) = U \times \mathbb{R}^{m-k}.
$$

称 F^\perp 为 F 关于 E 的正交补丛。

回想一下第四章 §3 定义 3 和结合上述定义，不难给出法丛的概念。

设 $\xi = (TM, M, \pi, \text{GL}(n, \mathbb{R}), \mathbb{R}^n, \mathfrak{s})$ 为 n 维 C^r 流形 M 的切丛，g 为其 C^r Riemann 度量，$K \subset M$ 为 k 维 C^r 正则子流形，显然 K 的切丛 $\xi_K = (TK, K, \pi_K, \text{GL}(k, \mathbb{R}), \mathbb{R}^k, \mathfrak{s}_K)$ 为 K 上秩为 k 的
\(C^n \) 向量丛。类似上述，称秩 \(n-k \) 的向量丛

\[
T K^\perp = \bigcup_{x \in K} T_x K^\perp = \bigcup_{x \in K} \{ u_x \in T_x M \mid u_x \perp T_x K \}
\]

为 \(K \) 上关于 \(M \) 的丛.

例 2 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(n \) 维 \(C^\infty \)Riemann 流形，\(\sigma: [a, b] \to M \) 为 \(C^\infty \) 曲线，则在 \(M \) 的局部坐标系 \(\{x^i\} \) 中，曲线弧长为

\[
s = \int_a^b \sqrt{g(\sigma'(t), \sigma'(t))} \, dt
\]

\[
= \int_a^b \sqrt{g \left(\sum_{i=1}^n \frac{dx^i}{dt} \frac{\partial}{\partial x^i}, \sum_{j=1}^n \frac{dx^j}{dt} \frac{\partial}{\partial x^j} \right)} \, dt
\]

\[
= \int_a^b \sqrt{\sum_{i,j=1}^n g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}} \, dt.
\]

于是，弧长元

\[
\frac{ds}{dt} = \sqrt{\sum_{i,j=1}^n g_{ij} \left(\frac{dx^i}{dt} \right) \left(\frac{dx^j}{dt} \right)}
\]

\[
= \sqrt{\left(\frac{dx^1}{dt} \ldots \frac{dx^n}{dt} \right) \left(\begin{array}{c} g_{11} \ldots g_{1n} \\ \vdots \\ g_{n1} \ldots g_{nn} \end{array} \right) \left(\frac{dx^1}{dt} \ldots \frac{dx^n}{dt} \right)^t} \, dt.
\]

在微分几何里，有时记作 \(ds^2 = \sum_{i,j=1}^n g_{ij} \, dx^i \, dx^j \).

更一般地，如果 \(K \) 为 \(M \) 的 \(k \) 维 \(C^\infty \) 正则子流形，\(\{u^i \mid i = 1, \ldots, k\} \) 为定向流形 \(K \) 的局部坐标系，则 \(K \) 上的 \(k \) 维体积元为

\[
dV = \sqrt{\det \left(g \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) \right)} \, du^1 \wedge \cdots \wedge du^k
\]

\[
= \sqrt{\det \left(g \left(\sum_{i=1}^n \frac{\partial x^i}{\partial u^1}, \sum_{i=1}^n \frac{\partial x^i}{\partial u^j} \right) \right)} \, du^1 \wedge \cdots \wedge du^k
\]

\[
= \sqrt{\det \left(\sum_{i,j=1}^k g_{ij} \frac{\partial x^i}{\partial u^j} \right)} \, du^1 \wedge \cdots \wedge du^k
\]

268
$$\begin{align*}
&= \det \begin{bmatrix}
\frac{\partial x^1}{\partial u^1} & \ldots & \frac{\partial x^n}{\partial u^1} \\
\vdots & \ddots & \vdots \\
\frac{\partial x^1}{\partial u^k} & \ldots & \frac{\partial x^n}{\partial u^k}
\end{bmatrix}
\begin{bmatrix}
g_{11} & \ldots & g_{1n} \\
\vdots & \ddots & \vdots \\
g_{n1} & \ldots & g_{nn}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial x^1}{\partial u^1} & \ldots & \frac{\partial x^1}{\partial u^k} \\
\vdots & \ddots & \vdots \\
\frac{\partial x^n}{\partial u^1} & \ldots & \frac{\partial x^n}{\partial u^k}
\end{bmatrix}
\mathrm{d}u^1 \wedge \cdots \wedge \mathrm{d}u^k.
\end{align*}$$

例 3 设 \(\{x^i\} \) 为 \(\mathbb{R}^n \) 的通常的全体坐标系, 定义 \(\mathbb{R}^n \) 上的 \(C^\infty \) Riemann 度量为

\[
\begin{align*}
\left\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right\rangle &= \delta^i_j, \\
\langle X, Y \rangle &= \left\langle \sum_{i=1}^n a^i \frac{\partial}{\partial x^i}, \sum_{j=1}^n b^j \frac{\partial}{\partial x^j} \right\rangle = \sum_{i, j=1}^n a^i b^j.
\end{align*}
\]

显然, \(\left\{ \frac{\partial}{\partial x^i} \right\} \) 为整体的规范正交的 \(C^\infty \) 坐标基向量场, 而 \(\{dx^i\} \) 为其对偶基, \(dV = dx^1 \wedge \cdots \wedge dx^n \) 为体积元.

设 \(\tilde{M} \) 为 \(\mathbb{R}^n \) 中的 \((n-1)\) 维 \(C^\infty \) 定向正则子流形, \(M \) 上的局部坐标系 \(\{u^1, \ldots, u^{n-1}\} \) 与 \(\tilde{M} \) 一致, 由 \(\mathbb{R}^n \) 的上述 Riemann 度量诱导出 \(M \) 上的一个 Riemann 度量. 设 \(\sum_{i=1}^n h^i \frac{\partial}{\partial x^i} \) 为 \(M \) 上的与 \(\tilde{M} \) 相一致的 \(C^\infty \) 单位法向量场, 则

\[
\sum_{i=1}^n (-1)^{i-1} h^i dx^1 \wedge \cdots \wedge \widehat{dx^i} \wedge \cdots \wedge dx^n
\]

\[
\begin{align*}
&= \sum_{i=1}^n (-1)^{i-1} h^i \frac{\partial}{\partial x^i} \left(\frac{\partial (x^1 \cdots \hat{x^i} \cdots x^n)}{\partial (u^1 \cdots u^{n-1})} \right) \mathrm{d}u^1 \wedge \cdots \wedge \mathrm{d}u^{n-1} \\
&= \det \begin{bmatrix}
h^1 & \ldots & h^n \\
\frac{\partial x^1}{\partial u^1} & \ldots & \frac{\partial x^n}{\partial u^1} \\
\vdots & \ddots & \vdots \\
\frac{\partial x^1}{\partial u^{n-1}} & \ldots & \frac{\partial x^n}{\partial u^{n-1}}
\end{bmatrix} \mathrm{d}u^1 \wedge \cdots \wedge \mathrm{d}u^{n-1}.
\end{align*}
\]

\[
\cdot 269 \cdot
\]
\[\sqrt{\left| \begin{array}{cccc}
\frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^n}{\partial u^1} \\
\frac{\partial x^1}{\partial u^2} & \cdots & \frac{\partial x^n}{\partial u^2} \\
\vdots & \cdots & \vdots \\
\frac{\partial x^1}{\partial u^{n-1}} & \cdots & \frac{\partial x^n}{\partial u^{n-1}}
\end{array} \right|} \, du^1 \wedge \cdots \wedge du^{n-1} = dV. \]

其中，\(g_{ij} = \left(\frac{\partial x^i}{\partial x^j}, \frac{\partial x^j}{\partial x^i} \right) = \delta^i_j. \)

显然，\(\omega = \sum_{i=1}^{n} (-1)^{i-1} \frac{x^i}{r} dx^1 \wedge \cdots \wedge \hat{dx^i} \wedge \cdots \wedge dx^n \) 为 \(\mathbb{R}^n - \{0\} \) 上的 \(C^\infty \) 的 \((n-1) \) 形式（其中 \(\sqrt{\sum_{i=1}^{n} (x^i)^2} \) ），且

\[d\omega = \sum_{i=1}^{n} (-1)^{i-1} \left(\frac{1}{r} \frac{nx^i}{\sqrt{r^2 + x^i^2}} \right) dx^1 \wedge \cdots \wedge \hat{dx^i} \wedge \cdots \wedge dx^n = 0, \]

故 \(\omega \) 为 \(\mathbb{R}^n - \{0\} \) 上的 \((n-1) \) 闭形式，因为 \(M \) 为 \(n-1 \) 维 \(C^\infty \) 流形，故：

\(\bullet \ 270 \bullet \).
\[\omega \] 为 \((n-1)\) 维形式是显然的。

因为对 \(r_0 > 0 \), \(S^{n-1}(r_0) = \{(x^1, \ldots, x^n) \in \mathbb{R}^n : \sum_{i=1}^{n} (x^i)^2 = r_0^2 \} \)

上的 \(C^\infty\) 单位法向量场为 \(\sum_{i=1}^{n} \frac{x^i}{r_0} \frac{\partial}{\partial x^i} \), 故

\[
\frac{dV}{r_0^{n-1}} = \frac{1}{r_0^{n-1}} \sum_{i=1}^{n} (-1)^{i-1} \frac{x^i}{r_0} dx^1 \wedge \cdots \wedge \hat{dx^i} \wedge \cdots dx^n = \omega |_{S^{n-1}(r_0)}.
\]

如果 \(\omega |_{S^{n-1}(r_0)} \) 或 \(dV \) 为 \(S^{n-1}(r_0) \) 上的恰当微分形式，则存在 \(S^{n-1}(r_0) \) 上的 \(C^\infty(n-2) \) 形式 \(\eta \), 使得 \(\omega = d\eta \)。由 Stokes 定理得到

\[
\int_{S^{n-1}(r_0)} \omega = \int_{S^{n-1}(r_0)} d\eta = \int_{S^{n-1}(r_0)} \eta = \int_{S^{n-1}(r_0)} \eta = 0,
\]

这意味着

\[
\int_{S^{n-1}(r_0)} \omega = \int_{S^{n-1}(r_0)} \frac{dV}{r_0^{n-1}} = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} \neq 0 \quad \text{相矛盾 (其中 \(\frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} \) 为}\}
\]

数学分析中得到的 \(n-1 \) 维单位球面 \(S^{n-1}(1) = S^{n-1} \) 的体积)。

此外，如果 \(\omega \) 为 \(\mathbb{R}^n - \{0\} \) 上的恰当微分形式，则存在 \(\mathbb{R}^n - \{0\} \) 上的 \(C^\infty(n-2) \) 形式 \(\eta \), 使得 \(\omega = d\eta \)。设 \(I : S^{n-1}(r_0) \rightarrow \mathbb{R}^n - \{0\} \) 为包含映射。于是 \(I^* \omega = I^* d\eta = d(I^* \eta) \) 为 \(S^{n-1}(r_0) \) 上的恰当微分形式, 这与上面已证得的结果相矛盾。

以上证明了 \(\omega \) 和 \(dV \) 都是 \(\mathbb{R}^n - \{0\} \) 上的恰当微分形式。

例 4 设 \(\mathbb{R}^3 \) 的通常的整体坐标系为 \(\{x, y, z\} \), \(M \) 为 \(\mathbb{R}^3 \) 中的 2 维 \(C^\infty \) 定向正则子流形, \(M \) 上的局部坐标系 \(\{u, v\} \) 与 \(\bar{M} \) 一致, 由 \(\mathbb{R}^3 \) 的通常的 Riemann 度量诱导出 \(M \) 上的一个 Riemann 度量，则在此局部坐标系中，与 \(\bar{M} \) 一致的 \(C^\infty \) 单位法向量场为

\[
\frac{\partial}{\partial u} \times \frac{\partial}{\partial v} = h_1 \frac{\partial}{\partial x} + h_2 \frac{\partial}{\partial y} + h_3 \frac{\partial}{\partial z},
\]

\[h_1^2 + h_2^2 + h_3^2 = 1 \]

\[\cdot 271 \]
于是，M 的面积元为

$$dA = h \, dy \wedge dz \cdot h^2 dx \wedge dz + h^3 dx \wedge dy$$

$$- h^3 dy \wedge dz - h^2 dz \wedge dx + h^2 dx \wedge dy$$

$$= \left(h^1 \frac{\partial (yz)}{\partial (uv)} + h^2 \frac{\partial (zx)}{\partial (uv)} + h^3 \frac{\partial (xy)}{\partial (uv)} \right) \, du \wedge dv$$

$$= \det \begin{pmatrix} h^1 & h^2 & h^3 \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{pmatrix} \, du \wedge dv$$

$$= \left(h^1 \frac{\partial}{\partial x} + h^2 \frac{\partial}{\partial y} + h^3 \frac{\partial}{\partial z} \right) \left(\frac{\partial}{\partial u} \times \frac{\partial}{\partial v} \right) \, du \wedge dv$$

$$= \left| \frac{\partial}{\partial u} \times \frac{\partial}{\partial v} \right| \, du \wedge dv .$$

如果记 $E = \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right)$, $G = \left(\frac{\partial}{\partial v}, \frac{\partial}{\partial u} \right)$, $F = \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right)$，则

$$\left| \frac{\partial}{\partial u} \times \frac{\partial}{\partial v} \right|$$

$$= \sqrt{E G - F^2} .$$

故

$$dA = \sqrt{E G - F^2} \, du \wedge dv .$$

・272・
§2 向量丛上的线性联络

设 $\xi = (E, M, \pi, GL(m, R), R^n, \otimes)$ 为 n 维 C^∞ 流形 M 上的 C^∞ 向量丛，E 上的 C^∞ 流形的全体记为 $C^\infty(E)$，即 $C^\infty(E) = \{\omega | \omega: M \rightarrow E \text{为} C^\infty \text{映射，且} \pi \circ \omega(x) = x, x \in M\}$.

例 1 设 M 为 n 维 C^∞ 流形，$\xi = (M \times R, M, \pi, GL(1, R), R, \otimes)$ 为平凡平线束，其中映射 $\pi: M \times R \rightarrow M$，$\pi(x, a) = x$，可视 $M \times R$ 上的 C^∞ 流形的全体 $C^\infty(M \times R)$ 为 $C^\infty(M, R)$，它们关于通常的加法、乘法为含有 1 的交换代数。

例 2 设 $\xi = (TM, M, \pi, GL(n, R), R^n, \otimes)$ 为 n 维 C^∞ 流形 M 上的切丛。$C^\infty(\xi) = C^\infty(TM)$ 是 M 上的 C^∞ 切向量丛关于通常的加法、乘法为含有 1 的无限维 Lie 代数。

定义 1 C^∞ 向量丛 $\xi = (E, M, \pi, GL(m, R), R^n, \otimes)$ 或 E 上的线性（或仿射）联络是流形空间上的一个映射 $\nabla: C^\infty(TM) \times C^\infty(E) \rightarrow C^\infty(E)$，$(X, \omega) \mapsto \nabla(X, \omega) = \nabla_X \omega$，满足：

（1）$\nabla(f_1X_1 + f_2X_2\omega) = f_1\nabla X_1 + f_2\nabla X_2 \omega$, $f_1, f_2 \in C^\infty(M, R)$，$X_1, X_2 \in C^\infty(TM)$，$\omega \in C^\infty(E)$；

（2）$\nabla_X(\lambda_1 \omega_1 + \lambda_2 \omega_2) = \lambda_1 \nabla_X \omega_1 + \lambda_2 \nabla_X \omega_2$，$\lambda_1, \lambda_2 \in R$，$X \in C^\infty(TM)$，$\omega_1, \omega_2 \in C^\infty(E)$；

（3）$\nabla_X(f \omega) = (\nabla_X f)\omega + f\nabla_X \omega$（导性），$f \in C^\infty(M, R)$，$X \in C^\infty(TM)$，$\omega \in C^\infty(E)$，其中 $\nabla_X f = df(X) = X f$ 为 f 沿 X 方向的方向导数，称 $\nabla_X \omega$ 为 ω 关于 X 的协变导数。

定义 2 线性联络 ∇ 的曲率张量（$C^\infty(E)$ 值）是

$R: C^\infty(TM) \times C^\infty(TM) \times C^\infty(E) \rightarrow C^\infty(E)$，

$R(X, Y) \omega = \nabla_X \nabla_Y \omega - \nabla_Y \nabla_X \omega - [X, Y] \omega = -R(Y, X) \omega$，则 $R(X, Y) = -R(Y, X)$。

引理 1 R 关于 X, Y, ω 都是 $C^\infty(M, R)$ 线性的。
证明 对任何 $f \in C^\infty(M, \mathbb{R})$, $X, Y \in C^\infty(TM)$, $\omega \in C^\infty(E)$，只需证明:

\[
R(fX, Y)\omega = \nabla_x \nabla_y \omega - \nabla_y \nabla_x \omega - \nabla_{[X,Y]} \omega
\]

\[
= f \nabla_x \nabla_y \omega - \nabla_y (f \nabla_x \omega) - \nabla_y ((fX + fY) \omega) - (Yf) \nabla_x \omega - (Yf) \nabla_x \omega
\]

\[
= fR(X, Y)\omega.
\]

\[
P(X, Y)(f\omega) = \nabla_x \nabla_y (f\omega) - \nabla_y \nabla_x (f\omega) - \nabla_x Yf(\omega)
\]

\[
= \nabla_x ((Yf)\omega + f\nabla_x \omega) - \nabla_y ((Xf)\omega + f\nabla_x \omega) - (Yf) \nabla_x \omega
\]

\[
= fR(X, Y)\omega.
\]

例 3 设 ∇^ξ, ∇^η 为 M 的 C^∞ 向量丛 $\xi(E)$（E 为丛空间），$\eta(E)$ 为从空间）上的线性联络。在 ξ 和 η 的 Whitney 和 $\xi \oplus \eta$ 上定义线性联络 $\nabla: C^\infty(TM) \times C^\infty(E \oplus F) \rightarrow C^\infty(E \oplus F)$ 为 $\nabla^\xi (\omega \oplus \theta) = \nabla^\xi \omega \oplus \nabla^\xi \theta$（根据定义 1，读者验证 ∇ 为 $\xi \oplus \eta$ 上的线性联络）。

例 4 设 $\xi^*: E^* \rightarrow M$ 为 C^∞ 向量丛 $\xi; E \rightarrow M$ 的对偶丛。关于 ξ 的线性联络 ∇ 的 ξ^* 的对偶线性联络 ∇^* 由

\[
(\nabla^* \theta). \omega \cdot \nabla_x (\theta. \omega) - \theta. \nabla_x \omega, \quad \theta \in C^\infty(E^*), \omega \in C^\infty(E)
\]

给出（其中 \cdot 表示对偶丛 E^* 中向量对 E 中向量的作用）。它的曲率张量是由等式

\[
R^*(X, Y)\theta. \omega \cdot \theta, \quad R^*(X, Y)\omega = 0, \quad X, Y \in C^\infty(TM),
\]

\[
\theta \in C^\infty(E^*), \omega \in C^\infty(E),
\]

给出的。

∇^* 满足定义 1 中的 (1) (2) 是显然的。现在验证 (3) 也成立。

事实上，

\[
(\nabla^* f \theta). \omega = \nabla_x (f \theta. \omega) - f \theta. \nabla_x \omega
\]

- 274.
= f(\forall_x(\theta, \omega) - \theta, \forall_x\omega) \cdot (\forall^*_x f)(\theta, \omega)
= (f(\forall_x f)\theta + f\forall_x^*\theta), \omega,
\forall^*_x (f\theta) = (\forall^*_x f)\theta + f\forall_x^*\theta.

此外，
\[R^*(X, Y) \theta, \omega = (\forall^*_x \forall^*_y \theta - \forall^*_x \forall_x^* \theta - \forall^*_y \forall_y^* \theta - \forall^*_x y \theta). \omega \]
= \forall^*_x (\forall^*_x \theta). \omega - \forall^*_x \theta. \forall^*_x \omega - \forall^*_x (\forall^*_x \theta). \omega + \forall^*_x \theta. \forall^*_x \omega - \forall^*_x [\forall_x (\theta, \omega) - \theta. \forall_y \omega - \forall_y (\theta, \omega) + \theta. \forall^*_x \forall_x^* \omega]
= \forall^*_x (\forall^*_x \theta) - \theta. \forall_x \omega - \forall_y (\theta, \omega) + \theta. \forall^*_x \forall_x^* \omega

例 5 设 \(V, W \) 为有限维实向量空间，而

\[V \times W = \{ \sum_{i=1}^s \lambda^i (v_i, w_i) \mid \lambda^i \in \mathbb{R}, v_i \in V, w_i \in W, s \in \mathbb{N} \} \]

为 \(V \) 和 \(W \) 的积集合，\(V \times W = \{ (v, w) \mid v \in V, w \in W \} \) 中所有元素为基的实数域 \(\mathbb{R} \) 上的向量空间（大空间）。令 \(T \) 为所有形如 \((v_1 + v_2, w) - (v_1, w) - (v_2, w), (v, w_1 + w_2) - (v, w_1) - (v, w_2), (\lambda v, w) - \lambda (v, w), (v, \lambda w) - \lambda (v, w)\) 的元素产生的 \(V \times W \) 的子向量空间，其中 \(\lambda \in \mathbb{R}, v, v_1, v_2 \in V; w, w_1, w_2 \in W \)。我们定义 \(V \) 和 \(W \) 的张量积为

\[V \otimes W = V \times W / T, \]

易见它也是一个向量空间。如果用 \([a] \) 表示 \(a \in V \times W \) 的等价类，则

\[[a] = \{ a + b \mid b \in T \}. \]

此时，

\[[a] + [b] = [a + b], \lambda [a] = [\lambda a], \]

\(a, b \in V \times W, \lambda \in \mathbb{R} \)。因为

\[0 = [(v_1 + v_2, w) - (v_1, w) - (v_2, w)] \]

\[= [(v_1 + v_2, w)] - [(v_1, w)] - [(v_2, w)], \]

\[\cdots 275 \cdots \]
\[0 = [(v, w_1 + w_2) - (v, w_1) - (v, w_2)] \\
= [(v, w_1 + w_2) - (v, w_1)] - [(v, w_2)], \\
0 = [(\lambda v, w) - \lambda (v, w)] - [(\lambda v, w)] - [(v, \lambda w)] - \lambda [(v, w)], \\
\text{故} \\
[(v_1 + v_2, w)] = [(v_1, w)] + [(v_2, w)], \\
[(v, w_1 + w_2)] = [(v, w_1)] + [(v, w_2)], \\
[(\lambda v, w)] = [(v, \lambda w)] = \lambda [(v, w)]. \\
\text{为运算方便, 记} [(v, w)] = v \otimes w. \text{于是, 上述公式成为} \\
(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w, \\
v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2, \\
(\lambda v) \otimes w = \lambda (v \otimes w). \\
\text{更一般地有} \left(\sum_{i=1}^{m} \lambda^i v_i \right) \otimes \left(\sum_{i=1}^{n} \mu^i w_i \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda^i \mu^j v_i \otimes w_j. \text{如果} \\
\{ e_i | i = 1, \ldots, m \} \text{为} m \text{维向量空间} V \text{的基,} \{ f_j | j = 1, \ldots, n \} \text{为} n \text{维向量空间} W \text{的基, 则可证} \{ e_i \otimes f_j | i = 1, \ldots, m; j = 1, \ldots, n \} \text{为} V \otimes W \text{的基, 且它为} m n \text{维向量空间, 设} \{ e_i | i = 1, \ldots, m \} \text{和} \{ f_j | j = 1, \ldots, n \} \text{分别为} V \text{和} W \text{的另外的基, 并且} \\
\begin{pmatrix}
\bar{e}_1 \\
\vdots \\
\bar{e}_m
\end{pmatrix} =
\begin{pmatrix}
c_{11} & \cdots & c_{1m} \\
\vdots & \ddots & \vdots \\
c_{m1} & \cdots & c_{mm}
\end{pmatrix}
\begin{pmatrix}
e_1 \\
\vdots \\
e_m
\end{pmatrix}, \\
\begin{pmatrix}
\bar{f}_1 \\
\vdots \\
\bar{f}_n
\end{pmatrix} =
\begin{pmatrix}
d_{11} & \cdots & d_{1n} \\
\vdots & \ddots & \vdots \\
d_{n1} & \cdots & d_{nn}
\end{pmatrix}
\begin{pmatrix}
f_1 \\
\vdots \\
f_n
\end{pmatrix}. \\
\text{因此,} \bar{e}_i \otimes \bar{f}_j = \left(\sum_{i=1}^{m} c_{ki} e_i \right) \otimes \left(\sum_{j=1}^{n} d_{kj} f_j \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ki} d_{kj} e_i \otimes f_j, \text{即} \\
(\bar{e}_i \otimes \bar{f}_j) = (c_{ki}) (e_i \otimes f_j) (d_{kj})'. \\
\text{第} 276 \text{页}.
对于任何 $u \in \mathcal{V} \otimes \mathcal{W}$ 有

\[
\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda^{ij} e_i \otimes f_j = u
\]

\[
= \sum_{k=1}^{m} \sum_{l=1}^{n} \lambda^{kl} e_k \otimes f_l = \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda^{ij} c_{k}(d_{ij} e_i \otimes f_j)
\]

\[
= \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\sum_{k=1}^{m} \sum_{l=1}^{n} \lambda^{kl} c_{k} d_{ij} \right) e_i \otimes f_j,
\]

$(\lambda^{ij}) \coloneqq (c_{ik})(d_{ij})$.

设 $\xi = \{E, M, \pi, GL(m, \mathbb{R}), \mathbb{R}^m, \mathcal{E}_E\}$, $\eta = \{F, M, \pi, GL(k, \mathbb{R}), \mathbb{R}^n, \mathcal{E}_F\}$ 为 n 维 C^∞ 流形 M 上的 C^∞ 向量丛，类似于 ξ 的对偶丛 ξ^*, ξ 和 η 的 Whitney 和，可以构造 ξ 和 η 的张量积丛 $\xi \otimes \eta = \{E \otimes F, M, \pi \otimes \pi, GL(mk, \mathbb{R}), \mathbb{R}^{mn}, \mathcal{E}_{E \otimes F}\}$.

设 ∇^ξ, ∇^η 分别为 ξ 和 η 上的线性联络，我们定义 $\xi \otimes \eta$ 上的张量积联络 ∇, 使得

\[
\nabla_X (\omega \otimes \theta) = (\nabla^{\xi}_X \omega) \otimes \theta + \omega \otimes (\nabla^{\eta}_X \theta), \quad X \in C^\infty(TM).
\]

它的曲率张量为

\[
\mathcal{R}(X, Y) (\omega \otimes \theta) = \nabla_X \nabla_Y (\omega \otimes \theta) - \nabla_Y \nabla_X (\omega \otimes \theta) - \nabla_{[X, Y]} (\omega \otimes \theta)
\]

\[
= \nabla_X \{ (\nabla^{\xi}_Y \omega) \otimes \theta + \omega \otimes \nabla^{\eta}_Y \theta \} - \nabla_Y \{ (\nabla^{\xi}_X \omega) \otimes \theta + \omega \otimes \nabla^{\eta}_X \theta \}
\]

\[
= \{ \nabla^{\xi}_X \nabla^{\xi}_Y \omega \} \otimes \theta + \omega \otimes \nabla^{\eta}_X \nabla^{\eta}_Y \theta
\]

\[
+ \omega \otimes (\nabla^{\xi}_Y \nabla^{\xi}_X \omega) \otimes \theta - (\nabla^{\xi}_Y \nabla^{\xi}_X \omega) \otimes \theta
\]

\[
- (\nabla^{\eta}_X \omega) \otimes \nabla^{\eta}_Y \theta - \omega \otimes \nabla^{\eta}_X \nabla^{\eta}_Y \theta
\]

\[
= \mathcal{R}^\xi(X, Y) \omega \otimes \theta + \omega \otimes \mathcal{R}^\xi(X, Y) \theta,
\]

即

\[
\mathcal{R}(X, Y) (\omega \otimes \theta) = \mathcal{R}^\xi(X, Y) \omega \otimes \theta + \omega \otimes \mathcal{R}^\xi(X, Y) \theta,
\]

$X, Y \in C^\infty(TM), \omega \in C^\infty(E), \theta \in C^\infty(F)$.

* 277 *
注 1 张量积 $V \otimes W$ 的第二种定义为 $V \otimes W = \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i^j e_i \otimes f_j \right\}$. 第三种定义为将 V, W 分别视为 $V^* = (V^*)^*$ 和 $W^* = (W^*)^*$, 然后 $V \otimes W$ 可按第三章第 1 章张量积定义.

类似地，对 n 维实向量空间 V_i, $i = 1, \ldots, s$ 可定义张量积 $V_1 \otimes \cdots \otimes V_s$, 则 $V = V_1 \otimes \cdots \otimes V^* \otimes \cdots \otimes V^*$, 至于与向量丛相关的内容不再一一赘述.

例 6 设 $M \times R$ 为 n 维 C^∞ 流形 M 上的 C^∞ 平凡线丛，在 $M \times R$ 上定义线性联络为

$$\nabla_X f = df(X) = Xf, f \in C^\infty(M, R), X \in C^\infty(TM).$$

显然，$R(X, Y) f = \nabla_X \nabla_Y f - \nabla_Y \nabla_X f - \nabla_{[X, Y]} f = (XY - YX - [X, Y]) f = 0$. 若 f 将此推广到 $M \times \mathbb{R}^n$.

例 7 设 ∇ 为 n 维 C^∞ 流形 M 的切丛 TM 上的线性联络，即 $\nabla: C^\infty(TM) \times C^\infty(TM) \to C^\infty(TM), (X, Y) \to \nabla_X Y$, 满足:

1. $\nabla_{f_1 X_1 + f_2 X_2} Y = f_1 \nabla_{X_1} Y + f_2 \nabla_{X_2} Y, \ f_1, f_2 \in C^\infty(M, R), \ X_1, X_2, Y \in C^\infty(TM)$;
2. $\nabla_{X_1}(\lambda_1 Y_1 + \lambda_2 Y_2) = \lambda_1 \nabla_{X_1} Y_1 + \lambda_2 \nabla_{X_1} Y_2, \ \lambda_1, \lambda_2 \in \mathbb{R}, \ X_1, Y_1, Y_2 \in C^\infty(TM)$;
3. $\nabla_X(fY) = (\nabla_Y f)Y + f \nabla_X Y$ (导性), $f \in C^\infty(TM), X, Y \in C^\infty(TM)$.

曲率张量 $R: C^\infty(TM) \times C^\infty(TM) \to C^\infty(TM)$ 为

$$R(X, Y) Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z = -R(Y, X) Z.$$

再定义 ∇ 的挠张量 $T: C^\infty(TM) \times C^\infty(TM) \to C^\infty(TM)$ 为

$$T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] = -T(Y, X).$$

设 $p \in M, U$ 为 p 的开邻域，X_1, \ldots, X_n 为 U 上的 C^∞ 基向量场，则对任何 $X \in C^\infty(TU)$, 有

\[278\]
在 U 上由公式

$$
\nabla X_i = \sum_{k=1}^{n} \Gamma_{ij}^k X_k,
$$

$$
T(X_i, X_j) = \sum_{k=1}^{n} T_{ij}^k X_k,
$$

$$
R(X_i, X_j) X_k = \sum_{k=1}^{n} R_{ijk} X_k
$$

定义了 $\Gamma_{ij}^k, T_{ij}^k, R_{ijk} \in \mathcal{C}^\infty(U, \mathbb{R})$ 如果令

$$
[X_i, X_j] \sum_{\alpha=1}^{n} c_{ijk} X_i, \quad c_{ijk} \in \mathcal{C}^\infty(U, \mathbb{R}).
$$

则有

引理 2

1. $T_{ij}^k = -T_{ji}^k, \quad R_{ijk} = -R_{jik}$；
2. $T_{ij}^k = \Gamma_{ij}^k - \Gamma_{ji}^k = c_{ijk}$；
3. $R_{ijk} = \sum_{s=1}^{n} \left(\Gamma_{ij}^s \Gamma_{ks}^l - \Gamma_{is}^s \Gamma_{jk}^l \right) + X_i \Gamma_{js}^l - X_j \Gamma_{is}^l$

$$
- \sum_{s=1}^{n} c_{ijk} \Gamma_{is}^l .
$$

特别地，如果 U 为局部坐标领域，$X_i = \frac{\partial}{\partial x^i}, i = 1, \ldots, n$ 为坐标基

向量场，

则 $\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right] = 0, c_{ijk} = 0$，且上述公式就成为

$$
T_{ij}^k = \Gamma_{ij}^k - \Gamma_{ji}^k ,
$$

$$
R_{ijk} = \sum_{s=1}^{n} \left(\Gamma_{ij}^s \Gamma_{ks}^l - \Gamma_{is}^s \Gamma_{jk}^l \right) + \frac{\partial}{\partial x^l} \Gamma_{ij}^k - \frac{\partial}{\partial x^l} \Gamma_{ik}^j .
$$

第 279 页
证明 (1) 由 $\sum_{t=1}^{n} T_{jk}^t X_k = T(X_j, X_k) = -T(X_k, X_j) =$

$- \sum_{t=1}^{n} T_{ij}^t X_i$ 和 $\sum_{k=1}^{n} R_{lij}^k X_k = R(X_i, X_j) X_k = -R(X_j, X_i) X_k =$

$- \sum_{k=1}^{n} R_{lij}^k X_k$ 推出 $T_{jk}^t = -T_{ij}^t$ 和 $R_{lij}^k = -R_{lij}^k$.

(2) 由 $\sum_{t=1}^{n} T_{jk}^t X_i = T(X_j, X_k) = \nabla_j X_k \nabla_i X_i - \nabla_i X_k \nabla_j X_i \sim [X_j, X_k]$

$= \sum_{t=1}^{n} (\Gamma_{jk}^t - \Gamma_{kj}^t - c_{jk}^t) X_i$

推出

$T_{jk}^t = \Gamma_{jk}^t - \Gamma_{kj}^t - c_{jk}^t$

(3) 由

$\sum_{k=1}^{n} R_{ij}^k X_k = R(X_i, X_j) X_k$

$= \nabla_i \nabla_j X_k \nabla_j X_k \nabla_i X_k - \nabla_i \nabla_j X_k X_k$

$= \nabla_i \left(\sum_{s=1}^{n} \Gamma_{ij}^s X_{ij} \right) - \nabla_j \left(\sum_{s=1}^{n} \Gamma_{ij}^s X_{ij} \right) - \nabla \sum_{s=1}^{n} \alpha_{ij}^s X_{ij} X_k$

$= \sum_{s=1}^{n} \Gamma_{ij}^s \sum_{k=1}^{n} \Gamma_{ij}^k X_k + \sum_{s=1}^{n} (X_j \Gamma_{ij}^s) X_k - \sum_{s=1}^{n} \Gamma_{ij}^s \sum_{k=1}^{n} \Gamma_{ij}^k X_k$

$- \sum_{s=1}^{n} (X_j \Gamma_{ij}^s) X_k - \sum_{s=1}^{n} \alpha_{ij}^s \sum_{k=1}^{n} \Gamma_{ij}^k X_k$

$= \sum_{k=1}^{n} \left(\sum_{s=1}^{n} (\Gamma_{ij}^k - \Gamma_{ij}^s) X_k \right) + X_i \Gamma_{ij}^s - X_j \Gamma_{ij}^k$

$\cdot 250 \cdot$
推出所要的公式。

定理 1 设 X_1, \ldots, X_n 为 p 的开邻域 U 上的 C^∞ 基向量场，

\[\omega_i, \omega_{ij} (1 \leq i, j \leq n) \] 为 U 上的 C^∞ 1 形式，它们由 $\omega_i (X_j) = \delta^j_i$，

\[\omega_{ij} = \sum_{k=1}^n \Gamma^k_{ij} \omega^k \] 定义 (ω_{ij} 由 U 上的 Γ^k_{ij} 因而由联络 ∇ 确定)，更进一步，ω_{ij} 由曲率张量表示：Cartan 结构方程

(1) \[d\omega_i = \sum_{s=1}^n \omega_s \wedge \omega_{si} + \frac{1}{2} \sum_{j, k=1}^n T^i_{jk} \omega_j \wedge \omega_k; \]

(2) \[d\omega_{ij} = \sum_{s=1}^n \omega_{is} \wedge \omega_{sj} + \sum_{j, k=1}^n R^i_{jk} \omega_j \wedge \omega_k; \]

证明 (1) 由

\[
\left(\sum_{s=1}^n \omega_s \wedge \omega_{si} + \frac{1}{2} \sum_{j, k=1}^n T^i_{jk} \omega_j \wedge \omega_k \right) (X_i, X_h)
\]

\[= \sum_{s=1}^n \left\{ \omega_s (X_i) \omega_{si} (X_h) - \omega_s (X_h) \omega_{si} (X_i) \right\} + \frac{1}{2} \sum_{j, k=1}^n T^i_{jk} (\omega_j (X_i) \omega_k (X_h) - \omega_j (X_h) \omega_k (X_i)) \]

\[= \sum_{s, \tilde{k}} \left(\Gamma^s_{\tilde{k}i} \delta^s_i - \Gamma^s_{\tilde{k}i} \delta^s_i + \frac{1}{2} \sum_{j, k=1}^n T^i_{jk} (\delta^j_k - \delta^k_j) \right) \]

\[= \Gamma^s_{\tilde{k}i} - \Gamma^s_{\tilde{k}i} + \frac{1}{2} (T^s_{i\tilde{k}} - T^s_{i\tilde{k}}) = \Gamma^s_{\tilde{k}i} - \Gamma^s_{\tilde{k}i} + \Gamma^s_{\tilde{k}i} - \Gamma^s_{\tilde{k}i} - c^s_{\tilde{k}i} \]

\[= X_i (\omega_{s} (X_h)) - X_h (\omega_{s} (X_i)) - \omega_i ([X_i, X_h]) = d\omega_i (X_i, X_h) \]

推出第一个等式。
(2) 再有 \(\left(\sum_{s=1}^{n} \omega_{s} \wedge \omega_{s} + \frac{1}{2} \sum_{i, j, k=1}^{n} R_{j k}^{i} \omega_{j} \wedge \omega_{k} \right)(X_{m}, X_{h})\)

\[= \sum_{s=1}^{n} \{\omega_{s}(X_{m}) \omega_{s}(X_{h}) - \omega_{s}(X_{h}) \omega_{s}(X_{m})\} + \frac{1}{2} \sum_{j, k=1}^{n} R_{j k}^{i} \{\omega_{j}(X_{m}) \omega_{k}(X_{h}) - \omega_{j}(X_{h}) \omega_{k}(X_{m})\}\]

\[= \sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} \Gamma_{j k}^{i} \delta_{k}^{i} \sum_{l=1}^{n} \Gamma_{l t}^{i} \delta_{l}^{i} - \sum_{k=1}^{n} \Gamma_{k s}^{i} \delta_{k}^{i} \sum_{l=1}^{n} \Gamma_{l t}^{i} \delta_{l}^{i} \right\} + \frac{1}{2} \sum_{j, k=1}^{n} R_{j k}^{i} \{\delta_{j}^{i} \delta_{k}^{i} - \delta_{k}^{i} \delta_{j}^{i}\}\]

\[= \sum_{i=1}^{n} \Gamma_{m k}^{i} - \sum_{l=1}^{n} \Gamma_{m l}^{i} \Gamma_{k l}^{i} + R_{m k}^{i} = X_{m} \Gamma_{h l}^{i} - X_{h} \Gamma_{m l}^{i}\]

\[-\sum_{l=1}^{n} c_{m l}^{i} \Gamma_{l t}^{i}\]

\[= X_{m} \Gamma_{h l}^{i} - X_{h} \Gamma_{m l}^{i} - \sum_{k=1}^{n} \Gamma_{k l}^{i} c_{m h} \delta_{k}^{i}\]

\[= X_{m} \left(\sum_{k=1}^{n} \Gamma_{k l}^{i} \delta_{k}^{i}\right) - X_{h} \left(\sum_{k=1}^{n} \Gamma_{k l}^{i} \delta_{k}^{i}\right)\]

\[-\left(\sum_{k=1}^{n} \Gamma_{k l}^{i} \omega_{k}\right) \left(\sum_{s=1}^{n} c_{m h} X_{s}\right)\]

\[= X_{m} (\omega_{l t}(X_{k})) - X_{h} (\omega_{l t}(X_{m})) - \omega_{l t}([X_{m}, X_{h}])\]

\[= d \omega_{l t}(X_{m}, X_{h})\]

推出第二个等式。

细心的读者自然会问 \(\nabla X Y\) 只对 \(X, Y \in \mathcal{C}^{\infty}(TM)\) 有定义，而 \(\nabla X_{1} X_{2}\) 对 \(X_{1}, X_{2} \in \mathcal{C}^{\infty}(TU)\) 是没有定义的。但有下面的引理

· 282·
引理 3 设 ∇ 为 C^∞ 向量丛 $\xi = \{E, M, \pi, \text{GL}(m, R), R^m, \mathcal{E}\}$
上的线性联络，M 为 n 维 C^∞ 流形，$U \subseteq M$ 为开子流形，$X \in C^\infty(TM)$，
$\omega \in C^\infty(E)$. 如果 $X|_U = 0$ 或 $\omega|_U = 0$，则 $(\nabla_X \omega)|_U = 0$.

证明（1）设 $X|_U = 0$，$p \in U$. 由第一章 §3 引理 1，可以构造 $f \in C^\infty(M, R)$，使得 $f(p) = 0$ 和 $f|_{U \cdot p} = 1$，则 $fX = X$，且

$$(\nabla_X \omega)_p = (\nabla_{fX} \omega)_p = (f \nabla_X \omega)_p = f(p)(\nabla_X \omega)_p = 0.$$

（2）同理，当 $\omega|_U = 0$ 时，由 $f\omega = \omega$ 得到

$$(\nabla_X \omega)_p = (\nabla_{fX} \omega)_p = (fX \omega)_p = (Xf \omega)_p = f(p)(\nabla_X \omega)_p = f(0)(\nabla_X \omega)_p = 0.$$

定理 2 设 M 为 n 维 C^∞ 流形，$\xi = \{E, M, \pi, \text{GL}(m, R), R^m, \mathcal{E}\}$ 为 M 上的 C^∞ 向量丛

（1）如果 ∇ 为 ξ 上的线性联络，$\xi_U = \{E_U, U, \pi_U, \text{GL}(m, R), R^m, \mathcal{E}_U\}$ 为 ξ 在 U 上的限制（它是 U 上的 C^∞ 向量丛），其中 $E_U = E|_U$. 令

$$\nabla^U: C^\infty(TM) \times C^\infty(E_U) \to C^\infty(E_U),$$

$$(X, \omega) \mapsto \nabla^U (X, \omega),$$

使得 $(\nabla^U_X \omega)_p = (\nabla_X \omega)_p$，其中 $p \in U$，$X \in C^\infty(TM)$，$\omega \in C^\infty(E)$，且存在 p 的开邻域 $V \subseteq U$，$X|_V = X|_V$，$\omega|_V = \omega|_V$，则 ∇^U 为 ξ_U 上的线性联络.

（2）反之，如果存在 M 上的开复盖 $\{U_a | \alpha \in \mu\}$ 和对每个 U_a，有一个 ξ_{U_a} 上的线性联络 ∇^{U_a}，且 $\nabla^{U_a}|_{U_a \cap U_b} = \nabla^{U_a}|_{U_a \cap U_b}$. 令

$$\nabla: C^\infty(TM) \times C^\infty(E) \to C^\infty(E),$$

$$(X, \omega) \mapsto \nabla_X \omega,$$

使得 $(\nabla_X \omega)_p = (\nabla^{U_a}_X \omega)_p$，其中 $p \in U_a$，X, ω 分别为 X, ω 在 U_a 上的限制，则 ∇ 为 ξ 上的线性联络，它在每个 U_a 上如 (1) 诱导出的线性联络恰为 ∇^{U_a}.

证明（1）由引理 3，∇^U 与 X, ω 的选取无关，因此，定义是
确切的，下面只证 ∇'' 满足线性联繫的条件 (2)，其余证明类似。设 $f \in C^\omega (U, \mathbb{R}), X \in C^\omega (T U), \omega \in C^\omega (E), p \in U$. 选 p 的开邻域 $V \subset U$ 和 $f \in C^\omega (M, \mathbb{R}), X \in C^\omega (TM), \omega \in C^\omega (E)$，使得 $f|_V = f|_T$, $X|_V = X|_T, \omega|_V = \omega|_T$. 于是，

$$
(\nabla'_{X'; X} \omega)_p = (\nabla_{f X} \omega)_p = (f \nabla_X \omega)_p = f(p) (\nabla_X \omega)_p = \tilde{f}(p) (\nabla''_{X'} \omega)_p
$$

(2) 由命题 ∇ 与 U_a 的选取无关，从 ∇'' 为线性联繫，立即推出 ∇ 为 ξ 上的线性联繫，并

注 2 设 ∇ 为 n 维 C^ω 流形 M 上的线性联繫，$(U, \varphi), \{x^i\}$ 和 $(V, \psi), \{y^j\}$ 为 M 的局部坐标系，

$$
\nabla''_{X'} \frac{\partial}{\partial x^k} = \sum_{k=1}^n \Gamma^{k}_{ij} \frac{\partial}{\partial x^j}
$$

定义了 U 上的联繫系数 (Christoffel 函数) Γ^{k}_{ij}，而

$$
\nabla''_{X'} \frac{\partial}{\partial y^j} = \sum_{j=1}^n \tilde{\Gamma}^{j}_{ik} \frac{\partial}{\partial y^k}
$$

定义了 V 上的联繫系数 $\tilde{\Gamma}^{j}_{ik}$. 应用联繫的三个条件，当 $U \cap V = \emptyset$ 时，通过简单计算得到

$$
\tilde{\Gamma}^{j}_{ik} = \sum_{i, j, k=1}^n \frac{\partial x^i}{\partial y^j} \frac{\partial x^j}{\partial y^k} \frac{\partial y^k}{\partial x^i} \Gamma^{k}_{ij} - \sum_{j=1}^n \frac{\partial x^j}{\partial y^k} \frac{\partial y^k}{\partial x^j} \frac{\partial x^j}{\partial y^i} \frac{\partial y^i}{\partial x^j} \Gamma^{k}_{ij}. \tag{2}
$$

另一方面，如果已给 M 的一个局部坐标邻域的开复盖和在每个这样的局部坐标邻域 U 中的一组函数 Γ^{k}_{ij}，使得在任何两个相邻的局部坐标邻域的交中，公式 (2) 成立，则由 (1) 可定义 $\nabla''_{X'} \frac{\partial}{\partial x^j}$，因而在 U 中得到了一个线性联繫 ∇''. 再由 (2) 得到，在 $U \cap V$ 中，$\nabla'' = \nabla$, 所以它们唯一确定了 TM 上的一个线性联繫。

用定义 1 定义线性联繫是不变观点或算子观点，也就是近代
观点的方法。而用局部坐标邻域的开复盖，公式（1），（2）定义线性联络是坐标观点，也就是古典观点的方法。

在不致混淆的情形下，仍记 \(\nabla^C \) 为 \(\nabla \)。

引理 4 设 \(\xi = \{E, M, \pi, \text{GL}(m, \mathbb{R}), \mathbb{R}^n, \mathbb{R}\} \) 为 \(n \) 维 \(C^\infty \) 流形 \(M \) 上的 \(C^\infty \) 向量丛，\(\nabla \) 为 \(\xi \) 上的线性联络。\(X \in C^\infty(TM) \)，\(\omega \in C^\infty(E) \)，\(p \in M \)，\(X_p = 0 \)。则 \((\nabla_X \omega)_p = 0 \)。

证 令 \((U, \varphi) \) 为 \(p \) 的局部坐标系，令 \(X = \sum_{i=1}^{n} f^i \frac{\partial}{\partial x^i} \) ，\(f^i \in C^\infty(U, \mathbb{R}) \)，\(f^i(p) = 0 \) (1 \(\leq i \leq n \))。选取 \(X_i \in C^\infty(TM) \)，\(g^i \in C^\infty(M, \mathbb{R}) \)，使得 \(X_i \big|_V = \frac{\partial}{\partial x_i} \big|_V \) ，\(g^i \big|_V = f^i \big|_V \)，其中 \(V \) 为 \(p \) 的开邻域，则由引理 3 得到 \((\nabla_X \omega)_p = (\nabla \sum_{i=1}^{n} \omega_i) \omega_p = \sum_{i=1}^{n} g^i(p) (\nabla x_i \omega)_p \)。

引理 5 设 \(\xi = \{E, M, \pi, \text{GL}(m, \mathbb{R}), \mathbb{R}^n, \mathbb{R}\} \) 为 \(n \) 维 \(C^\infty \) 流形 \(M \) 上的 \(C^\infty \) 向量丛，\(\nabla \) 为 \(\xi \) 上的线性联络。\(X \in C^\infty(TM) \)，\(\omega \in C^\infty(E) \)，\(p \in M \)，\(\sigma \) 为 \(C^\infty \) 曲线。\(\sigma(a) = p \)，\(\sigma'(a) = X_p \)，则 \((\nabla_X \omega)_p \) 由 \(X_p \) 和 \(\omega(\sigma(t)) \) 完全确定，且它与切于 \(X_p \) 的 \(\sigma \) 的选取无关。

证 取 \(p \) 的局部坐标系 \((U, \varphi), \{x^i\} \)，相应于 \(\xi \) 的丛图卡为 \((\pi^{-1}(U), \psi) \)。设

\[
X = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}, \quad \omega = \sum_{j=1}^{m} b^j X_j,
\]

其中 \(X_j = \psi^{-1}(x, e_j) \)。则

\[
(\nabla_X \omega)_p = \left(\nabla \sum_{i=1}^{n} \omega_i \frac{\partial}{\partial x_i} \sum_{j=1}^{m} b^j X_j \right)_p
\]
= \sum_{j=1}^{n} \left\{ \left(X_j b^j \right) X_{j\rho} + b^j \left(\rho \right) \sum_{i=1}^{n} a^i \left(\rho \right) \left(\nabla_{x^i} X_j \right)_{\rho} \right\} \\
= \sum_{j=1}^{n} \left\{ \frac{\partial b^j \left(\sigma \left(t \right) \right)}{\partial t} \right\}_{t=0} X_j p + b^j \left(\rho \right) \sum_{i=1}^{n} a^i \left(\rho \right) \left(\nabla_{x^i} X_j \right)_{\rho},

由 \(X_p \) 和 \(\omega \left(\sigma \left(t \right) \right) \) 完全确定, 且与切于 \(X_p \) 的 \(\sigma \) 的选取无关 \(\left(X_j b^j \right) \) 与切于 \(X_p \) 的 \(\sigma \) 无关!。

定义 3
设 \(\xi = \{ E, M, \pi, GL \left(m, R \right), R^n, \xi \} \) 为 \(n \) 维 \(C^\infty \) 流形 \(M \) 上的 \(C^\infty \) 拉长, \(\nabla \) 为 \(\xi \) 上的线性联络, \(\sigma \) 为 \(M \) 中的 \(C^\infty \) 曲线, \(T(t) = \sigma'(t), \omega(t) \in E_{\xi (t)} \) 且 \(\omega(t) \) 关于 \(t \) 是 \(C^\infty \) 类的, 在局部坐标系 \((U, \varphi), \{ x^i \} \) 和丛圈 (\(\varphi^{-1}(U), \psi) \) 中, 设

\[
T(t) = \sum_{i=1}^{n} \alpha^i(t) \left(\frac{\partial}{\partial x^i} \right)_{\nu(t)}, \omega(t) = \sum_{j=1}^{m} b^j(t) X_{j\nu(t)},
\]

则定义

\[
\left(\nabla_{T} \omega \right)(t) = \sum_{j=1}^{m} \left\{ \frac{\partial b^j \left(\xi(t) \right)}{\partial t} \left(X_{j\nu(t)} \right) + b^j(t) \sum_{i=1}^{n} a^i(t) \left(\nabla_{x^i} X_j \right)_{\nu(t)} \right\},
\]

容易验证它与局部坐标系的选取无关, 注意其中 \(X_j = \psi^{-1}(x, e_j) \).

如果 \(\nabla_{T} \omega = 0 \), 则称 \(\omega(t) \) 是沿 \(\sigma \) 平行的。

如果 \(\xi \) 为 \(M \) 的切丛且 \(\nabla_{\nu} T = 0 \), 则称 \(\sigma \) 为一条测地线。如果一条测地线不是任何测地线的真限制, 则称它为最大的测地线。

定理 3
设 \(\nabla \) 为 \(n \) 维 \(C^\infty \) 流形 \(M \) 的切丛 \(TM \) 上的线性联络, \(\sigma : [a, b] \to M \) 为 \(C^\infty \) 曲线, \(T = \sigma' \), 则对任何 \(Y \in T_{\sigma(a)} M \), 存在 \(\sigma \) 上的唯一的一个 \(Y(t) \in T_{\sigma(t)} M \), 使得 \(Y(a) = Y \), \(Y(t) \) 关于 \(t \) 是 \(C^\infty \) 类的, 且 \(Y(t) \) 沿 \(\sigma \) 是平行的。

证明 在 \(\sigma(a) \) 的局部坐标系 \((U, \varphi), \{ x^i \} \) 中, 设

\[
\cdot 286 \cdot
\]
\[\nabla \cdot \frac{\partial}{\partial \sigma} \frac{\partial}{\partial x^j} = \sum_{k=1}^{n} \Gamma_{ij}^k \frac{\partial}{\partial x^k}, \quad x^j(t) = x^j(\sigma(t)), \]

\[T(t) = \sigma'(t) = \sum_{i=1}^{n} \frac{dx^i}{dt} \left(\frac{\partial}{\partial x^i} \right)_{\sigma(t)}, \quad Y(t) = \sum_{i=1}^{n} Y_i(t) \left(\frac{\partial}{\partial x^i} \right)_{\sigma(t)}, \]

则

\[Y(t) \text{ 沿} \sigma \text{ 平行} \]

\[\Leftrightarrow 0 = \nabla \cdot Y = \sum_{i,j=1}^{n} \left(\frac{dY^j}{dt} \left(\frac{\partial}{\partial x^j} \right)_{\sigma(t)} + Y^j \sum_{i=1}^{n} \frac{dx^i}{dt} \left(\frac{\partial}{\partial x^i} \right)_{\sigma(t)} \right) \]

\[= \sum_{k=1}^{n} \left(\frac{dY^k}{dt} + \sum_{i,j=1}^{n} \Gamma_{ij}^k \frac{dx^i}{dt} Y^j \right) \left(\frac{\partial}{\partial x^k} \right)_{\sigma(t)} \]

\[\Leftrightarrow \frac{dY^k}{dt} + \sum_{i,j=1}^{n} \Gamma_{ij}^k \frac{dx^i}{dt} Y^j = 0, \; k = 1, \ldots, n. \; (\text{向量的平行方程}) \]

因为初始条件 \(Y(a) = Y \) 确定了 \(n \) 个初始值 \(Y^i(a) \)，由线性常微分方程组解的存在和唯一性定理，以及利用延拓的方法可以得到沿 \(\sigma \) 平行的唯一的 \(C^\alpha \) 向量场 \(Y(t) \).

注 3 对于一般的 \(C^\alpha \) 向量场 \(\xi, \omega \in E_{s(a)} \)，类似地存在 \(\sigma \) 上的唯一的 \(\omega(t) \in E_{s(t)} \)，使得 \(\omega(a) = \omega, \omega(t) \) 关于 \(t \) 是 \(C^\alpha \) 的，且 \(\omega(t) \) 沿 \(\sigma \) 是平行的。

推论 1 在局部坐标系 \((U, \varphi), \{x^i\}\) 中，

\[\sigma \text{ 为测地线} \]

\[\Leftrightarrow 0 = \nabla \cdot T = \sum_{k=1}^{n} \left(\frac{d^2x^k}{dt^2} + \sum_{i,j=1}^{n} \frac{dx^i}{dt} \frac{dx^j}{dt} \Gamma_{ij}^k \right) \left(\frac{\partial}{\partial x^k} \right)_{\sigma(t)} \]

\[\Leftrightarrow \frac{d^2x^k}{dt^2} + \sum_{i,j=1}^{n} \Gamma_{ij}^k \frac{dx^i}{dt} \frac{dx^j}{dt} = 0, \; k = 1, \ldots, n. \; (\text{测地线方程}) \]
定理 4 设 ∇ 为 n 维 C^∞ 流形 M 的切丛 TM 上的线性联络，
$p \in M$, $x \in T_p M$, 则在 M 中存在一条唯一的最大侧地线 $\sigma(t)$, 使得
$\sigma(0) = p, \sigma'(0) = X$.

证明 设 (U, φ), $\{x^i\}$ 为 p 的局部坐标系，使得 $\varphi(U) = \{(x^1, \ldots, x^n) | |x^i| < c\}$ 和 $\varphi(p) = 0$. 则 X 可表示为

$$
X = \sum_{i=1}^n a^i \left(\frac{\partial}{\partial x^i} \right)_p, \quad a^i \in \mathbb{R}.
$$

我们考察常微分方程组：

$$
\begin{cases}
\frac{dx^i}{dt} = z^i (1 \leq i \leq n) \\
\frac{dz^k}{dt} = - \sum_{i,j=1}^n \Gamma^k_{ij}(x^1, \ldots, x^n) z^i z^j (1 \leq k \leq n) \\
(x^1, \ldots, x^n; z^1, \ldots, z^n)_{t=0} = (0, \ldots, 0; a^1, \ldots, a^n).
\end{cases}
$$

设 c_i, K 满足 $0 < c_i < c, 0 < K < +\infty$, 使得上述方程组的右
边在 $\{(x^1, \ldots, x^n; z^1, \ldots, z^n) | |x^i| < c_i, |z^i| < K, i = 1, \ldots, n\}$ 中满足 Lipschitz 条件，从常微分方程组解的存在性和唯一性定理得
到：存在常数 $b_i > 0$ 和 C^∞ 函数 $x^i(t), z^i(t), 1 \leq i \leq n, |t| < b_i$ 使得

(1) $\frac{dx^i(t)}{dt} = z^i(t) (1 \leq i \leq n, |t| < b_1)$;

$$
\frac{dz^k(t)}{dt} = - \sum_{i,j=1}^n \Gamma^k_{ij}(x^i(t), \ldots, x^n(t)) z^i(t) z^j(t)
$$

(1 \leq k \leq n, |t| < b_1);

(2) $(x^1(0), \ldots, x^n(0); z^1(0), \ldots, z^n(0)) = (0, \ldots, 0; a^1, \ldots, a^n)$;

(3) $|x^i(t)| < c_i, |z^i(t)| < K (1 \leq i \leq n, |t| < b_i)$;

(4) $x^i(t), z^i(t) (1 \leq i \leq n)$ 为满足条件 (1), (2) 和 (3) 的唯一函数组.

这就证明了存在一条满足条件 $\sigma(0) = p, \sigma'(0) = X$ 的 M 中
的测地线 $\sigma(t)$. 此外, 任何两条这样的测地线在 $t=0$ 的某个区间内是重合的. 从 (4) 可以得到, 如果两条测地线 $\sigma_1(t) (t \in I_1)$ 和 $\sigma_2(t) (t \in I_2)$ 在某个开区间上重合, 则它们在 $I_1 \cap I_2$ 上也重合. 于是, 立即得到定理 4 的结论.

定理 5 设 ∇ 为 n 维 C^∞ 流形 M 的切丛 TM 上的线性联络, 令

$$\nabla = \nabla + \nabla (\text{即 } \nabla_X Y = C(X, Y) + \nabla_X Y)$$

为 TM 上的线性联络 \iff

$C - \nabla - \nabla$ 为 M 上的 C^∞ 的 2 阶协变向量场 (称为主 ∇ 和 ∇ 的差张量).

证明 (\Rightarrow) 因为 ∇ 和 ∇ 为 TM 上的线性联络, 故 $C(X, fY)$

$$= \nabla_x (fY) - \nabla_x (fY) = (Xf)Y + f\nabla_x Y - (Xf)Y - f\nabla_x Y = f(\nabla_x Y - \nabla_x Y) + fC(X, Y)$$

故 C 关于 Y 是 $C^\infty(M, \mathbf{R})$ 线性化的. C 关于 X

为 $C^\infty(M, \mathbf{R})$ 线性是显然的.

(\Leftarrow) 因为 ∇ 为 TM 上的线性联络, C 为 M 上的 C^∞ 的 2 阶协变向量张量场, 令

$$\nabla(fY) = C(X, fY) + \nabla(fY) = fC(X, Y) + f\nabla_Y (Xf) Y$$

$$= (Xf)Y + f\nabla_Y X.$$

即 ∇ 满足线性联络的条件 (3), 至于条件 (1) (2) 是明显的. 这就证明了 ∇ 也为 TM 上的线性联络.

定理 6 设 ∇ 为 n 维 C^∞ 流形 M 的切丛 TM 上的线性联络, $C = \nabla - \nabla$ 为差张量, 令

$$S(X, Y) = \frac{1}{2} [C(X, Y) + C(Y, X)] \text{(对称)},$$

$$A(X, Y) = \frac{1}{2} [C(X, Y) - C(Y, X)] \text{(反称)}.$$

则 (1) $2A(X, Y) = T(X, Y) - T(Y, X)$, 其中 T, T 分别为 ∇, ∇

的挠张量;
(2) (a) 联络 ∇ 和 ∇' 有相同的测地线 (参数相同) \iff (b) 对所有的 $X, C(X, X) = 0 \iff (c) S = 0 \iff (d) C = A$；

(3) $\nabla = \nabla' \iff \mathcal{F} = T$ 且它们有相同的测地线。

证明 (1) $T(X, Y) - T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] - \nabla_X Y + \nabla_Y X + [X, Y] = (\nabla_X Y - \nabla_Y X) - (\nabla_Y X - \nabla_Y X) = C(X, Y) - C(Y, X) = 2A(X, Y)$。

(2) (a) \Rightarrow (b) 设 σ 为切于 X_{β} 的测地线，$\sigma'(0) = X_{\beta}$, $X \in C^* (TM)$，且 $X |_{\sigma} = \sigma'$. 则

$$C(X_{\beta}, X_{\beta}) = C(\sigma'(0), \sigma'(0)) = C(X, X) \mid_{\sigma} = (\nabla_X X - \nabla_X X) \mid_{\sigma} = 0 \iff 0 = 0.$$

(a) \Leftarrow (b) 因为对所有 $X, C(X, X) = 0$, 故

$$\nabla_{\sigma'} \sigma' - \nabla_{\sigma'} \sigma' = C(\sigma', \sigma') = 0,$$

$$\nabla_{\sigma'} \sigma' - \nabla_{\sigma'} \sigma' = 0 \iff \nabla_{\sigma'} \sigma' = 0,$$

即 ∇ 和 ∇' 有相同的测地线。

(b) \Rightarrow (c) 由 (b) $C(X, X) = 0$ 得到

$$S(X, X) = \frac{1}{2} [C(X, X) + C(X, X)] = 0.$$

于是，对所有的 X, Y 有

$$0 = S(X + Y, X + Y) = S(X, X) + S(X, Y) + S(Y, X) + S(Y, Y) = 2S(X, Y),$$

$$S(X, Y) = 0,$$

即 $S = 0$。

(b) \Leftarrow (c) 因为 $S = 0$, 故 $C(X, X) = \frac{1}{2} [C(X, X) + C(X, X)] = S(X, X) = 0$.

(c) \Leftarrow (d) 因为 $C(X, Y) + C(Y, X) = 2S(X, Y)$, 所以

$$S(X, Y) = 0 \iff C(X, Y) = 0 \iff C(Y, X) = 0 \iff C(X, Y) = \frac{1}{2} [C(X, Y) - C(Y, X)].$$

* 290 *
定理 7 设 ∇ 为 C^∞ 流形 M 的切丛 TM 上的线性联络，则存在唯一的线性联络 $\nabla(TXY - \nabla X - \frac{1}{2} T(X,Y))$，它和 ∇ 有相同的测地线（参数相同），且挠张量 $T = 0$.

证明 因为 ∇ 为 TM 上的线性联络和 $T(X,Y)$ 为 M 上的 C^∞ 的 2 阶协变向量值张量场，根据定理 5，$\nabla = \nabla - \frac{1}{2} T$ 也为 TM 上的线性联络，由 $C(X,X) = -\frac{1}{2} T(X,X) = 0$ 知 ∇ 和 ∇ 有相同的测地线（参数相同）。此外，$T(X,Y) = \nabla X - \nabla X - [X,Y] = \nabla X Y - \frac{1}{2} T(X,Y) - \nabla X + \frac{1}{2} T(Y,X) - [X,Y] = (\nabla X Y - \nabla X - [X, Y] - T(X,Y) - T(X,Y) - T(X,Y) = 0)$，即 $T = 0$。

由定理 6(3)，如果 TM 上有两个线性联络 ∇_1 和 ∇_2，它们与 ∇ 有相同的测地线（参数相同）且挠张量 $T_1 = T_2 = 0$，则 $\nabla_1 = \nabla_2$，这就证明了唯一性。

注 4 定理 5、6、7 给出了从已知联络 ∇ 构造所需的新的联络 ∇。

但是，必须指出的是 ∇ 不是 2 阶协变向量值张量场。如选 $f \in C^\infty(M, R)$，$X, Y \in C^\infty TM$，使 $(Xf)f \neq 0$，则 $\nabla_X (fY) = (Xf)Y + f \nabla_X Y = f \nabla_X Y$。

注 5 对于 C^∞ 紧致定向流形 M 上的 C^∞ 向量丛 E 上的联络 ∇ 可

§3 Levi–Civita 连结

设 ∇ 为 n 维 C^∞ 流形 M 的切从 TM 上的线性连结, §2 例 4 构造了余切从 T^*M 上的线性连结, 而例 5 构造了切从 TM 的张量丛 \otimes^rTM 上的线性连结. 为方便, 将这连结仍记为 ∇. 现在我们将用另一种方式加以叙述. 令

$$\nabla: C^\infty(TM) \times C^\infty(\otimes^r TM) \to C^\infty(\otimes^{r+1} TM),$$

$$(X, \theta) \to \nabla(X, \theta) = \nabla_X \theta.$$

(1) $\nabla_X f = Xf, \quad f \in C^\infty(M, \mathbb{R}) = C^\infty(\otimes^0 TM);$

(2) $\nabla_X Y$ 由 TM 上的线性连结 ∇ 给出, $Y \in C^\infty(TM) = C^\infty(\otimes^1 TM);$

(3) $(\nabla_X \theta)(Y) = X\theta(Y) - \theta(\nabla_X Y), \quad \theta \in C^\infty(T^*M) = C^\infty(\otimes^{0, 1} TM), Y \in C^\infty(TM) = C^\infty(\otimes^{1, 0} TM);$

(4) $(\nabla_X \theta)(W_1, \ldots, W_r; Y_1, \ldots, Y_s) = \nabla_X (\theta(W_1, \ldots, W_r; Y_1, \ldots, Y_s)) - \sum_{i=1}^r \theta(W_1, \ldots, W_{i-1}, \nabla_X W_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s),$

$$\theta \in C^\infty(\otimes^{r+1} TM), \quad W_i \in C^\infty(T^*M) = C^\infty(\otimes^{0, r} TM), \quad Y_j \in C^\infty(TM) = C^\infty(\otimes^{1, 0} TM).$$

为得到 ∇ 的性质, 我们先定义收缩映射.

定义 1 为 n 维实向量空间 V 的基, $\{e^k\}$ 为其对偶基, V^* 为 V 的对偶空间. 定义收缩映射

$$C^\infty_V : \otimes^r V \to \otimes^{r-1, 0} V,$$

- 292 -
使得对任何 \(W_i \in V^*, i = 1, \cdots, r - 1, \) \(Y_j \in V, j = 1, \cdots, s - 1, \)

\[
(C'_i \theta)(W_1, \cdots, W_{r-1}; Y_1, \cdots, Y_{s-1}) = \sum_{k=1}^{n} \theta(W_1, \cdots, W_{r-1}, e^k, W_{r-1}, Y_1, \cdots, Y_{s-1}).
\]

引理 1 有 \(C'_i \) 与 \(\{e^k\}, \{e^k\} \) 的选取无关。

证明 设 \(\{e^k\}, \{e^k\} \) 为另一组对偶基，且 \(\bar{e}_k = \sum_{b=1}^{n} c_b^k e_{i_b}, \quad e^k = \sum_{k=1}^{n} d_b^k e^k, \) 则

\[
\sum_{k=1}^{n} \theta(W_1, \cdots, W_{r-1}, \bar{e}_k, W_{r-1}, Y_1, \cdots, Y_{s-1})
\]

\[
= \sum_{k=1}^{n} \theta(W_1, \cdots, W_{r-1}, \sum_{k=1}^{n} d_b^k e^k, W_{r-1}, Y_1, \cdots, Y_{s-1})
\]

\[
= \sum_{k=1}^{n} \left(\sum_{k=1}^{n} c_b^k e_{i_b}, Y_j, \cdots, Y_{s-1} \right) \theta(W_1, \cdots, W_{r-1}, e^k, W_{r-1}; Y_1, \cdots, Y_{s-1})
\]

\[
= \sum_{k, l=1}^{n} \delta_{l}^k \theta(W_1, \cdots, W_{r-1}, e^k, W_{r-1}; Y_1, \cdots, Y_{s-1})
\]

注 1 可以证明

* 293 *
\[C_i^j (X_1 \otimes \cdots \otimes X_r \otimes W_1 \otimes \cdots \otimes W_s) \]
\[= W_j (X_i) X_1 \otimes \cdots \otimes X_r \otimes X_i \otimes W_1 \otimes \cdots \otimes W_j \otimes \cdots \otimes W_s, \]

这公式也可作为 \(C_i^j \) 的定义。

此外，关于 \(C_i^j \theta \) 的分量有
\[
(C_i^j \theta)_{k_1 \cdots k_{r-1}} = (C_i^j \theta) (e^1, \ldots, e^{i-1}, e^j, e^{i+1}, \ldots, e^{m_k}, \ldots, e_{m_{r-1}}, e_k, \ldots, e_{m_r}, \ldots, e_{m_{r-1}})
\]
\[= \sum_{k=1}^{n} \theta (e_i, \ldots, e^{i-1}, e^k, e^i, \ldots, e^{i+1}; e_{m_1}, \ldots, e_{m_{j-1}}, e_k, \ldots, e_{m_r}, \ldots, e_{m_{r-1}}) \]
\[= \sum_{k=1}^{n} \theta_{k_1 \cdots k_{r-1}} (e_1, \ldots, e^{i-1}, e^k, e^{i+1}, \ldots, e_{m_k}, \ldots, e_{m_{r-1}}). \]

引理 2 1. \(\forall x f \in C^\infty (M, R), \nabla_x Y \in C^\infty (TM) \rightarrow C^\infty (\mathbb{R} \otimes TM) \)
\[= C^\infty (\mathbb{R} \otimes TM), \quad \forall x \theta \in C^\infty (\mathbb{R} \otimes TM), \quad f \in C^\infty (M, R), \quad X, Y \in C^\infty (TM), \quad \theta \in C^\infty (\mathbb{R} \otimes TM); \]

（2）在 \(\otimes r \otimes TM \) 上的线性联络；

（3）\(\forall x : C^\infty (\wedge^r TM) \rightarrow C^\infty (\wedge^r TM) \)，其中 \(C^\infty (\wedge^r TM) \) 为 \(TM \) 上的阶 \(C^\infty \) 外形式的全体；

（4）\(\forall x (\theta + \eta) = \nabla_x \theta + \nabla_x \eta, \quad \theta, \eta \in C^\infty (\otimes^r TM) \);

（5）\(\forall x (\theta \otimes \eta) = (\nabla_x \theta) \otimes \eta + \theta \otimes \nabla_x \eta, \quad \theta \in C^\infty (\otimes^r TM), \eta \in C^\infty (\otimes^k TM) \)

(导性)；

（6）\(\nabla_x (\alpha \otimes \beta) = (\nabla_x \alpha) \otimes \beta + \alpha \otimes (\nabla_x \beta), \alpha \in C^\infty (\wedge^r TM), \beta \in C^\infty (\wedge^k TM) \);

（7）\(\nabla_x \circ C_i^j = C_i^j \circ \nabla_x \).

证明 （1）\(\forall x f \in C^\infty (M, R) = C^\infty (\mathbb{R} \otimes TM), \nabla_x Y \in C^\infty (TM) \)
\[= C^\infty (\mathbb{R} \otimes TM) \) 是显然的。对于任何 \(f \in C^\infty (M, R) \) 有
\[
(\nabla_x \theta) (f Y) = X \theta (f Y) - \theta (\nabla_x (f Y)) = (X f) \theta (Y) + f X \theta (Y) - \theta ((X f) Y + f \nabla_x Y) = (X f \theta (Y) - \theta (\nabla_x Y)) = f (\nabla_x \theta) (Y),
\]

• 294 •
\[(\nabla_x \theta)(W_1, \ldots, W_{i-1}, fW_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s)\]
\[=\nabla_x (\theta(W_1, \ldots, W_{i-1}, fW_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s))\]
\[- \sum_{i=1}^{i-1} \theta(W_1, \ldots, W_{i-1}, \nabla_x W_1, W_{i+1}, \ldots, W_{i-1}, fW_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s)\]
\[- \theta(W_1, \ldots, W_{i-1}, \nabla_x (fW_i), W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s)\]
\[- \sum_{i=1}^{i+1} \theta(W_1, \ldots, W_{i-1}, fW_i, W_{i+1}, \ldots, W_{i-1}, \nabla_x W_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s)\]
\[- \sum_{i=1}^{j-1} \theta(W_1, \ldots, W_{i-1}, fW_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_{j-1}, \nabla_x Y_j, Y_{j+1}, \ldots, Y_s)\]
\[= f(\nabla_x \theta)(W_1, \ldots, W_r; Y_1, \ldots, Y_s) + (Xf) \theta(W_1, \ldots, W_r; Y_1, \ldots, Y_s) - (X\theta)(W_1, \ldots, W_r; Y_1, \ldots, Y_s)\]
\[= f(\nabla_x \theta)(W_1, \ldots, W_r; Y_1, \ldots, Y_s).\]

类似可得到
\[(\nabla_x \theta)(W_1, \ldots, W_r; Y_1, \ldots, Y_s; Y_{j-1}, fY_j, Y_{j+1}, \ldots, Y_s)\]
\[= f(\nabla_x \theta)(W_1, \ldots, W_r; Y_1, \ldots, Y_s).\]

关于加法的线性性是明显的，因此，\(\nabla_x \theta \in C^\infty (\otimes^rTM)\).

（2）由§2例4和\(\nabla\)为\(TM\)上的线性联络，下面可验证

\[C^\infty(TM) \times C^\infty(\otimes^rTM) \to C^\infty(\otimes^rTM), (X, \theta) \rightarrow \nabla_x \theta(x, t)\]

为线性联络。从定义，显然\(\nabla_x \theta\)关于\(X\)是\(C^\infty(M, R)\)线性的，关于\(\theta\)是\(R\)线性的，剩下须证的是对任何\(f \in C^\infty(M, R)\)，有
\[(\nabla_x (f \theta))(W_1, \ldots, W_r; Y_1, \ldots, Y_s)\]
\[= \nabla_x (f \theta(W_1, \ldots, W_r; Y_1, \ldots, Y_s))\]
\[- \sum_{i=1}^{r} f \theta(W_1, \ldots, W_{i-1}, \nabla_x W_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s)\]

295
\[-\sum_{j=1}^{s} f^\theta(W_1, \ldots, W_r; Y_1, \ldots, Y_{j-1}, \nabla_x W_j, Y_{j+1}, \ldots, Y_s).\]

\[= (\nabla_x^f + f \nabla_x^\theta)(W_1, \ldots, W_r; Y_1, \ldots, Y_s),\]

即 \[\nabla_x(f \theta) = (\nabla_x^f) \theta + f \nabla_x^\theta.\]

(3) 由 \(\theta \in C^\infty(\Lambda^r T^* M)\) 的反称性和 \(\nabla_x \theta\) 的定义立即有 \(\nabla_x \theta \in C^\infty(\Lambda^s T^* M)\).

(4) 由 \(\nabla_x \theta\) 的定义.

(5) 当 \(r = 0\) 或 \(s = 0\) 时，公式显然成立。

当 \(r, s \geq 1\) 时，有

\[(\nabla_x(\theta \otimes \eta))(W_1, \ldots, W_r, W_1, \ldots, W_s; Y_1, \ldots, Y_s, \nabla_x \theta, \ldots, \nabla_x \theta)\]

\[= \nabla_x(\theta(W_1, \ldots, W_r; Y_1, \ldots, Y_s) \cdot \eta(W_1, \ldots, W_s; \nabla_x \theta, \ldots, \nabla_x \theta))\]

\[= \sum_{i=1}^{r} \theta(W_1, \ldots, W_{i-1}, \nabla_x W_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s) \cdot \eta(W_1, \ldots, W_s; \nabla_x \theta, \ldots, \nabla_x \theta)\]

\[+ \sum_{j=1}^{s} \theta(W_1, \ldots, W_r; Y_1, \ldots, Y_{j-1}, \nabla_x Y_j, Y_{j+1}, \ldots, Y_s) \cdot \eta(W_1, \ldots, W_s; \nabla_x \theta, \ldots, \nabla_x \theta)\]

\[+ \sum_{k=1}^{h} \theta(W_1, \ldots, W_r; Y_1, \ldots, Y_s) \cdot \eta(W_1, \ldots, W_s; \nabla_x W_k, W_{k+1}, \ldots, W_{s+1}; \nabla_x W_{s+1}, \ldots, \nabla_x W_h; \nabla_x \theta, \ldots, \nabla_x \theta)\]

\[+ \sum_{l=1}^{l} \theta(W_1, \ldots, W_r; Y_1, \ldots, Y_s) \cdot \eta(W_1, \ldots, W_s; \nabla_x Y_l, Y_{l+1}, \ldots, Y_{s+1}, Y_l; \nabla_x \theta, \ldots, \nabla_x \theta)\]

\[= ((\nabla_x \theta) \otimes \eta) + f \nabla_x(\theta \o \eta) + f \nabla_x \theta \otimes \nabla \eta.\]

即 \[\nabla_x(\theta \otimes \eta) = (\nabla_x \theta) \otimes \eta + \theta \otimes \nabla_x \eta.\]
(6) $\nabla_x (\alpha \land \beta) = \nabla_x \left(\frac{(r+s)!}{r!s!} A (\alpha \otimes \beta) \right)$

$= \nabla_x \left(\frac{1}{r!s!} \sum_x (-1)^x (\alpha \otimes \beta)^x \right)$

$= \frac{1}{r!s!} \sum_x (-1)^x (\nabla_x (\alpha \otimes \beta))^x$

$= \frac{1}{r!s!} \sum_x (-1)^x ((\nabla_x \alpha) \otimes \beta + \alpha \otimes (\nabla_x \beta))^x$

$= \frac{1}{r!s!} \sum_x (-1)^x ((\nabla_x \alpha) \otimes \beta)^x + \frac{1}{r!s!} \sum_x (-1)^x (\alpha \otimes (\nabla_x \beta))^x$

$= (\nabla_x \alpha) \land \beta + \alpha \land (\nabla_x \beta)$.

(7) 设 $\{e_k\}$ 为 TM 的局部 C^∞ 基向量场，$\{e^k\}$ 为其对偶基向量场。因为

$$ (\nabla_x e^k)(e_i) = X e^k (e_i) - e^k (\nabla_x e_i) $$

$$ = X \delta^k_i - e^k (\nabla \sum_m a^m \epsilon_m e_i) $$

$$ = -e^k \left(\sum_{mI} a^m \nabla_{\epsilon_m} e_i \right) = -e^k \left(\sum_{mI} a^m \Gamma^i_{m1} e^i \right) $$

$$ = - \sum_{mI} a^m \Gamma^i_{m1} \delta^i_i = - \sum_{mI} a^m \Gamma^i_{m1}, $$

$$ \nabla_x e^k = - \sum_{mI} a^m \Gamma^i_{m1} e^i. $$

又因

$$ \nabla_x e_k = \nabla \sum_m a^m \epsilon_m e_k = \sum_{mI} a^m \Gamma^i_{m2} e^i, $$

故

$$ \sum_k \theta(W_1, \ldots, W_{i-1}, \nabla_x e^k, W_i, \ldots, W_{r-1}; Y_1, \ldots, Y_{j-1}, e_k, \ldots). $$

* 297 *
\[Y_{j, \ldots, Y_{s-1}} \]
\[= - \sum_{k, n, m} a^n T^k_{m,n} \theta(W_1, \ldots, W_{i-1}, e^k, \ldots, W_{r-1}; Y_{s-1}, \ldots, Y_{j-1}, e_k, \ldots, Y_{j, \ldots, Y_{s-1}}) \]
\[\sum_k \theta(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots, W_{r-1}; Y_{s-1}, \ldots, Y_{j-1}, \nabla e_k, \ldots, Y_{j, \ldots, Y_{s-1}}) \]
\[= \sum_{k, m, n} a^n T^k_{m,n} \theta(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots, W_{r-1}; Y_{s-1}, \ldots, Y_{j-1}, e_k, \ldots, Y_{j, \ldots, Y_{s-1}}) \]
\[\sum_k \theta(W_1, \ldots, W_{i-1}, \nabla e_k, W_i, \ldots, W_{r-1}; Y_{s-1}, \ldots, Y_{j-1}, e_k, \ldots, Y_{j, \ldots, Y_{s-1}}) \]
\[= 0. \]

于是，
\[(C_j^1 \circ \nabla \chi \theta)(W_1, \ldots, W_{r-1}; Y_{s-1}, Y_{s-1}) \]
\[= \sum_k (\nabla \chi \theta)(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots, W_{r-1}; Y_{s-1}, Y_{s-1}) \]
\[\sum_k \theta(W_1, \ldots, W_{i-1}, \nabla e_k, W_i, \ldots, W_{r-1}; Y_{s-1}, Y_{s-1}) \]
\[+ \theta(W_1, \ldots, W_{i-1}, e^k, W_i, \ldots, W_{r-1}; Y_{s-1}, Y_{s-1}) \]
\[= (\nabla \chi \circ C_j^1 \theta)(W_1, \ldots, W_{r-1}; Y_{s-1}) + 0 \]
\[= (\nabla \chi \circ C_j^1 \theta)(W_1, \ldots, W_{r-1}; Y_{s-1}) \]

* 298 *
定义 2 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(n\) 维 \(C^\infty\)Riemann 流形，如果 \(T M\) 上的线性联络 \(\nabla\) 还满足:

1. 拉长量 \(T = 0\)，即对任何 \(X, Y \in C^\infty(T M)\),
 \[T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] = 0; \]

2. 对任何 \(X, Y, Z \in C^\infty(T M)\),
 \[\langle X, Y, Z \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle. \]

则称 \(\nabla\) 为 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 上的 Riemann 联络或 Levi-Civita 联络。

引理 3 (1) \(n\) 维 \(C^\infty\) 流形 \(M\) 的切丛 \(T M\) 上的线性联络 \(\nabla\) 满足 \(T = 0\) \(\Leftrightarrow\) 对任何局部坐标系 \(\{x^i\}\)，有 \(\Gamma^i_{jk} = \Gamma^i_{kj}\) (称为对称联络);

(2) \(n\) 维 \(C^\infty\) 流形 \(M\) 的切丛 \(T M\) 上的线性联络 \(\nabla\) 满足 \(Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle, X, Y, Z \in C^\infty(T M) \Leftrightarrow (b)\) 对任何 \(Z \in C^\infty(T M), \nabla_Z g \equiv 0\) 或 \(\Delta g = 0\) (参阅 §2 和 §6 中的 \(\nabla\)) \(\Leftrightarrow (c)\) 对任何
局部坐标系 \(\{x^i\}\)，有

\[
\frac{\partial g_{ij}}{\partial x^k} = \sum_{i=1}^n g_{ij} \Gamma^i_{k\ell} + \sum_{i=1}^n g_{ij} \Gamma^i_{k\ell}, \quad i, j, k = 1, \ldots, n
\]

\(\Leftrightarrow (d)\) 平行移动下保持内积不变。

证明 (1) 对任何 \(X, Y \in C^\infty(T M)\),

\[
\nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^i} - \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} = \sum_{i=1}^n \left(\Gamma^k_{ij} - \Gamma^k_{ji} \right) \frac{\partial}{\partial x^k} = 0
\]

\(\Leftrightarrow \Gamma^k_{ij} = \Gamma^k_{ji}, \quad i, j, k = 1, \ldots, n.\)

(2) (a) \(\Leftrightarrow (b)\) 对任何 \(X, Y, Z \in C^\infty(T M)\),

\[Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle \]

\(\Leftrightarrow \nabla_Z g(X, Y) = \nabla_Z (g(X, Y)) - g(\nabla_Z X, Y) - g(X, \nabla_Z Y) = 0\), 即 \(\nabla_Z g \equiv 0\) \(\Leftrightarrow \Delta g = 0\).
(a)⇒(c) 对任何 $X, Y, Z \in C^\infty(TM)$，

$Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle$

\Longleftrightarrow 对任何局部坐标系 $\{x^i\}$，有

$$
\frac{\partial}{\partial x^k} \left(\frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j} \right) = \left(\nabla_{\frac{\partial}{\partial x^k}} \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j} \right) + \left(\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k} \frac{\partial}{\partial x^j} \right) - \left(\nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^k} \frac{\partial}{\partial x^i} \right)
$$

$$
\frac{\partial g_{ij}}{\partial x^k} = \sum_{l=1}^{n} g_{il} \Gamma^l_{kj} + \sum_{l=1}^{n} g_{lj} \Gamma^l_{ik}, \quad i, j, k = 1, \ldots, n.
$$

设 $X(t) = \sum_{i=1}^{n} a^i(t) \frac{\partial}{\partial x^i}$，$Y(t) = \sum_{i=1}^{n} b^i(t) \frac{\partial}{\partial x^i}$ 为沿 C^∞ 曲线 $\sigma(t)$ 的关于 t 的 C^∞ 切向量场，$a^i(t) = \sum_{i=1}^{n} \frac{dx^i}{dt} \frac{\partial}{partial x^i}$，其中 $x^i(t)$ 为 $\sigma(t)$ 的坐标。如果 $X(t)$ 和 $Y(t)$ 沿 σ 平行，有

$$
\frac{d}{dt} \frac{a^j}{a^i} + \sum_{l=1}^{n} \Gamma^j_{ik} \frac{d}{dt} a^k = 0,
$$

$$
\frac{d}{dt} \frac{b^j}{b^i} + \sum_{l=1}^{n} \Gamma^j_{ik} \frac{d}{dt} b^k = 0.
$$

于是，平行移动下保持内积不变，即 $\langle X(t), Y(t) \rangle = \text{常数} \Longleftrightarrow$

$$
0 = \frac{d}{dt} \langle X(t), Y(t) \rangle = \frac{d}{dt} \left(\sum_{i,j=1}^{n} g_{ij} a^i b^j \right)
$$

$$
= \sum_{i,j=1}^{n} \frac{d}{dt} g_{ij} a^i b^j + \sum_{i,j=1}^{n} g_{ij} \frac{d}{dt} a^i b^j + \sum_{i,j=1}^{n} g_{ij} a^i \frac{d}{dt} b^j
$$

$$
= \sum_{i,j=1}^{n} \frac{d}{dt} g_{ij} a^i b^j - \sum_{i,j=1}^{n} g_{ij} \left(\sum_{k,l=1}^{n} \Gamma^k_{ij} \frac{d}{dt} a^k \right) b^j
$$

$$
- \sum_{i,j=1}^{n} g_{ij} a^i \left(\sum_{k,l=1}^{n} \Gamma^l_{kj} \frac{d}{dt} b^l \right)
$$

$\cdot 300 \cdot$
\[
\sum_{j=1}^{n} \left(\sum_{i=1}^{n} a^{i} b^{j} \right) \frac{d x^{k}}{d t} = \sum_{i=1}^{n} g_{ij} \Gamma_{k}^{i} - \sum_{i=1}^{n} g_{ii} \Gamma_{k}^{i} \right) \frac{d x^{k}}{d t} a^{i} b^{j} \tag{1}
\]

\[
\iff \frac{\partial g_{ij}}{\partial x^{k}} = \sum_{i=1}^{n} g_{ij} \Gamma_{k}^{i} + \sum_{i=1}^{n} g_{ii} \Gamma_{k}^{i} , \quad i, j, k = 1, \ldots, n.
\]

上述等价性中，\((\iff)\)显然。

\((\Rightarrow)\)对任何固定点 \(p \in M\)，选 \(a\) 使 \(a(0) = p, a'(0) = \)

\[
\left(\begin{array}{c}
\frac{d x^{1}}{d t} \\
\vdots \\
\frac{d x^{n}}{d t}
\end{array} \right)_{t=0} = (0, \ldots, 0, 1, 0, \ldots, 0), \quad a(0) = (0, \ldots, 0, 1, 0, \ldots, 0),
\]

并代入(1)得到

\[
\frac{\partial g_{ij}}{\partial x^{k}} = \sum_{i=1}^{n} g_{ij} \Gamma_{k}^{i} + \sum_{i=1}^{n} g_{ii} \Gamma_{k}^{i} , \quad i, j, k = 1, \ldots, n.
\]

定理 1（Riemann流形基本定理）在 \(a\) 维 \(C^{\infty}\) Riemann流形

\((M, g) = (M, \langle, \rangle)\) 上存在唯一的 Riemann联络。

证明1（不变观点）

(唯一性) 设 \(\nabla\) 为 \((M, g) = (M, \langle, \rangle)\) 的 Riemann联络，
则

\[
X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle = \langle \nabla_{X} Y, Z \rangle + \langle Y, \nabla_{X} Z \rangle + \langle Z, \nabla_{Y} X \rangle - \langle \nabla_{Z} X, Y \rangle - \langle X, \nabla_{Z} Y \rangle = \langle \nabla_{X} Y, Z \rangle + \langle Y, \nabla_{X} Z \rangle + \langle Z, \nabla_{Y} X \rangle - \langle \nabla_{Z} X, Y \rangle - \langle X, \nabla_{Z} Y \rangle
\]

\[
= \langle X, [Y, Z] \rangle - \langle Z, [Y, X] \rangle - \langle X, [Y, Z] \rangle - \langle Z, [Y, X] \rangle.
\]

因为(2)式对任何 \(X \in C^{\infty}(TM)\) 成立，故它唯一确定了 \(\nabla_{X} Y \in C^{\infty}(TM)\)，即 \(\langle M, g \rangle = (M, \langle, \rangle)\) 上若有 Riemann联络一定是唯一的。

(存在性) 为了证明 Riemann联络的存在性，自然应从(2)式出发定义 \(\nabla_{X} Y\)（它在 \(M\) 上是整体的）。由 \(Z\) 的任意性，通过(2)式作简单的计算可知 \(\nabla\) 满足线性联络的三个条件。此外，由
\[2(\nabla_x Y - \nabla_y X - [X, Y], Z) = \{ X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle Y, [X, Z] \rangle - \langle X, [Y, Z] \rangle - \langle Z, [X, Y] \rangle \} = 0 \]

和

\[2(\nabla_x Y, X) = \{ Z \langle X, Y \rangle + X \langle Y, Z \rangle - Y \langle Z, X \rangle - \langle X, [Z, Y] \rangle - \langle Z, [X, Y] \rangle - \langle Y, [Z, X] \rangle \} = 2Z \langle X, Y \rangle \]

推出\(\nabla \)满足Riemann联络的条件(4)和(5)。

证明 (坐标观点)

设\(\{ x^i \} \)和\(\{ y^i \} \)为\(p \in M \)的局部坐标系，\(g_{ij} = \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) \)

\[
\sum_{i=1}^{n} g_{ij} g^{jk} = \delta^k_i, \quad g_{ij} = \left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right) = \sum_{i=1}^{n} \frac{\partial x^i}{\partial y^j} \frac{\partial x^j}{\partial y^i} g_{ij},
\]

\[
g^{ij} = \sum_{i=1}^{n} \frac{\partial y^k}{\partial x^i} \frac{\partial y^l}{\partial x^j} g_{kl}, \quad \sum_{i=1}^{n} \tilde{g}_{ij} \tilde{g}^{jk} = \delta^k_i, \quad \nabla \frac{\partial}{\partial x^i} = \sum_{k=1}^{n} \Gamma^k_{ij} \frac{\partial}{\partial x^k},
\]

\[
\frac{\partial}{\partial y^i} = \sum_{k=1}^{n} \Gamma^k_{ij} \frac{\partial}{\partial y^k}.
\]

（唯一性）

\[
\frac{1}{2} \sum_{r=1}^{n} g^{kr} \left(\frac{\partial g_{ri}}{\partial x^j} + \frac{\partial g_{rj}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^r} \right)
\]

\[
= \frac{1}{2} \left\{ - \sum_{r=1}^{n} g^{kr} \left(\sum_{i=1}^{n} g_{ij} \Gamma^i_{r} + \sum_{j=1}^{n} g_{ij} \Gamma^j_{r} \right) \right. \\
+ \sum_{r=1}^{n} g^{kr} \left(\sum_{i=1}^{n} g_{ij} \Gamma^i_{r} + \sum_{j=1}^{n} g_{ij} \Gamma^j_{r} \right) \\
\right. \\
\]

\[\cdots 302 \cdots \]
\[
\sum_{r=1}^{n} g_{r \iota} \left(\sum_{i=1}^{n} g_{i \iota} \Gamma_{i r} + \sum_{i=1}^{n} g_{r i} \Gamma_{i i} \right) \right)
- \frac{1}{2} (\Gamma_{i i} + \Gamma_{i i}^*) = \Gamma_{i i}^*
\]

这就证明了 \(\Gamma_{i i}^* \)，从而 Riemann 联络 \(\nabla \) 完全由 \(g_{i \iota} \) 及其偏导数确定，即由 Riemann 度量 \(g \) 确定。

(存在性) 设 \(\Gamma_{i i}^* = \frac{1}{2} \sum_{r=1}^{n} g_{r \iota} \left(\frac{\partial g_{r i}}{\partial x^i} + \frac{\partial g_{r i}}{\partial x^r} - \frac{\partial g_{i r}}{\partial x^*} \right) \)

则 \(\Gamma_{i j}^* = \Gamma_{j i} \), \(\Gamma_{i i}^* = \Gamma_{i i} \)，且通过计算得到

\[
\sum_{i=1}^{n} g_{i \iota} \Gamma_{i \iota}^* + \sum_{i=1}^{n} g_{i i} \Gamma_{i i}^* = \frac{1}{2} \sum_{i=1}^{n} g_{i \iota} \sum_{s=1}^{n} g_{s \iota} \left(\frac{\partial g_{s i}}{\partial x^i} + \frac{\partial g_{s k}}{\partial x^s} - \frac{\partial g_{i k}}{\partial x^*} \right) + \frac{1}{2} \sum_{i=1}^{n} g_{i i} \sum_{s=1}^{n} g_{s i} \left(\frac{\partial g_{s i}}{\partial x^i} + \frac{\partial g_{s k}}{\partial x^r} - \frac{\partial g_{i k}}{\partial x^*} \right)
\]

\[
=- \frac{1}{2} \sum_{i=1}^{n} \delta_{i j} \left(\frac{\partial g_{i i}}{\partial x^i} + \frac{\partial g_{i k}}{\partial x^s} - \frac{\partial g_{i k}}{\partial x^*} \right) + \frac{1}{2} \sum_{i=1}^{n} \delta_{i j} \left(\frac{\partial g_{i i}}{\partial x^i} + \frac{\partial g_{s k}}{\partial x^s} - \frac{\partial g_{s k}}{\partial x^*} \right) - \frac{1}{2} \left(\frac{\partial g_{i i}}{\partial x^i} + \frac{\partial g_{i k}}{\partial x^r} - \frac{\partial g_{i k}}{\partial x^*} \right) + \frac{1}{2} \left(\frac{\partial g_{i i}}{\partial x^i} + \frac{\partial g_{i k}}{\partial x^r} - \frac{\partial g_{i k}}{\partial x^*} \right)
\]

于是，由 \(\Gamma_{i i}^* \) 确定的线性联络满足 Riemann 联络的五个条件。
证明 3 参阅 §6 定理 2.}

注 2 对称联络不一定是 Riemann 联络。例如，如果 ∇ 为 (M, g) 上的 Riemann 联络，则 $T = 0$. 令 $\nabla = \nabla + C$, 其中 C 为 TM 上的 C^∞ 的 2 阶对称协变向量值张量场，且 $C \equiv 0$, 故 $\nabla \equiv \nabla$. 但根据 §2 定理 6, $A(X, Y) = \frac{1}{2} [C(X, Y) - C(Y, X)] = 0$ 和 $T(X, Y)$

$= T(X, Y) + 2A(X, Y) = 0 + 0 = 0.$

定义 3 设 ∇ 为 n 维 C^∞ Riemann 流形 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 上的 Riemann 联络。我们称 TM 上的 $(0, 4)$ 型 C^∞ 张量场 K 为 Riemann–Christoffel 曲率张量，其中 K 为:

$$K(X_1, X_2, X_3, X_4)$$

$$= \langle X_1, R(X_2, X_4)X_2 \rangle, \quad X_1, X_2, X_3, X_4 \in C^\infty(TM).$$

引理 4 设 $X_1, X_2, X_3, X_4 \in C^\infty(TM)$，则有

(1) $R(X_1, X_2)X_3 + R(X_3, X_1)X_2 + R(X_2, X_4)X_1 = 0$ (Bianchi 第一恒等式);

$$K(X_1, X_2, X_3, X_4) + K(X_1, X_3, X_4, X_2)$$

$$+ K(X_1, X_4, X_2, X_3) = 0;$$

(2) $K(X_1, X_2, X_3, X_4) = - K(X_2, X_1, X_3, X_4);$

(3) $K(X_1, X_2, X_3, X_4) = - K(X_1, X_2, X_4, X_3);$

(4) $K(X_1, X_3, X_4, X_2) = K(X_2, X_4, X_1, X_3).$

证明 (1) $R(X_1, X_2)X_3 + R(X_3, X_1)X_2 + R(X_2, X_4)X_1$

$$= \nabla_{X_1} \nabla_{X_2} X_3 - \nabla_{X_2} \nabla_{X_1} X_3 - \nabla_{X_3} \nabla_{X_1} X_2 + \nabla_{X_3} \nabla_{X_2} X_1 - \nabla_{X_4} \nabla_{X_1} X_2 + \nabla_{X_4} \nabla_{X_2} X_1$$

$$- \nabla_{[X_2, X_3]} X_1 = \nabla_{X_1} (\nabla_{X_2} X_3 - \nabla_{X_3} X_2)$$

$$- \nabla_{X_2} (\nabla_{X_3} X_1 - \nabla_{X_1} X_2)$$

$$+ \nabla_{X_3} (\nabla_{X_1} X_2 - \nabla_{X_2} X_1) - \nabla_{X_4} (\nabla_{X_2} X_1)$$

$$- \nabla_{X_4} (\nabla_{X_3} X_1) - \nabla_{X_4} (\nabla_{X_1} X_2)$$

$$= \nabla_{X_1} [X_2, X_3] - \nabla_{X_2} [X_3, X_1] + \nabla_{X_3} ([X_3, X_1])$$
\[-\nabla_{(x_1, x_2)} X_2 + \nabla_{x_2} [X_1, X_2] - \nabla_{(x_1, x_2)} X_3 = [X_1, [X_2, X_3]] - [X_2, [X_3, X_1]] + [X_3, [X_1, X_2]] = 0.
\]

\[
K(X_1, X_2, X_3, X_4) = K(X_1, X_3, X_4, X_2)
\]

\[
+ K(X_1, X_4, X_2, X_3) = \langle X_1, R(X_3, X_4) X_2 - R(X_4, X_2) X_3 \rangle
\]

\[
+ R(X_2, X_3) X_4 = \langle X_1, 0 \rangle = 0.
\]

(2) \[
K(X_1, X_2, X_3, X_4) + K(X_2, X_1, X_3, X_4)
\]

\[
= \langle X_1, R(X_2, X_4) X_2 \rangle + \langle X_2, R(X_2, X_4) X_4 \rangle
\]

\[
= \langle X_1, \nabla_{x_2} \nabla_{x_4} X_2 - \nabla_{x_4} \nabla_{x_2} X_2 - \nabla_{(x_2, x_4)} X_2 \rangle
\]

\[
+ \langle X_2, \nabla_{x_2} \nabla_{x_4} X_4 - \nabla_{x_4} \nabla_{x_2} X_4 - \nabla_{(x_2, x_4)} X_4 \rangle
\]

\[
= \{ \langle X_1, \nabla_{x_2} \nabla_{x_4} X_2 \rangle + \langle X_2, \nabla_{x_2} \nabla_{x_4} X_4 \rangle - \langle X_1, \nabla_{x_4} \nabla_{x_2} X_2 \rangle
\]

\[
- \langle X_2, \nabla_{x_4} \nabla_{x_2} X_2 \rangle \} - \{ \langle X_1, \nabla_{(x_2, x_4)} X_2 \rangle
\]

\[
+ \langle X_2, \nabla_{(x_2, x_4)} X_4 \rangle \} = X_3 X_4 \langle X_1, X_2 \rangle - X_4 X_3 \langle X_1, X_2 \rangle
\]

\[
= [X_3, X_4] \langle X_1, X_2 \rangle = 0.
\]

(3) 由 \(R(X_2, X_4) = -R(X_4, X_2) \) 得到。

(4) 由(1)(2)(3)得到

\[
0 = K(X_1, X_2, X_3, X_4) + K(X_1, X_3, X_4, X_2)
\]

\[
+ K(X_1, X_4, X_2, X_3) - K(X_2, X_3, X_4, X_1)
\]

\[
- K(X_2, X_4, X_1, X_3) - K(X_2, X_1, X_3, X_4)
\]

\[
- K(X_3, X_4, X_1, X_2) - K(X_3, X_1, X_2, X_4)
\]

\[
- K(X_3, X_2, X_4, X_1) + K(X_4, X_1, X_2, X_3)
\]

\[
+ K(X_4, X_2, X_3, X_1) + K(X_4, X_3, X_1, X_2)
\]

\[
= 2K(X_1, X_2, X_3, X_4) - 2K(X_2, X_3, X_1, X_2),
\]

\[
K(X_1, X_2, X_3, X_4) = K(X_2, X_3, X_1, X_2). \#
\]

引理 5 设 \(\{X_i\} \) 为局部坐标邻域 \(U \) 中的 \(C^\infty \) 基向量场，

\[
K_{(x_i)} = K(X_1, X_2, X_3, X_4),
\]

则

305
(1) \[K_{ijkl} = \sum_{s=1}^{n} g_{is} R_{sjkl} \]

(2) \[K_{ijkl} = -K_{jikl}, K_{ijkl} = -K_{ikjl}, K_{ijkl} = K_{klji}, R_{ijkl} + R_{jikl} + R_{ikjl} = 0, \]
\[K_{ijkl} + K_{ijlk} + K_{iljk} = 0. \]

证明 (1) \[K_{ijkl} = \langle X_i, X_j, X_k, X_l \rangle = \langle X_i, R(X_k, X_l) X_j \rangle \]
\[= \langle X_i, \sum_{s=1}^{n} R_{jsk} X_s \rangle = \sum_{s=1}^{n} g_{is} R_{jsk}. \]

(2) 分别由引理 6 的 (2) (3) (4) 和 (1) 得到。

引理 6 设 \(X, Y \in \text{T}_0 \mathcal{M}, \langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2 = 0 \) (即 \(X, Y \) 线性无关)，它们张成 2 维平面 \(\hat{XY} \)。令
\[K(X, Y) = \frac{K(X, Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2}, \]
则 \(K(X, Y) = \bar{K}(aX + bY, cX + dY), ad - bc \neq 0 \)（即 \(\bar{K} \) 与张成 \(\hat{XY} \) 的基的选取无关）。

证明 由 \(aX + bY \) 和 \(cX + dY \) 张成的平行四边形面积平方为
\[\langle aX + bY, aX + bY \rangle \langle cX + dY, cX + dY \rangle - \langle aX + bY, cX + dY \rangle^2 \]
\[= \begin{vmatrix} a & b \\ c & d \end{vmatrix}^2 (\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2). \]
而由引理 4 得到
\[K(aX + bY, cX + dY, aX + bY, cX + dY) \]
\[= \langle aX + bY, R(aX + bY, cX + dY) (cX + dY) \rangle \]
\[= \langle aX + bY, (ad - bc) R(X, Y) (cX + dY) \rangle \]
\[= \begin{vmatrix} a & b \\ c & d \end{vmatrix} \langle aX + bY, R(X, Y) (cX + dY) \rangle \]
\[= \begin{vmatrix} a & b \\ c & d \end{vmatrix} \{ a(c \langle X, R(X, Y) X \rangle + ad \langle X, R(X, Y) Y \rangle \}
\[+ bc \langle Y, R(X, Y) X \rangle + bd \langle Y, R(X, Y) Y \rangle \}

\text{• 306 •}
\[
\begin{align*}
\frac{1}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} \left(K(X, Y, X, Y) - \frac{1}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} K(X, Y, X, Y) \right) &= \frac{1}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} K(X, Y, X, Y) - \frac{1}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} K(X, Y, X, Y) \\
&= 0.
\end{align*}
\]

故
\[
K(aX+bY, cX+dY) =
\frac{K(aX+bY, cX+dY, aX+bY, cX+dY)}{\langle aX+bY, aX+bY \rangle \langle cX+dY, cX+dY \rangle - \langle aX+bY, cX+dY \rangle^2}
\]

\[
= \frac{1}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} \left(\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2 \right)
= \frac{1}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} \left(\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2 \right).
\]

定义 4 在引理 6 中，定义由线性无关的向量 \(X, Y \in T_p M\) 张成的二维平面 \(XY\) 的 (Riemann) 载曲率为
\[
R_p(XY) K(X, Y) = \frac{K(X, Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2}.
\]
它不仅依赖于点 \(p \in M\)，而且也依赖于平面 \(XY\).

定理 2 设 \((M, \langle \cdot, \cdot \rangle)\) 为 \(n\)-维 \(C^\infty\) Riemann 流形，则 (1) \((M, \langle \cdot, \cdot \rangle)\) 具有常 Riemann 载曲率 \(c\)（每点处的任意载曲率为 \(c\)) \(\implies\) (2)
\[
K = cK_1 \implies (3) \quad \text{对任何} \quad X_1, X_2, X_3 \in C^\infty(TM), \quad \text{有} \quad R(X_1, X_2)X_3 = c(\langle X_3, X_2 \rangle X_1 - \langle X_3, X_1 \rangle X_2).
\]
其中
\[
K_1(X_1, X_2, X_3, X_4) = \langle X_1, X_2 \rangle \langle X_3, X_4 \rangle - \langle X_2, X_3 \rangle \langle X_1, X_4 \rangle.
\]
（显然 \(K_1\) 满足引理 4 中关于 \(K\) 的 4 个条件）。

证明 (1) \(\implies\) (2) 由
\[
R_p(XY) = \frac{K(X_1, X_2, X_1, X_2)}{\langle X_1, X_1 \rangle \langle X_2, X_2 \rangle - \langle X_1, X_2 \rangle^2} = c,
\]
\[
\langle X_1, X_1 \rangle \langle X_2, X_2 \rangle - \langle X_1, X_2 \rangle^2 \geq 0 \quad \text{得到} \quad K(X_1, X_2, X_1, X_2) =
\]
\[
cK_1(X_1, X_2, X_1, X_2), \quad \langle X_1, X_1 \rangle \langle X_2, X_2 \rangle - \langle X_1, X_2 \rangle^2 \geq 0.
\]
因为 \(K\) 和 \(K_1\) 满足引理 4 的 4 个条件，所以上述当 \(\langle X_1, X_1 \rangle \langle X_2, X_2 \rangle - \langle X_1, X_2 \rangle^2 = 0\) 时（即 \(X_1 = \lambda X_2\) 或 \(X_2 = \lambda X_1\)) 也成立。
为证明 $K = cK_1$，设 $S = K - cK_1$，则对任何 $X_1, X_2 \in C^\infty(TM)$，
$S(X_1, X_1, X_1, X_2) = 0$。于是，对任何 $X_1, X_2, X_4 \in C^\infty(TM)$，有
\[
0 = S(X_1, X_2 + X_4, X_1, X_2 + X_4) = S(X_1, X_2, X_1, X_4)
\]
\[
\div S(X_1, X_4, X_1, X_3) = 2S(X_1, X_2, X_1, X_4),
\]
即
$S(X_1, X_2, X_1, X_4) = 0$。

进一步，从上式得到，对任何 $X_1, X_2, X_3, X_4 \in C^\infty(TM)$，有
\[
0 = S(X_1, X_3, X_2, X_1 + X_3, X_4) = S(X_1, X_2, X_3, X_4)
\]
\[
\div S(X_3, X_2, X_1, X_4) = S(X_1, X_2, X_3, X_4)
\]
\[
\div S(X_1, X_1, X_2, X_3),
\]
即
$S(X_1, X_2, X_3, X_4) = S(X_1, X_3, X_2, X_3)$。

用 X_5, X_4, X_2 代替 X_3, X_3, X_4 得到
$S(X_1, X_2, X_3, X_2)
\div S(X_1, X_3, X_2, X_2), X_1, X_2, X_3, X_4 \in C^\infty(TM)$，
由上可推出，对任何 $X_1, X_2, X_3, X_4 \in C^\infty(TM)$，
\[
3S(X_1, X_2, X_3, X_4) = S(X_1, X_2, X_3, X_4)
\]
\[
\div S(X_1, X_3, X_4, X_2) + S(X_1, X_4, X_2, X_3) = 0,
\]
即
$K - cK_1 = 0, K = cK_1$。

(2) \Rightarrow (3) 因为
\[
\langle X_4, R(X_1, X_2)X_3 \rangle = K(X_4, X_3, X_1, X_2)
\]
\[
= cK_1(X_4, X_3, X_1, X_2)
\]
\[
= c\{\langle X_4, X_1 \rangle \langle X_3, X_2 \rangle - \langle X_2, X_1 \rangle \langle X_3, X_4 \rangle\}
\]
\[
= \langle X_4, c\{\langle X_3, X_2 \rangle X_1 - \langle X_3, X_1 \rangle X_2\} \rangle,
\]
故（注意 X_1 是任取的）
$R(X_1, X_2)X_3 = \sigma\{\langle X_3, X_2 \rangle X_1 - \langle X_3, X_1 \rangle X_2\}$。
\[
(3) \Rightarrow (1) \quad R(X, Y) = \frac{K(X, Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2} \\
= \frac{\langle X, R(X, Y) Y \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2} \\
= \frac{C \langle X, \langle Y, Y \rangle X - \langle Y, X \rangle Y \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2} = C.
\]

注 3 证明验证，

\((M, \langle, \rangle)\) 具有常 Riemann 裁曲率 \(c \iff h_{i,j} = c (g_{i, l} g_{l, j} - g_{i, j} g_{l, l}).\)

下面我们给出几常 Riemann 裁曲率的典例例子。

例 1 设 \(\{x^i\}\) 为 Euclid 空间 \(\mathbb{R}^n\) 上的通常的座标系, \(g = \langle, \rangle\) 为 \(\mathbb{R}^n\) 上的通常的 \(C^\infty\) Riemann 度量, 即

\[
g_{ij} = \frac{\partial}{\partial x^i} \cdot \frac{\partial}{\partial x^j} = \delta_{ij}, \quad \langle X, Y \rangle = \left\langle \sum_{i=1}^n a^i \frac{\partial}{\partial x^i}, \sum_{j=1}^n b^j \frac{\partial}{\partial x^j} \right\rangle
\]

\[
= \sum_{i=1}^n a^i b^i.
\]

则由公式 \(\Gamma_{ik}^j = \frac{1}{2} \sum_{l=1}^n g^{lr} \left(\frac{\partial g_{kl}}{\partial x^r} + \frac{\partial g_{rl}}{\partial x^k} - \frac{\partial g_{rl}}{\partial x^k} \right)\) 得到 \(\Gamma_{ik}^j = 0,\)

\[
\nabla_2 \frac{\partial}{\partial x^j} = \sum_{h=1}^n \Gamma_{hk}^j \frac{\partial}{\partial x^k} = 0,
\]

\[
\nabla_X Y = \nabla_X \left(\sum_{j=1}^n b^j \frac{\partial}{\partial x^j} \right) = \sum_{j=1}^n (X b^j) \frac{\partial}{\partial x^j},
\]

特别当 \(\sigma\) 为 \(C^\infty\) 曲线, \(X = \sigma'(t)\) 时,

\[
\nabla_{\sigma'} Y = \sum_{j=1}^n (\sigma' b^j) \frac{\partial}{\partial x^j} = \sum_{j=1}^n db^j(\sigma(t)) \frac{\partial}{\partial x^j}.
\]

如果 \(\sigma\) 为坐标曲线 \(x^i\), 则有

\[
\nabla_{\frac{\partial}{\partial x^j}} Y = \sum_{i=1}^n \frac{\partial b^j}{\partial x^i} \frac{\partial}{\partial x^j}.
\]
显然，向量的平移方程为
\[
\frac{db^j}{dt} = 0, \ j = 1, \ldots, n, \ Y(t) = \sum_{j=1}^n b^j \frac{\partial}{\partial x^j}, \ b^j \text{ 为常数 (} j = 1, \ldots, n \text{)}.
\]
即测地线方程为
\[
\frac{d^2x^j}{dt^2} = 0, \ x^j = \alpha_i t + \beta_j, \ j = 1, \ldots, n,
\]
即测地线为 \mathbb{R}^n 中的直线。

此外，$\omega^i = dx^i, \ \omega^i = \sum_{k=1}^n \Gamma^i_{jk} \omega^j = 0$, Cartan 结构方程两边全为 0。由 $T^i_{jk} = \Gamma^i_{jk} - \Gamma^i_{kj} = 0$ 或定理 1 知 $T = 0$. 由
\[
\sum_{k=1}^n R^i_{jk} \frac{\partial}{\partial x^k} = R \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) \frac{\partial}{\partial x^k} = \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j} - \frac{\partial}{\partial x^j} \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^k},
\]
或从 $R^i_{jk} = \sum_{j=1}^n (\Gamma^i_{jk} - \Gamma^i_{kj}) + \frac{\partial}{\partial x^j} \Gamma^i_{kj} - \frac{\partial}{\partial x^j} \Gamma^i_{kj}$. 得到
\[
R^i_{jk} = 0.
\]
从而
\[
R(X, Y)Z = R \left(\sum_{i=1}^n a^i \frac{\partial}{\partial x^i}, \sum_{i=1}^n b^j \frac{\partial}{\partial x^j} \right) \left(\sum_{k=1}^n c^k \frac{\partial}{\partial x^k} \right) = \sum_{i, j, k=1}^n a^i b^j c^k R \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) \frac{\partial}{\partial x^k} = 0,
\]
\[
K(X_1, X_2, X_3, X_4) = \langle X_1, R(X_2, X_4)X_3 \rangle = \langle X_1, 0 \rangle = 0,
\]
\[
R_p(XY) = \frac{K(X, Y, X, Y)}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2} = 0.
\]
由于 $(\mathbb{R}^n, \langle \cdot, \rangle)$ 的 Riemann 曲率恒为 0，故称它为平坦空间。

例 2 设 $M = \left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n \left| \sum_{i=1}^n x_i^2 < -\frac{4}{c} \right. \right\}$, 其中 $c < 0$
为常数，记 \(X_i = \frac{\partial}{\partial x_i}, \ i = 1, \ldots, n \)，这里 \(\{x_i\} \) 为 \(\mathbb{R}^n \) 的通常的坐标。

在 \(M \) 上定义 Riemann 度量 \(g = \langle \cdot, \cdot \rangle \) 为

\[
g_{ij} = \langle X_i, X_j \rangle = \frac{1}{A^2} \delta^i_j, A^2 = 1 + \frac{c}{4} \sum_{i=1}^{n} x_i^2 > 1 + \frac{c}{4} \left(-\frac{A^2}{c} \right) = 0,
\]

\[
g(X, Y) = g \left(\sum_{i=1}^{n} a^i X_i, \sum_{j=1}^{n} b^j X_j \right) = \sum_{i, j=1}^{n} a^i b^j \frac{1}{A^2} \delta^i_j
\]

称 \((M, g) = (M, \langle \cdot, \cdot \rangle) \) 为双曲空间或 Poincaré 空间。

现在来证明 \((M, g) = (M, \langle \cdot, \cdot \rangle) \) 仅具有负常 Riemann 载数率 \(c \).

由 \(g_{ij} = \frac{1}{A^2} \delta^i_j \)，知 \(g_{ij} - A^2 \delta^i_j \)。

如果 \(i, j, k \) 互不相同，则

\[
\Gamma^k_{ij} = \frac{1}{2} \sum_{r=1}^{n} g^{kr} \left(\frac{\partial g_{ij}}{\partial x^r} + \frac{\partial g_{ki}}{\partial x^j} - \frac{\partial g_{kj}}{\partial x^i} \right)
\]

其中，\(g_{ij} = 0 \), \(g^{k}_{ij} \frac{\partial g_{ij}}{\partial x^k} = 0 \), \(g^{k}_{ij} \frac{\partial g_{ij}}{\partial x^k} = 0 \)，因而 \(\Gamma^k_{ij} = 0 \)。

如果 \(i, j \) 不相同，则

\[
\Gamma^i_{ij} = \Gamma^j_{ji} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{ij}}{\partial x^r} + \frac{\partial g_{ji}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^j} \right)
\]

\[
= \frac{1}{2} g^{ij} \left(\frac{\partial g_{ij}}{\partial x^i} + \frac{\partial g_{ji}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^i} \right) = \frac{1}{2} (A^2 \delta^j_i) \frac{\partial \left(\frac{1}{A^2} \right)}{\partial x^i}
\]

\[
= \frac{1}{2} A^2 \left(-2A^{-3} \cdot \frac{c}{4} x_k x_i \right) = -\frac{cx_k x_i}{2A},
\]

\[
\Gamma^i_{ij} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{ij}}{\partial x^r} + \frac{\partial g_{ji}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^j} \right)
\]

\[
= \frac{1}{2} g^{ij} \left(\frac{\partial g_{ij}}{\partial x^i} + \frac{\partial g_{ji}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^j} \right)
\]

\[
= \frac{1}{2} A^2 \left(-2A^{-3} \cdot \frac{c}{4} x_k x_i \right) = -\frac{cx_k x_i}{2A},
\]

\[
\Gamma^i_{ij} = \frac{1}{2} \sum_{r=1}^{n} g^{ir} \left(\frac{\partial g_{ij}}{\partial x^r} + \frac{\partial g_{ji}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^j} \right)
\]

\[
= \frac{1}{2} g^{ij} \left(\frac{\partial g_{ij}}{\partial x^i} + \frac{\partial g_{ji}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^j} \right)
\]
\[
\Gamma^i_{i} = \frac{1}{2} \sum_{r=1}^{3} g^{rr} \left(\frac{\partial g_{ir}}{\partial x_i} + \frac{\partial g_{ri}}{\partial x_i} - \frac{\partial g_{ii}}{\partial x_i} \right)
\]

\[
\Gamma^i_{ij} = \frac{1}{2} A^2 \left(\frac{\partial}{\partial x_i} \left(\frac{1}{A^2} \right) \right) = \frac{cx_i}{2A}.
\]

还有，
\[
\Gamma^i_{ij} = R^i_{ij} = \frac{cx_i}{2A}, \quad \Gamma^i_{ij} = \frac{cx_i}{2A} (i \neq j), \quad \Gamma^i_{ij} = 0 (其它).
\]

于是，
\[
R^i_{ij} = \sum_{k=1}^{n} \left(\Gamma^i_{jk} \Gamma^{k}_{ij} - \Gamma^i_{ij} \Gamma^{k}_{kj} \right) + \frac{\partial \Gamma^i_{ij}}{\partial x_i} \frac{\partial \Gamma^i_{ij}}{\partial x_j}
\]

\[
= \left(\sum_{k \neq i, j} \Gamma^i_{jk} \Gamma^{k}_{ij} \right) + \Gamma^i_{ij} \Gamma^{i}_{ij} + \Gamma^i_{ij} \Gamma^{i}_{ij} - \Gamma^i_{ij} \Gamma^{i}_{ij}
\]

\[
- \Gamma^i_{ij} \Gamma^{i}_{ij} + \frac{\partial \Gamma^i_{ij}}{\partial x_i} \frac{\partial \Gamma^i_{ij}}{\partial x_j}
\]

\[
= \sum_{k \neq i, j} \frac{cx_i}{2A} \left(- \frac{cx_i}{2A} \right) + \frac{cx_i}{2A} \left(- \frac{cx_i}{2A} \right) + \left(- \frac{cx_i}{2A} \right) \left(- \frac{cx_i}{2A} \right)
\]

\[
- \left(- \frac{cx_j}{2A} \right) \left(- \frac{cx_j}{2A} \right) - \left(- \frac{cx_j}{2A} \right) \left(\frac{cx_i}{2A} \right)
\]

\[
+ \frac{\partial \left(\frac{cx_i}{2A} \right)}{\partial x_i} - \frac{\partial \left(\frac{cx_j}{2A} \right)}{\partial x_j} = - \left(\sum_{k \neq i, j} \frac{c^2 x_k^2}{4 A^2} \right)
\]

\[
+ \left(\frac{c}{2A} - \frac{c^2 x_i^2}{4 A^2} \right) + \left(\frac{c}{2A} - \frac{c^2 x_j^2}{4 A^2} \right) = \frac{c}{A} - \frac{c^2}{4 A^2} \sum_{i=1}^{3} x_i^2
\]

\[
= \frac{c}{A} - \frac{c}{A^2} (A - 1) = \frac{c}{A^2} (i \neq j),
\]

\[
R(X_i, X_j) = \frac{\langle X_i, R(X_i, X_j) X_j \rangle}{\langle X_i, X_i \rangle \langle X_j, X_j \rangle - \langle X_i, X_j \rangle^2}
\]

312
\[
\left\langle X_1, \sum_{k=1}^{n} R_{1k}^1 X_k \right\rangle = \sum_{k=1}^{n} \frac{R_{1k}^1 \delta_{ij}}{A^2} = \frac{R_{1k}^1}{A^2} = \frac{c}{A^2} = c \quad (i \neq j).
\]

我们可进一步证明 M 具有负常 Riemann 载篮率 c. 令 $e_i = AX_i$, 则 $\langle e_i, e_j \rangle = \langle AX_i, AX_j \rangle = A^2 \delta_{ij} - \delta_{ij}$, 即 $\{e_i\}$ 为 TM 的规范正交基. 设 π 为 $p \in M$ 的任一 2 维平面, (f_1, f_2) 为 π 的规范正交基. 将 (f_1, f_2) 扩充到 (f_1, \cdots, f_n), 使其为 $T_p M$ 的规范正交基, 则存在正交变换 U 使 $f_i = U e_i, i = 1, \cdots, n$. 因为 $\langle UX, UY \rangle = \frac{1}{A^2} \langle UX, UY \rangle$, \quad \langle UY \rangle = \frac{1}{A^2} \langle UX, UY \rangle = \langle X, Y \rangle$. 因此, 如果作正交变换 $U: M \to M$, 则 $U^{-1} v = U: T U^{-1} v \to T_v M$, 它保持切空间的内积不变. 由此得到相应的联络系数, Riemann 联络是一致的, 故

\[
R_p(f_1, f_2) = R_p(U e_1, U e_2) = R_{V^{-1} p} (e_1, e_2) = R_{V^{-1} p} (AX_1, AX_2) = R_{V^{-1} p} (X_1, X_2) = c.
\]

下面我们利用公式来直接进行计算. 由于

\[
g = \frac{1}{A^2} \sum_i dx^i \otimes dx^i, \quad \text{其中} \quad A = 1 + \frac{c}{4} \sum_k x^k,
\]

\[
g_{ij} = \frac{\delta_{ij}}{A^2}, \quad g^{ij} = A^2 \delta_{ij}, \quad \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}
\]

我们有

\[
\Gamma^i_{jk} = \frac{1}{2} \sum_r g^{ir} \left(\frac{\partial g_{jr}}{\partial x^k} + \frac{\partial g_{kr}}{\partial x^j} - \frac{\partial g_{rj}}{\partial x^k} \right) = - \frac{c}{2A} (\delta_{k;ij} + \delta_{ij} x_k - \delta_{ij} x_k)
\]

\[\cdots 313 \cdots\]
\[
\frac{\partial}{\partial x^i} \Gamma_{ij}^* - \frac{\partial}{\partial x^j} \Gamma_{ij}^* = -\frac{c}{2} \frac{\partial}{\partial x^k} \left(\delta_{ij} x^j - \delta_{ij} x^k \right)
\]

\[
+ \frac{c}{2} \frac{\partial}{\partial v^k} \left(\delta_{ij} x^j - \delta_{ij} x^k \right)
\]

\[
= -\frac{c}{2} \left(\delta_{ij} \delta_{k}^j - \delta_{ij} \delta_{k}^i - \delta_{ij} \delta_{k}^k \right) + \frac{c}{2} \delta_{ij} \delta_{k}^j - \delta_{ij} \delta_{k}^k - \delta_{ij} \delta_{k}^i
\]

\[
+ \frac{c}{2} \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right) \frac{c}{A^2} - \frac{c}{2} \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right)
\]

\[
\frac{c}{2} \frac{x_k}{A^2} = \frac{c}{A} \left(\delta_{ij} \delta_{k}^j - \delta_{ij} \delta_{k}^i \right)
\]

\[
\frac{c^2}{4A^2} \left(\delta_{ij} \delta_{k}^j - \delta_{ij} \delta_{k}^i \right) \left(1 + \frac{c}{4} \sum y_i^2 \right) - \frac{1}{4} \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right) x_j
\]

\[
= \frac{c^2}{A^2} \left[\frac{1}{4} \left(\delta_{ij} \delta_{k}^j - \delta_{ij} \delta_{k}^i \right) \left(1 + \frac{c}{4} \sum y_i^2 \right) - \frac{1}{4} \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right) x_j
\]

\[
+ \frac{1}{4} \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right) x_j \right]
\]

\[
\Gamma_{i}^* \Gamma_{ij}^* - \Gamma_{ij}^* \Gamma_{i}^*
\]

\[
= \sum_i \frac{c^2}{A^2} \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right)
\]

\[
\cdot \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right) x_j - \frac{1}{4} \left(\delta_{ij} x_k - \delta_{ij} x^i \right) x_k
\]

\[
+ \frac{1}{4} \left(\delta_{ij} x_j + \delta_{ij} x_k - \delta_{ij} x^i \right) \sum_i y_i^2
\]

故有

\[
R_{ij}^{*} = \frac{\partial}{\partial x^k} \Gamma_{ij}^* - \frac{\partial}{\partial x^i} \Gamma_{jk}^* + \sum_i \left(\Gamma_{ij}^* \Gamma_{k} - \Gamma_{ij}^* \Gamma_{k}^* \right)
\]

\[
= \frac{c}{A^2} \left(\delta_{ij} \delta_{k}^j - \delta_{ij} \delta_{k}^i \right),
\]

• 314 •
再根据注3得到M具有负常Riemann截曲率c。

例3 设$M = \{x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i = c\}, \ c > 0,$
$I : M \rightarrow \mathbb{R}^{n+1}$为包含映射, 为计算$p \in M$的Riemann截曲率，不妨设$p$的第$n+1$个坐标大于$0$，并选取南极投影得到局部坐标系$(u_1, \ldots, u_n)$，由第一章第2例3，有

$$
\varphi^{-1} : u \rightarrow x = \left(\frac{2cu_1}{c + \sum_{i=1}^{n} u_i^2}, \ldots, \frac{2cu_n}{c + \sum_{i=1}^{n} u_i^2}, \frac{\sqrt{c \left(c - \sum_{i=1}^{n} u_i^2 \right)}}{c + \sum_{i=1}^{n} u_i^2} \right).
$$

设\mathbb{R}^{n+1}的标准Riemann度量为\tilde{g}，则M的诱导Riemann度量$g = I^* \tilde{g}$，则

$$
(\varphi^{-1})^* I^* \tilde{g} = (\varphi^{-1})^* I^* \left(\sum_{i=1}^{n+1} dx_i \otimes dx_i \right)
$$

$$
= \sum_{i=1}^{n} \left(\frac{2cdu_i}{c + \sum_{j \neq i} u_j^2} - \frac{4cu_i \sum_{j \neq i} u_j du_j}{\left(c + \sum_{j \neq i} u_j^2\right)^2} \right) \otimes \left(\frac{2cdu_i}{c + \sum_{j \neq i} u_j^2} - \frac{4cu_i \sum_{j \neq i} u_j du_j}{\left(c + \sum_{j \neq i} u_j^2\right)^2} \right)
$$

$$
- \frac{4c \sqrt{c} \sum_{i \neq j} u_i du_i}{\left(c + \sum_{j \neq i} u_j^2\right)^2} \otimes \frac{4c \sqrt{c} \sum_{i \neq j} u_i du_i}{\left(c + \sum_{j \neq i} u_j^2\right)^2}
$$

315
\[
\begin{align*}
&= \frac{4c^2}{(c + \sum_j u_j^2)^2} \sum_i d\mathbf{u}_i \otimes d\mathbf{u}_i - \frac{16c^2}{(c + \sum_j u_j^2)^3} \left(\sum_j u_j^2 \right) d\mathbf{u}_j \otimes d\mathbf{u}_j \\
&\quad - \frac{16c^2}{(c + \sum_j u_j^2)^4} \left(\sum_i \mathbf{u}_i \otimes \mathbf{u}_i \right) \otimes \left(\sum_i \mathbf{u}_i \otimes \mathbf{u}_i \right) \\
&\quad + \frac{16c^2}{(c + \sum_j u_j^2)^3} \left(\sum_i \mathbf{u}_i \otimes \mathbf{u}_i \right) \otimes \left(\sum_i \mathbf{u}_i \otimes \mathbf{u}_i \right) \\
&= \frac{4c^2}{(c + \sum_j u_j^2)^2} \sum_i d\mathbf{u}_i \otimes d\mathbf{u}_i
\end{align*}
\]

其中 \(u_i = \frac{cv_i}{2} \).

类似例 2 中方法 2 的计算，有

\[
g_{ij} = \frac{c^2}{A^2} \delta_{ij}, \quad g^{ij} = \frac{A^2}{c^2} \delta_{ij}, \quad \Gamma^k_{ij} \quad \text{和} \quad R^k_{ijl} \quad \text{与例 2 形式相同，}
\]

\[
K_{ijkl} = \frac{c^3}{A^4} (\delta_{kl} \delta_{ij} - \delta_{il} \delta_{kj}) = \frac{1}{c} (g_{ik} g_{lj} - g_{il} g_{kj}).
\]

因此，M 的 Riemann 曲率恒为 \(\frac{1}{c} \).

如果选 \(\{x_1, \ldots, x_n\} \) 为 p 的局部坐标，为方便，设 \(\sum_{i=1}^{n-1} x_i^2 = 1 \)，则

\[
x_{n+1} = \sqrt{1 - \sum_{i=1}^n x_i^2}, \quad dx_{n+1} = -\frac{\sum_{i=1}^n x_i dx_i}{x_{n+1}}, \quad \text{设} \quad \varphi^{-1}(x_1, \ldots, x_n) = \left(x_1, \ldots, x_n, \sqrt{1 - \sum_{i=1}^n x_i^2} \right), \quad \text{于是}
\]

\[
(\varphi^{-1})^* I^* \mathbf{g} = (\varphi^{-1})^* I^* \left(\sum_{i=1}^{n-1} dx_i \otimes dx_i \right)
\]

* 316 *
\[
- \frac{1}{x_{n+1}^2} \left(- \sum_{i=1}^{n} x_i dx_i \right) \otimes \left(- \sum_{i=1}^{n} x_i dx_i \right) + \sum_{i=1}^{n} dx_i \otimes dx_i \\
= \sum_{i=1}^{n+1} \left(1 + \frac{x_i^2}{x_{n+1}^2} \right) dx_i \otimes dx_i + \sum_{i,j} \frac{x_i x_j}{x_{n+1}^2} dx_i \otimes dx_j.
\]

因为 \(g = \sum_{i=1}^{n+1} dx_i \otimes dx_i \) 在 \(\mathbb{R}^{n+1} \) 上正定，所以 \((g^{-1})^* \cdot I^* g \) 也正定，且

\[(g_{ij}) = I_n + P'P, \text{其中 } I_n \text{ 为 } n \text{ 阶单位矩阵，} P = \frac{1}{x_{n+1}} (x_1, \ldots, x_n).\]

设 \((g^{ij}) = I_n + \lambda P'P \)，则由

\[(I_n + \lambda P'P)(I_n - P'P) = I_n + (\lambda - 1)P'P + \lambda P'PP'P \]

则

\[= I_n + [\lambda (1 + PP') + 1]P'P = I_n \]

取 \(\lambda (1 + PP') + 1 = 0 \) 即

\[\lambda = \frac{-1}{1 + PP'} = \frac{-1}{1 + \frac{1}{x_{n+1}^2} \sum_{i=1}^{n} x_i^2} = \frac{-x_{n+1}^2}{1 + \sum_{i=1}^{n} x_i^2} = -x_{n+1}^2.\]

于是,

\[(g^{ij}) = (\delta_{ij} - x_i x_j),\]

\[\Gamma^k_{ij} = \frac{1}{2} \sum_r g^{kr} \left(\frac{\partial g_{ir}}{\partial x_j} + \frac{\partial g_{jr}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_r} \right) \]

\[= \frac{1}{2} \sum_{r=1}^{n} g^{kr} \left[\frac{\partial}{\partial x_j} \left(\delta_{ir} x_i + \frac{x_i x_r}{x_{n+1}} \right) + \frac{\partial}{\partial x_i} \left(\delta_{jr} x_r + \frac{x_j x_r}{x_{n+1}} \right) \right. \]

\[- \frac{\partial}{\partial x_r} \left(\delta_{ij} x_r - x_i x_j \right) \]\n
\[= \frac{1}{2} \sum_{r=1}^{n} g^{kr} \left[\left(\frac{2x_i x_r x_j}{x_{n+1}^4} + \frac{\delta_{ir} x_r + \delta_{jr} x_j}{x_{n+1}^2} \right) + \left(\frac{2x_i x_r x_j}{x_{n+1}^4} + \frac{\delta_{ir} x_r + \delta_{jr} x_j}{x_{n+1}^2} \right) \right] \]

\[= \frac{317}{\ldots} \]
\[
- \frac{1}{x_{n+1}^2} \left(\sum_{i=1}^{n+1} \left(x_i - x_k \right) \left(x_i x_j x_k - x_i x_j \right) \right) = \sum_{i=1}^{n+1} \left(\frac{x_i}{x_{n+1}^2} \right) \left(x_i x_j x_k - x_i x_j \right)
\]

\[
= \frac{1}{x_{n+1}^2} \left(x_k - x_k \right) \sum_{j=1}^{n+1} \left(x_j \right) \left(\delta_{ij} + \frac{x_i x_j}{x_{n+1}^2} \right)
\]

\[
= x_k \left(\frac{x_i x_j}{x_{n+1}^2} \right).
\]

\[
\frac{\partial}{\partial x_k} \Gamma_{i j}^l - \frac{\partial}{\partial x_i} \Gamma_{j i}^l = \frac{\partial}{\partial x_k} \left[x_k \left(\frac{x_i x_j}{x_{n+1}^2} \right) \right] - \frac{\partial}{\partial x_i} \left[x_i \left(\frac{x_k x_j}{x_{n+1}^2} \right) \right]
\]

\[
= \left(\delta_{k i} \delta_{j l} - \delta_{k j} \delta_{i l} \right) + \frac{\delta_{k i} x_k x_j x_l}{x_{n+1}^2} - \frac{\delta_{k j} x_k x_i x_l}{x_{n+1}^2} + \delta_{i l} x_k x_l + \delta_{j l} x_k x_i
\]

\[
= \sum_{i} \left(\Gamma_{i j}^l - \Gamma_{j i}^l \right) = \sum_{i} \left[x_i \left(\delta_{i j} + \frac{x_i x_j}{x_{n+1}^2} \right) \right] \left(\delta_{k l} + \frac{x_k x_l}{x_{n+1}^2} \right)
\]

\[
= \sum_{i} x_i x_j \left(\delta_{i j} \delta_{i j} - \delta_{i j} \delta_{i l} \right) + \frac{\delta_{k l} x_i x_j}{x_{n+1}^2} - \frac{\delta_{k j} x_i x_l}{x_{n+1}^2} - \delta_{i j} x_k x_i
\]

\[
= \sum_{i} x_i x_j \left[\delta_{i j} \delta_{i j} - \delta_{i j} \delta_{i l} \right] + \frac{\delta_{k l} x_i x_j}{x_{n+1}^2} - \frac{\delta_{k j} x_i x_l}{x_{n+1}^2} - \delta_{i j} x_k x_i
\]

\[
\cdot 318 \cdot
\]
\[
\begin{align*}
&= \left(\delta_{ij} x_i - \delta_{kj} x_k x_i \right) + \left(\delta_{ij} x_k - \delta_{kj} x_k x_i \right) \left(1 - \frac{x_n^2}{x_n^2 + 1} \right) \\
&= \delta_{ij} x_i - \delta_{kj} x_k x_i, \\
R^2_{jkl} &= \frac{\partial}{\partial x_k} \Gamma_{klj}^l - \frac{\partial}{\partial x_l} \Gamma_{kjl}^l + \sum_i \left(\Gamma_{ij}^l \Gamma_{klj}^i - \Gamma_{ij}^k \Gamma_{kjl}^i \right) \\
&= \left(\delta_{kl} \delta_{ij} - \delta_{ij} \delta_{kj} \right) + \delta_{ik} x_j x_i + \delta_{kj} x_i x_k - \delta_{ij} x_k x_i - \delta_{ij} x_k x_i \\
&= \delta_{kl} \left(\delta_{ij} + \frac{x_j x_i}{x_n^2 + 1} \right) - \delta_{ij} \left(\delta_{kl} + \frac{x_k x_l}{x_n^2 + 1} \right), \\
K_{jkl} &= \sum_s g_{ij} R^s_{jkl} \\
&= \sum_s g_{ij} \left(\delta_{kl} g_{ij} - \delta_{ij} g_{kl} \right) = g_{ij} g_{ij} - g_{ij} g_{kl},
\end{align*}
\]

这就证明了 \(M = \left\{ x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \left| \sum_{i=1}^{n+1} x_i^2 = 1 \right\} \) 的 Riemann 换曲率为 1。

另一证法参阅 §4 例 5。

例 4 我们考虑常负曲率的双曲空间的另一例子。设
\[
H^n = \{ x = (x_1, \ldots, x_n, 1) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} x_i^2 - x_{n+1}^2 = -1, x_{n+1} > 0 \}
\]
\[
= \left\{ x \in \mathbb{R}^{n+1} \left| x = \left(x_1, \ldots, x_n, \sqrt{1 - \sum_{i=1}^{n} x_i^2} \right) \right\} \\
g^{-1} : \mathbb{R}^n \to H^n, \\
(x_1, \ldots, x_n) \mapsto \left(x_1, \ldots, x_n, \sqrt{1 + \sum_{i=1}^{n} x_i^2} \right),
\]

* 319 *
则微分构造的基 $\mathcal{O}'=\{(H^n, \varphi)\}$ 唯一确定了一个 n 维 C^∞ 流形 (M, \mathcal{O}). 记 $I: H^n \to \mathbb{R}^{n+1}$ 为包含映射, $\hat{g} = \sum_{i=1}^{n} dx_i \otimes dx_i - dx_{n+1} \otimes dx_{n+1}$ 为 2 阶 C^∞ 对称协变张量场, 令 $g = I^* \hat{g}$.

则

$$(\varphi^{-1})^* I^* \hat{g} = \sum_{i=1}^{n} dx_i \otimes dx_i - dx_{n+1} \otimes dx_{n+1}$$

$$= \sum_{i=1}^{n} \left(1 - \frac{x_i^2}{x_{n+1}^2}\right) dx_i \otimes dx_i - \sum_{i \neq j} x_i x_j \frac{x_i}{x_{n+1}} dx_i \otimes dx_j,$$

$$(g_{ij}) = I_n - P' P = \left(\delta_{ij} - \frac{x_i x_j}{x_{n+1}^2}\right), \quad P = \frac{1}{x_{n+1}}(x_1, \ldots, x_n).$$

根据线性代数中行列式的性质知,

$$\det(\lambda I_n - (I_n - P' P)) = \det[(\lambda - 1) I_n + P' P]$$

$$= (\lambda - 1)^{n-1} \left(\frac{-x_{n+1}^2 + \sum_{i=1}^{n} x_i^2}{x_{n+1}^2}\right).$$

有特征值为 $1, \ldots, 1, \frac{-x_{n+1}^2 + \sum_{i=1}^{n} x_i^2}{x_{n+1}^2} = \frac{1}{x_{n+1}^2}$. 因此, (g_{ij}) 是正定的, $g = I^* \hat{g}$ 确实为 H^n 的 Riemann 度量.

令 $(g^{ij}) = I_n + \lambda P' P$, 则

$$I_n = (I_n - P' P)(I_n + \lambda P' P) = I_n + (\lambda - 1) P' P - \lambda (P P') P' P$$

$$= I_n + [\lambda(1 - PP') - 1] P' P.$$

$$\lambda(1 - PP') - 1 = 0,$$

$$\lambda = \frac{1}{1 - PP'} = \frac{1}{1 - \sum_{i=1}^{n} x_i^2 / x_{n+1}^2} = \frac{x_{n+1}^2}{x_{n+1}^2 - \sum_{i=1}^{n} x_i^2} = x_{n+1}^2,$$

$$(g^{ij}) = (\delta_{ij} + x_{n+1}^2 P' P) = (\delta_{ij} + x_{n+1}^2 x_i x_j),$$

- 320 -
\[
\Gamma_{ij}^{k} = \frac{1}{2} \sum_{r=1}^{n} g^{kr} \left(\frac{\partial g_{kr}}{\partial x_j} + \frac{\partial g_{k}}{\partial x_i} - \frac{\partial g_{ir}}{\partial x^r} \right)
\]

\[
= \frac{1}{2} \sum_{r=1}^{n} g^{kr} \left[-\frac{\partial}{\partial x_j} \left(\frac{x_{j} x_r}{x_{n+1}} \right) - \frac{\partial}{\partial x_i} \left(\frac{x_j x_r}{x_{n+1}} \right) + \left(\frac{\partial}{\partial x_r} \frac{x_i x_j}{x_{n+1}} \right) \right]
\]

\[
= \frac{1}{2} \sum_{r=1}^{n} g^{kr} \left[-\delta_{ij} x_r - \delta_{ir} x_j - \frac{2 x_i x_j x_r}{x_{n+1}} + \frac{\delta_{ij} x_r}{x_{n+1}} + \frac{\delta_{ir} x_j}{x_{n+1}} - \frac{2 x_i x_j x_r}{x_{n+1}} \right]
\]

\[
+ \frac{\delta_{ir} x_j}{x_{n+1}} + \delta_{ir} x_j - \frac{2 x_i x_j x_r}{x_{n+1}} \right] = \sum_{r=1}^{n} \left(\delta_{kr} + x_k x_r \right) \left(\frac{x_j x_r}{x_{n+1}} - \frac{\delta_{ij} x_r}{x_{n+1}} \right)
\]

\[
= \frac{x_i x_j x_k}{x_{n+1}} \frac{\delta_{ij} x_k}{x_{n+1}} - \frac{x_i x_j x_k}{x_{n+1}} \frac{x_j x_k}{x_{n+1}} - \frac{x_i x_j x_k}{x_{n+1}} \frac{x_i x_j x_k}{x_{n+1}}
\]

\[
= \frac{x_i x_j x_k}{x_{n+1}} \left(\frac{1 + \sum_{r=1}^{n} x_r^2}{x_{n+1}} \right) - \frac{x_i x_j x_k}{x_{n+1}} \frac{1 + \sum_{r=1}^{n} x_r^2}{x_{n+1}} - \frac{x_i x_j x_k}{x_{n+1}} \frac{x_i x_j x_k}{x_{n+1}}
\]

\[
R_{ijkl} = \frac{\partial}{\partial x_k} \Gamma_{ij}^{l} - \frac{\partial}{\partial x_j} \Gamma_{ik}^{l} - \sum_{k} \left(\Gamma_{ij}^{l} \Gamma_{kl}^{t} - \Gamma_{il}^{l} \Gamma_{kj}^{t} \right)
\]

\[
= \frac{\partial}{\partial x_k} \left(\frac{x_i x_j x_k}{x_{n+1}} - \delta_{ij} x_k \right) - \frac{\partial}{\partial x_j} \left(\frac{x_i x_j x_k}{x_{n+1}} - \delta_{ij} x_k \right)
\]

\[
+ \sum_{t=1}^{n} \left(\frac{x_i x_j x_k}{x_{n+1}} - \delta_{ij} x_k \right) \left(\frac{x_k x_j x_t}{x_{n+1}} - \delta_{ij} x_t \right)
\]

\[
- \sum_{t=1}^{n} \left(\frac{x_i x_j x_k}{x_{n+1}} - \delta_{ij} x_k \right) \left(\frac{x_k x_j x_t}{x_{n+1}} - \delta_{ij} x_t \right)
\]

\[
= \left(\delta_{ij} \delta_{kl} - \delta_{ik} \delta_{jl} \right)
\]

\[
+ \delta_{ik} x_j x_k + \delta_{kj} x_i x_i + \delta_{kl} x_i x_j - \delta_{kl} x_i x_i - \delta_{ij} x_k x_i - \delta_{ij} x_k x_i - \delta_{ij} x_k x_i
\]

\[
= \frac{x_i x_j x_k (2 x_k) - x_k x_j x_i (2 x_i)}{x_{n+1}} + \frac{x_i x_j x_k x_i - x_k x_j x_i}{x_{n+1}} \sum_{r=1}^{n} x_r^2
\]

\[
\bullet 321 \bullet
\]
\[
\begin{align*}
\frac{1}{x_{n+1}^2} & \left(x_i x_j x_k x_n - x_k x_j x_i x_n \right) \\
&= \frac{\delta_{i,j} x_i x_n - \delta_{j,k} x_i x_n}{x_{n+1}^2} \sum_{s=1}^{n-1} x_s^2 \left(\delta_{i,j} x_k x_s - \delta_{j,k} x_s x_n \right) \\
&= -\left(\delta_{i,j} \delta_{k,s} - \delta_{j,k} \delta_{i,s} \right) \frac{\delta_{k,x} x_i x_j - \delta_{i,x} x_k x_j}{x_{n+1}^2}
&+ \frac{\delta_{k,x} x_i x_j - \delta_{i,x} x_k x_j}{x_{n+1}} (-1 - x_{n+1}^2) + \left(\delta_{i,j} x_k x_s - \delta_{j,k} x_s x_n \right) \\
&= -\left(\delta_{i,j} \delta_{k,s} - \delta_{j,k} \delta_{i,s} \right) \frac{\delta_{k,x} x_i x_j - \delta_{i,x} x_k x_j}{x_{n+1}^2}.
\end{align*}
\]

\[K_{i,j,k,l} = \sum_{s=1}^{n} g_{i,s} R_{j,k,s,l}^s\]

\[= \sum_{s=1}^{n} g_{i,s} \left[-\left(\delta_{i,j} \delta_{k,s} - \delta_{j,k} \delta_{i,s} \right) \frac{\delta_{k,x} x_i x_j - \delta_{i,x} x_k x_j}{x_{n+1}^2} \right] \]

\[= \sum_{s=1}^{n} g_{i,s} \left[-\delta_{k,x} \left(\delta_{i,j} - \frac{x_k x_j}{x_{n+1}^2} \right) + \delta_{i,x} \left(\delta_{j,k} - \frac{x_k x_j}{x_{n+1}^2} \right) \right] \]

\[= \sum_{s=1}^{n} g_{i,s} \left(-\delta_{k,x} g_{i,j} + \delta_{i,x} g_{j,i} \right) = -\left(g_{i,k} g_{i,j} - g_{i,j} g_{i,k} \right), \]

这就证明了 Riemann 萃曲率为 -1。

例 5 设 \(M = \{(x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_n > 0\}\) 为上半空间，

\[g = \frac{1}{2} \sum_{i=1}^{n} x_i \otimes dx_i, \quad g_{ij} = \frac{\delta_{ij}}{x_n^2}, \quad g^{ij} = x_n^2 \delta_{ij}. \]

则

\[\Gamma^k_{i,j} = \frac{1}{2} \sum_{r=1}^{n} g^{kr} \left(\frac{\partial g_{ij}}{\partial x_r} + \frac{\partial g_{ir}}{\partial x_j} - \frac{\partial g_{jr}}{\partial x_i} \right) \]

\[= \frac{1}{2} \sum_{r=1}^{n} x_n \delta_{x_r} \left(\frac{-2 \delta_{i,j} \delta_{j,i} + 2 \delta_{j,i} \delta_{i,j} + 2 \delta_{i,j} \delta_{i,m}}{x_n^2} \right) \]

\[](322)
\[
= \frac{1}{x_n} \left(\delta_{ij} \delta_{kn} - \delta_{ik} \delta_{jn} - \delta_{kj} \delta_{in} \right),
\]
\[
\frac{\partial}{\partial x_k} \Gamma^s_{il} - \frac{\partial}{\partial x_i} \Gamma^s_{lk} = \frac{1}{x_n} \left[-\left(\delta_{ls} \delta_{kn} - \delta_{ln} \delta_{ks} \delta_{jn} \right) \delta_{in} + \frac{1}{x_n} \left[-\left(\delta_{ls} \delta_{kn} - \delta_{ln} \delta_{ks} \delta_{jn} \right) \delta_{kn} \right.
ight.
\]
\[
\left. + \delta_{ls} \delta_{kn} - \delta_{kn} \right] \delta_{ls} \delta_{kn} \delta_{ln} \right] + \frac{1}{x_n} \left[-\left(\delta_{ls} \delta_{kn} - \delta_{ln} \delta_{ks} \delta_{jn} \right) \delta_{kn} \right.
\]
\[
+ \delta_{ls} \delta_{kn} - \delta_{kn} \right] \delta_{ls} \delta_{kn} \delta_{ln} \right].
\]
\[
\sum_{i=1}^{n} (\Gamma^s_{lj} \Gamma^l_{ki} - \Gamma^s_{ji} \Gamma^l_{ki})
\]
\[
= \frac{1}{x_n^2} \sum_{i=1}^{n} \left[\left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) \right]
\]
\[
- \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right)
\]
\[
= \frac{1}{x_n} \left[\left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) + \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) \right]
\]
\[
+ \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right) \left(\delta_{ls} \delta_{kn} - \delta_{kn} \right)
\]
\[
R^s_{ijkl} = \frac{\partial}{\partial x_k} \Gamma^s_{lj} - \frac{\partial}{\partial x_i} \Gamma^s_{lk} + \sum_{i=1}^{n} (\Gamma^s_{lj} \Gamma^l_{ki} - \Gamma^s_{ji} \Gamma^l_{ki})
\]
\[
= \frac{1}{x_n^2} \left(\delta_{ls} \delta_{kn} - \delta_{kn} \delta_{sk} \right),
\]
\[
K_{ijkl} = \sum_{a=1}^{n} g_{ls} R^s_{ijkl} = \sum_{a=1}^{n} \frac{1}{x_n^2} \delta_{ls} \left(\delta_{ls} \delta_{kn} - \delta_{ls} \delta_{sk} \right)
\]
\[
= -\frac{1}{x_n^2} \left(\delta_{ls} \delta_{kn} - \delta_{ls} \delta_{sk} \right) = -\left(g_{ls} g_{lk} - g_{ls} g_{lk} \right),
\]
这就证明了 M 的 Riemann 距离率 -1。

§ 4 Riemann 正则子流形的 Riemann 联络

设 (M, \langle, \rangle) 为 n 维 C^∞ Riemann 流形，M 为 M 维 C^∞ Riemann 正则子流形，∇ 为 M 的 Riemann 联络。
定理 1 设 $X, Y \in C^\infty(TM)$, $\nabla_X Y$ 和 $V(X, Y)$ 为 $\tilde{\nabla}_X Y$ 的唯→

的切分量和法分量 (图 28):

$$\nabla_X Y = \nabla_X Y + V(X, Y)$$

(Gauss 公式)

则 (1) ∇ 为 TM 上的 Riemann 联络；

(2) V 为 TM 上的对称的向量值 ($\tilde{\nabla}$ 上的) 变 C^∞ 张量场；

(3) $\tilde{\nabla}(X, Y)Z = [X, Y] + \nabla_X Y Z$

其中

$$\nabla_X Y Z = \nabla_X Y Z + \nabla_X [Y, Z] + \nabla_Y [X, Z]$$

(Gauss 曲率方程),

$$\tilde{\nabla}_X Y Z = \nabla_X Y Z + \tilde{\nabla}_X [Y, Z] + \tilde{\nabla}_Y [X, Z]$$

(Codazzi–Mainardi 方程).

(4) $\nabla^1: C^\infty(TM) \times C^\infty(TM^\perp) \to C^\infty(TM^\perp)$,

$$(X, N) \rightarrow \nabla_X N = (\tilde{\nabla}_X N)$$

为 TM^\perp 上的线性联络，称为法 (丛) 联络。且

$$X \langle N_1, N_2 \rangle = \langle \nabla_X N_1, N_2 \rangle + \langle N_1, \nabla_X N_2 \rangle, \quad X \in \C^\infty(TM), \quad N_1, N_2 \in \C^\infty(TM^\perp)$$

证明 因为 M 为 \tilde{X} 的 C^∞ 正则子流形，对任何 $X \in \C^\infty(TM), \tilde{X} \in M$, 可以选取 \tilde{X} 的关于 \tilde{M} 的特殊坐标系 $(U, \tilde{\varphi}, \{a^i\})$, 使得在 $U \cap M$, \n
$$X = \sum_{i=1}^m a^i \frac{\partial}{\partial x^i}, \quad a^i = x^1, \ldots, x^n$$

的 C^∞ 函数，再选取 \tilde{X} 的开邻域 $U \subset U$ 和 $f \in \C^\infty(\tilde{M}, \tilde{R})$, 使 $f|_{U_1} = 1$, $f|_{\tilde{M} - U} = 0$。于是, $X = f \cdot \sum_{i=1}^m a^i \cdot \tilde{x}_i$.

...
\[
\frac{\partial}{\partial x^i} \text{可视为 } M \text{ 的 } C^\infty \text{ 向量场 } (X |_{M^c} = 0), \text{ 且 } X |_{U \cap M} = X.
\]

为了证明 \(V \) 和 \(\bar{V} \) 在 \(M \) 上是 \(C^\infty \) 的，我们任取 \(p \in M \)，设 \((U, \varphi)\)，

\((x^i) \) 为 \(p \) 的特殊坐标系，

\[
\frac{\partial}{\partial x^i}, \ldots, \frac{\partial}{\partial x^m}, \frac{\partial}{\partial x^m}, \ldots, \frac{\partial}{\partial x^n} \text{ 分别为 } M \text{ 和 } M^c \text{ 的局部坐标基向量场，而 }
\]

\[
\frac{\partial}{\partial x^i} |_{U \cap M} = \frac{\partial}{\partial x^i}, \ldots, \frac{\partial}{\partial x^m} |_{U \cap M} = \frac{\partial}{\partial x^m}.
\]

由 §1 引理 4 可以得到 \(U \) 上的 \(C^\infty \) 规范正交的基向量场 \(\bar{Z}_1, \ldots, \bar{Z}_m \)，使得

\[
\bar{Z}_1 |_{U \cap M} = Z_1, \ldots, \bar{Z}_m |_{U \cap M} = Z_m \text{ 为 } U \cap M \text{ 上的相应的 } C^\infty \text{ 规范正交的基向量场，而 } Z_{m+1} |_{U \cap M}, \ldots, Z_n |_{U \cap M} \text{ 为 } T(U \cap M)^\perp \text{ 上的 } C^\infty \text{ 的规范正交的基向量场。令}
\]

\[
X = \sum_{i=1}^n \lambda^i Z_i, \quad Y = \sum_{j=1}^m \mu^j Z_j,
\]

\[
\nabla \bar{Z}_i Z_j, \quad \sum_{k=1}^n \eta^i_{jk} Z_k,
\]

则

\[
\nabla_x Y = \sum_{j=1}^m (X \mu^j) Z_j + \sum_{i, j=1}^n \lambda^i \mu^j \eta^i_{jk} Z_k,
\]

\[
\nabla_x Y = \sum_{k=1}^n \left((X \mu^k) + \sum_{i, j=1}^n \lambda^i \mu^j \eta^i_{jk} \right) Z_k,
\]

\[
V(X, Y) = \sum_{k=m+1}^n \left(\sum_{i, j=1}^n \lambda^i \mu^j \eta^i_{jk} \right) Z_k.
\]

从上面两式可看出 \(\nabla_x Y \) 和 \(V(X, Y) \) 在 \(U \cap M \) 上是 \(C^\infty \) 的。

(1)，(2) 因为

\[
\nabla_{x_1, x_2} Y + V(X_1 \cdot X_2, Y) = \nabla_{x_1, x_2} Y + \nabla_{x_2} Y \]

\[
= (\nabla_{x_1} Y + \nabla_{x_2} Y) + \{ V(X_1, Y) + V(X_2, Y) \},
\]

\[
\nabla_{f x} Y + V(f X, Y) = \nabla_{f x} Y - f \nabla_x Y = f \{ \nabla_x Y \cdot V(X, Y) \},
\]

\[
\ast 325 \ast
\]
\[\nabla_x(Y_1 + Y_2) + V(X, Y_1 + Y_2) = \widetilde{\nabla}_x(Y_1 + Y_2) = \widetilde{\nabla}_x Y_1 + \widetilde{\nabla}_x Y_2 \]

\[\nabla_x Y_1 + \nabla_x Y_2 + [V(x, Y_1) + V(x, Y_2)] , \]

\[\nabla_x (fY) + V(x, fY) = \widetilde{\nabla}_x (fY) = (Xf)Y - f \nabla_x Y \]

\[= ((Xf)Y + fV_x Y) + fV(x, Y) \]

得到 \(\nabla \) 满足线性联络的 3 个条件和 \(V \) 为向量值的 \(C^\infty \) 协变张量场.

又因为在 \(U \cap M \) 上有

\[[X, Y] = [\widetilde{X}, \widetilde{Y}] = \widetilde{\nabla}_x Y - \widetilde{\nabla}_x X = \widetilde{\nabla}_x Y - \widetilde{\nabla}_x X \]

\[- (\nabla_x Y - \nabla_x X) + \{V(x, Y) - V(Y, X) \} . \]

因此，\(V(x, Y) = V(Y, X) \) (对称)，且

\[T(x, y) = \nabla_x Y - \nabla_y X - [X, Y] = 0, \]

\[Z\langle X, Y \rangle = Z\langle \widetilde{X}, \widetilde{Y} \rangle = \langle \widetilde{\nabla}_2 X, \widetilde{Y} \rangle + \langle \widetilde{X}, \widetilde{\nabla}_2 Y \rangle \]

\[= \langle \widetilde{\nabla}_2 X, Y \rangle + \langle X, \widetilde{\nabla}_2 Y \rangle \]

\[= \langle \nabla_2 X + (\widetilde{\nabla}_2 X)^\bot, Y \rangle + \langle X, \nabla_2 Y + (\nabla_2 Y)^\bot \rangle \]

\[= \langle \nabla_2 X, Y \rangle + \langle X, \nabla_2 Y \rangle , \]

即 \(\nabla \) 满足 Riemann 联络的条件 (4) 和 (5)。由 § 3 定理 1 中的唯一性，\(\nabla \) 就是 \((M, \langle \cdot, \cdot \rangle) \) 的 Riemann 联络.

(3) 由 \(R(X, Y) Z = \widetilde{\nabla}_x \nabla_y Z - \widetilde{\nabla}_y \nabla_x Z - \widetilde{\nabla}_{[X, Y]} Z \)

\[= \nabla_x (\nabla_y Z + V(Y, Z)) - \nabla_y (\nabla_x Z + V(X, Z)) - (\nabla_{[X, Y]} Z \]

\[+ V([X, Y], Z)) \]

\[= \{ \nabla_x \nabla_y Z + V(X, \nabla_y Z) + \nabla_y V(Y, Z) \} - \{ \nabla_y \nabla_x Z + V(Y, \nabla_x Z) \]

\[+ \nabla_y V(X, Z) \} - \{ \nabla_{[X, Y]} Z + V([X, Y], Z) \} \]

\[= R(X, Y) Z + \widetilde{\nabla}_x V(Y, Z) - \widetilde{\nabla}_y V(X, Z) + V(X, \nabla_y Z) \]

\[- V(Y, \nabla_x Z) - V([X, Y], Z) \]

推出
切 \(R(X, Y)Z = R(X, Y)Z + \) 切 \(\{ \nabla_x V(Y, Z) - \nabla_y V(X, Z) \} \)
法 \(R(X, Y)Z = V(X, \nabla_y Z) - V(Y, \nabla_x Z) - V([X, Y], Z) \)
法 \(\nabla_x V(Y, Z) - \nabla_y V(X, Z) \} \).
（4）\(\nabla^1 \) 满足线性联络的条件 (1), (2) 是明显的，条件 (3) 是因为

\[
\nabla_x^1 (fN) = (\nabla_x (fN))^\perp = (Xf) N - f \nabla_x N =: (Xf) N + f \nabla_x N.
\]

现证最后的等式:

\[
\langle \nabla_x N_1, N_2 \rangle + \langle N_1, \nabla_x N_2 \rangle = \langle (\nabla_x N_1)^\perp, N_2 \rangle + \langle N_1, (\nabla_x N_2)^\perp \rangle
\]

\[
= \langle \nabla_x N_1, N_2 \rangle + \langle N_1, \nabla_x N_2 \rangle = X \langle N_1, N_2 \rangle.
\]

注 1 关于 \(\nabla, \nabla^1 \) 和 \(\nabla^1 \) 运算的合理性主要根据 §2 引理 5 以及
\(M \) 上的 \(C^\infty \) 向量场 \(X \) 可对应于 \(\hat{M} \) 上的 \(C^\infty \) 向量场 \(\hat{X} \), 使 \(X|_{\hat{M}} = X \).

定义 1 \((M, \mathcal{g}) = (\hat{M}, \hat{\mathcal{g}}) \) 在 \(M \) 上诱导的度量张量 \(\mathcal{g} = \hat{I}^* \hat{\mathcal{g}} \) 称为 \(M \) 上的第 I 基本形式，而 \(\hat{\mathcal{V}} \) 称为 \(M \) 的第 II 基本形式，其中 \(I: M \to \hat{M} \) 为包含映射。

例 1 设 \(M \) 为 \(\mathbb{R}^n \) 的 \(n-1 \) 维 \(C^\infty \) Riemann 正则子流形（超曲面，
\(n \geq 3 \)), \(N \) 为 \(M \) 上的局部 \(C^\infty \) 单位法向量场。我们定义 Weingarten 映射:

\[
LX = \nabla_x N, X \in T_p M.
\]

因为 \(0 = X \langle N, N \rangle = 2 \langle \nabla_x N, N \rangle \), 故 \(LX = \nabla_x N \in T_p M \). 容易看出 \(L \) 为切空间上的线性变换。

如果 \(X, Y, N \) 都是局部 \(C^\infty \) 类的，由于

\[\cdot 327 \cdot \]
\[\langle V(X, Y), N \rangle = \langle \tilde{\nabla}_x Y, N \rangle = X\langle Y, N \rangle - \langle Y, \tilde{\nabla}_x N \rangle = 0 - \langle Y, LX \rangle = -\langle LX, Y \rangle, \]

所以, \(V(X, Y) = -\langle LX, Y \rangle N \). Gauss 公式成为
\[\tilde{\nabla}_x Y = \nabla_x Y - \langle LX, Y \rangle N. \]

同时还可以看出
\[V(X, Y) = V(Y, X) = \langle LX, Y \rangle = \langle X, LY \rangle, \]
即 \(L \) 为自共线性变换. 此外, 有
\[\tilde{\nabla}_x V(X, Z) = -\tilde{\nabla}_x (\langle LY, Z \rangle N) = -X\langle LY, Z \rangle N \]
\[-\langle LY, Z \rangle LX, \]
\[-\tilde{\nabla}_x V(X, Z) = \langle LX, \nabla_x Z \rangle N = \langle \nabla_x LX, Z \rangle N - \langle LX, Z \rangle N, \]
\[-V(Y, \nabla_x Z) = \langle LY, \nabla_x Z \rangle N = -\langle \nabla_x LY, Z \rangle N + X\langle LY, Z \rangle N, \]
\[-V([X, Y], Z) = \langle [LX, Y], Z \rangle N. \]

于是, Gauss 曲率方程为
\[\text{切} \bar{R}(X, Y)Z = \bar{R}(X, Y)Z - \langle [LY, Z]N + \langle LX, Z \rangle LX - \langle LX, Z \rangle LY, \]

Codazzi-Mainardi 方程为
\[\text{法} \bar{R}(X, Y)Z = -\langle \nabla_x LX - \nabla_y LX - L[X, Y], Z \rangle N. \]

设 \(X, Y \) 为 \(T_x M \) 中 2 维平面的规范正交基, \(R_p(\hat{XY}) \) 和 \(\bar{R}_p(\hat{XY}) \) 分别为 \(\hat{XY} \) 关于 \(M \) 和 \(\bar{M} \) 的 Riemann 腾曲率, 则
\[\bar{R}_p(\hat{XY}) = \langle X, \bar{R}(X, Y)Y \rangle = \langle X, \text{切} \bar{R}(X, Y)Y \rangle = \langle X, R(X, Y)Y \rangle - \langle X, \langle LY, Y \rangle LX + \langle X, \langle LX, Y \rangle LY \rangle = R_p(\hat{XY}) - \{\langle LX, X \rangle \langle LY, Y \rangle - \langle LX, Y \rangle \}^2, \]

即
\[\bar{R}_p(\hat{XY}) = R_p(\hat{XY}) - \{\langle LX, X \rangle \langle LY, Y \rangle - \langle LX, Y \rangle \}^2 \]

.328.
例 2 设 M 为 \mathbb{R}^n 维 C^∞ Riemann 正则子流形，N_1, \cdots, N_k 为 $T^1 M$ 上的局部 C^∞ 规范正交基向量场。我们定义 k 个 Weingarten 映射：

$$L_j X = \tilde{\nabla} X N_j - \sum_{i=1}^k \langle \tilde{\nabla} X N_j, N_i \rangle N_i, \quad X \in T \mathcal{M}.$$

类似例 1 可看出 L_j 为切空间上的线性变换，且 Gauss 公式成为

$$\tilde{\nabla} X Y = \nabla X Y - V (X, Y) = \nabla X Y - \sum_{j=1}^k \langle L_j X, Y, N_j \rangle N_j.$$

同时还可看出

$$V (X, Y) = V (Y, X) \leftrightarrow \langle L_j X, Y \rangle = \langle X, L_j Y \rangle,$$

即 L_j 为自共轭线性变换，$j = 1, \cdots, k$。而 Gauss 曲率方程为

$$\bar{\Delta} R (X, Y) Z = R (X, Y) Z - \sum_{j=1}^k \langle L_j X, Z \rangle L_j X - \langle L_j X, Z \rangle L_j Y,$$

Codazzi—Mainardi 方程为

法 $\bar{\Delta} R (X, Y) Z = - \sum_{j=1}^k \langle \nabla X L_j Y - \nabla Y L_j X - L_j \tilde{\nabla} X, Y \rangle \tilde{N}_j, \quad Z \tilde{N}_j,$$

$$+ \sum_{j, j=1}^k \left\{ \langle L_j X, Z \rangle \langle \tilde{\nabla} X N_j, N_j \rangle - \langle L_j Y, Z \rangle \langle \tilde{\nabla} X N_j, N_j \rangle \right\} \tilde{N}_j.$$

Riemann 载曲率 $\bar{R}_z (XY)$ 与 $\bar{R}_z (\hat{X} \hat{Y})$ 的关系为

$$\tilde{R}_z (\hat{X} \hat{Y}) = \bar{R}_z (XY) - \sum_{j=1}^k \langle L_j X, X \rangle \langle L_j Y, Y \rangle - \langle L_j X, Y \rangle^2.$$

其中 X, Y 为 2 维平面 $\hat{X} \hat{Y}$ 中的规范正交基。

例 3 在例 1 中，设 N 为 M 的 C^∞ 单位法向量场。$\{u^1, \cdots, u^n-1\}$ 为 M 的局部坐标系，$g_{ij} = \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle, \quad L_{ij} = \langle L \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle$.
\[
\langle \tilde{\nabla}_{\partial u^i} N, \frac{\partial}{\partial u^j} \rangle = \frac{\partial}{\partial u^i} \langle N, \frac{\partial}{\partial u^j} \rangle - \langle N, \tilde{\nabla}_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j} \rangle = -\langle N, \frac{\partial^2}{\partial u^i \partial u^j} \rangle
\]

\[
\tilde{\nabla}_{\frac{\partial}{\partial u^j}} \frac{\partial}{\partial u^i} = -\langle N, \nabla \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) \rangle
\]

对照第四章 §3 从引理 8 到引理 9 之间的内容，有
\[
\frac{\partial}{\partial u^i} = \frac{\partial x}{\partial u^i}, \quad \tilde{\nabla}_{\frac{\partial}{\partial u^j}} \frac{\partial}{\partial u^i} = \frac{\partial^2 x}{\partial u^i \partial u^j}, \quad L_{ij} = -\langle N, \frac{\partial^2 x}{\partial u^i \partial u^j} \rangle
\]

则
\[
\frac{\partial}{\partial u^i} = \frac{\partial x}{\partial u^i}, \quad \tilde{\nabla}_{\frac{\partial}{\partial u^j}} \frac{\partial}{\partial u^i} = \left(\sum_{k=1}^{n-1} L^k \frac{\partial}{\partial u^k} \right) N
\]

\[
= \sum_{k=1}^{n-1} \Gamma^k_{ij} \frac{\partial}{\partial u^k} - L_{ij} N.
\]

（2）
\[
L_{ij} = \langle \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle = \left(\sum_{k=1}^{n-1} L^k \frac{\partial}{\partial u^k} \right) = \sum_{k=1}^{n-1} L^k g_{ij}.
\]

\[
\sum_{i=1}^{n-1} L_{ij} g^{is} = \sum_{j=1}^{n-1} \sum_{k=1}^{n-1} L^k g_{ks} g^{is} = \sum_{k=1}^{n-1} L^k \left(\sum_{j=1}^{n-1} g_{ks} g^{is} \right)
\]

\[
= \sum_{k=1}^{n-1} L^k \delta^k_s = L^s, \quad \text{其中} \quad (g^{ij}) \quad \text{为} \quad (g_{ij}) \quad \text{的逆矩阵}
\]

（3）
\[
L_{ij} = \langle \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \rangle = \langle \frac{\partial}{\partial u^i}, L \frac{\partial}{\partial u^j} \rangle = L_{ij}.
\]

（4）在 \(p \in M \) 处，因为 \((L_{ij}) \) 为实对称矩阵，故线性变换 \(L : T_p M \to T_p M \) 的特征值 \(K_1, \ldots, K_{n-1} \) 都是实数。

（5）我们称 \(K_0 = K_1 \cdots K_{n-1} \) 为 \(M \) 在 \(p \) 点处的 Gauss 曲率，称
\[
H = \frac{K_1 + \cdots + K_{n-1}}{n-1} \quad \text{为} \quad \text{M在} \quad p \quad \text{点处的平均曲率}.
\]

\[
K_0 = K_1 \cdots K_{n-1} = \det(L^i) = \det(L_{ij} g^{js}) = \det(L_{ij}).
\]

330 •
\[\det(g^{j*)} = \frac{\det(L_{ij})}{\det(g_{ij})}, \]

\[H = \frac{K_1 + \cdots + K_{n-1}}{n-1} = \frac{\text{Trace}(L_i^*)}{n-1} = \frac{\text{Trace}(L_{ij}g^{j*)}}{n-1} = \sum_{i,j=1}^{n-1} L_{ij}g^{j*)}_{n-1}. \]

例 4 在例 3 中，设 \(M = R^n \)，则 \(R = 0 \).

（1）Gauss 曲率方程的坐标形式:

\[0 = R \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) \frac{\partial}{\partial u^k} - \left\{ \left[\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right] \frac{\partial}{\partial u^k} - \left[\frac{\partial}{\partial u^j}, \frac{\partial}{\partial u^k} \right] \frac{\partial}{\partial u^i} \right\} \]

\[= \sum_{k=1}^{n-1} R^k_{i,j} \frac{\partial}{\partial u^k} - \left\{ \sum_{k=1}^{n-1} L_{ij} \frac{\partial}{\partial u^k} - L_{ii} \sum_{k=1}^{n-1} L_{jk} \frac{2}{\partial u^k} \right\} \]

\[= \sum_{k=1}^{n-1} \left\{ \check{R}^k_{i,j} - (L_{ij} L^k - L_{ii} L^j) \right\} \frac{\partial}{\partial u^k}, \]

\[R^k_{i,j} = L_{ij} L^k - L_{ii} L^j \]

或 \(\frac{2 \check{R}^k_{i,j}}{\partial u^i} - \frac{\partial \check{R}^k_{i,j}}{\partial u^i} + \sum_{s=1}^{n-1} \left(\check{\Gamma}^s_{i,j} - \check{\Gamma}^s_{i,i} \right) = L_{ij} L^k - L_{ii} L^j, \)

\(i, j, k, l = 1, \ldots, n - 1. \)

（2）Codazzi–Mainardi 方程的坐标形式:

\[0 = -\left\{ \nabla_{\partial u^i} L \frac{\partial}{\partial u^j} - \nabla_{\partial u^j} L \frac{\partial}{\partial u^i} - L \left[\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right] \frac{\partial}{\partial u^k} \right\} N \]

\[= \left\{ \frac{\partial}{\partial u^i} \left(L \frac{\partial}{\partial u^j}, \frac{\partial}{\partial u^i} \right) + \left(L \frac{\partial}{\partial u^j}, \nabla_{\partial u^j} \frac{\partial}{\partial u^i} \right) + \frac{\partial}{\partial u^i} \left(L \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) \right\} N \]

\[= \left\{ \frac{\partial L_{ij}}{\partial u^i} + \frac{\partial L_{ij}}{\partial u^j} \left[L \frac{\partial}{\partial u^j}, \sum_{k=1}^{n-1} \Gamma^k_{i,j} \right] - \left(L \frac{\partial}{\partial u^j}, \sum_{k=1}^{n-1} \Gamma^k_{i,j} \right) \right\} N, \]

\(\frac{\partial}{\partial u^k} \}

\[N = \left\{ \frac{\partial L_{ij}}{\partial u^i} + \frac{\partial L_{ij}}{\partial u^j} + \sum_{k=1}^{n-1} \Gamma^k_{i,j} L_{ij} - \sum_{k=1}^{n-1} \Gamma^k_{i,j} L_{ij} \right\} N, \]

\(\bullet 331. \)
\[
\begin{align*}
\frac{\partial L_{il}}{\partial u^l} - \frac{\partial L_{kl}}{\partial u^l} &= \sum_{k=1}^{n-1} \Gamma^i_{kl} L_{jk} + \sum_{k=1}^{n-1} \Gamma^k_{il} L_{ik} = 0, \quad i, j, l = 1, \ldots, n-1. \\
(3) \det \begin{pmatrix} L_{ir} & L_{il} \\ L_{jr} & L_{jl} \end{pmatrix} &= L_{ir}L_{jl} - L_{il}L_{jr} \\
&= \sum_{k=1}^{n-1} g_{kr}(L_{ir}L_{rk} - L_{il}L_{rk}) \\
&= \sum_{k=1}^{n-1} g_{kr} p^k_{i(rj)} = \sum_{k=1}^{n-1} g_{kr} \left(\frac{\partial \Gamma^r_{ik}}{\partial u^l} - \frac{\partial \Gamma^k_{il}}{\partial u^l} \right) \\
&\quad + \sum_{s=1}^{n-1} \left(\Gamma^r_{ij} \Gamma^k_{is} - \Gamma^k_{ij} \Gamma^r_{is} \right) \\
(4) \det \begin{pmatrix} L^i_r & L^i_j \\ L^i_s & L^i_l \end{pmatrix} &= L^i_r L^j_l - L^i_s L^j_l = \sum_{k=1}^{n-1} g^{kr}(L^i_k L^k_r - L^i_k L^k_j) \\
&= \sum_{k=1}^{n-1} g^{kr} p^r_{i(sj)} = \sum_{k=1}^{n-1} g^{kr} \left(\frac{\partial \Gamma^r_{ik}}{\partial u^l} - \frac{\partial \Gamma^k_{il}}{\partial u^l} \right) \\
&\quad + \sum_{s=1}^{n-1} \left(\Gamma^r_{ik} \Gamma^k_{js} - \Gamma^k_{ik} \Gamma^r_{js} \right) .
\end{align*}
\]

定理 2（Gauss 定理）设 \(M = R^n \)（\(n \) 为奇数）中的 \(n-1 \) 维 \(C^\infty \) Riemann 正则子流形，则 \(M \) 的 Gauss 曲率 \(K_o \) 由 \(M \) 的第 I 基本形式完全确定，而与 \(M \) 相对于它的外型空间 \(\tilde{M} \) 的第 II 基本形式无关。

证明 从表面上看，\(K_o = \frac{\det(L_{ij})}{\det(g_{ij})} \) 既与 \(g_{ij} \)（第 I 基本形式）有关，又与 \(L_{ij} \)（第 II 基本形式）有关，但由行列式的 Laplace 展开可得

\[
\det(L_{ij}) = \pm \begin{vmatrix} L_{ik} & L_{il} & \cdots & L_{is} \\ L_{jk} & L_{jl} & \cdots & L_{js} \\ \vdots & \vdots & \ddots & \vdots \\ L_{tk} & L_{tl} & \cdots & L_{ts} \end{vmatrix}.
\]
从例(3)知 \[
\begin{vmatrix}
L_{ij} & L_{i}^i \\
L_{jk} & L_{jk}
\end{vmatrix}
\] 可用 \(g_{ij} \) 及其导数(注意 \(r_{i,j} \) 可用 \(g_{ij} \) 及其导数表示)表示。所以, \(K_g \) 由 \(M \) 的第 1 基本形式完全确定。

定理 3 设 \(M \) 为 \(M \times R^n \) 的 \(n-1 \) 维 \(C^\infty \) Riemann 正则子流形。\(N \) 为 \(M \) 的 \(C^\infty \) 单位法向量场，即 \(N: M \times R^n \subset R^n \) 为 \(C^\infty \) 映射(称为 \(M \) 的 Gauss 映射)，则
\[
K_g = \det N_*
\]
其中 \(N_*: T M \rightarrow T S^{n-1}, T_x M \) 和 \(T_x(S^{n-1}) \) 视作相同的向量空间。

证明 设 \(\{ u^1, \ldots, u^{n-1} \} \) 为 \(M \) 的局部坐标系，则
\[
\begin{pmatrix}
\frac{\partial N}{\partial u^1} \\
\vdots \\
\frac{\partial N}{\partial u^{n-1}}
\end{pmatrix} = \begin{pmatrix}
L_{i1} & \cdots & L_{i(n-1)} \\
\vdots & \ddots & \vdots \\
L_{(n-1)1} & \cdots & L_{(n-1)(n-1)}
\end{pmatrix} \begin{pmatrix}
\frac{\partial}{\partial u^1} \\
\vdots \\
\frac{\partial}{\partial u^{n-1}}
\end{pmatrix}
\]
\[
K_g = \det (L^i) = \det N_*.
\]

定理 4 设 \(M \) 为 \(M \times R^n \) 的 \(2 \) 维 \(C^\infty \) 定向紧致 Riemann 正则子流形。则存在 \(p \in M \) 使得 \(K_g(p) > 0 \)。

证明 1 设 \(r: R^3 \rightarrow R, r(x) = \sqrt{\langle x, x \rangle} = |x| \), \(I: M \rightarrow R^3 \) 为包含映射，则紧致流形 \(M \) 上的连续函数 \(r \circ I \) 必在点 \(p \in M \) 达最大值，通过 \(R^3 \) 的一个旋转(正交变换)，可以假定 \(p \) 在 \(x^3 \) 轴上(不改变 Gauss 曲率)，设 \(N \) 为 \(M \) 上的 \(C^\infty \) 单位法向量场，\(\sigma \) 为 \(M \) 上的 \(C^\infty \) 曲线，\(\sigma(0) = p, I \circ \sigma(t) = (x^1(t), x^2(t), x^3(t)) \)。因为 \(x^3(0) = r \circ I(p) \geq r \circ I(\sigma(t)) \geq x^3(t) \)，故 \(\frac{dx^3}{dt}(0) = 0, (I \circ \sigma)'(0) = T_{x^3}(0) =
\]
\[
\begin{pmatrix}
\frac{dx^1}{dt}(0), & \frac{dx^2}{dt}(0), & 0, \quad N(p) = (0, 0, 1).
\end{pmatrix}
\]

设 \(X \) 为线性变换 \(L \) 在 \(T_p M \) 上的以 \(\lambda \) 为特征值的单位特征向量，即 \(LX = \nabla X N = \lambda X \)。如果 \(I \circ \sigma \) 在 \(\sigma(0) = p \) 切于 \(X \)，即 \(X = \)

\[
\begin{pmatrix}
333
\end{pmatrix}
\]

\[(I\circ\sigma)'(0) = T_{1\circ\sigma}(0) = \left(\frac{dx_1'}{dt}(0), \frac{dx_2'}{dt}(0), \frac{dx_3'}{dt}(0) \right) = \left(\frac{dx_1}{dt}(0), \frac{dx_2}{dt}(0) \right) (0, 0).\]

由 Gauss 公式 \((X\text{ 延拓为 } (I\circ\sigma)(t)), \tilde{\nabla}_X X\) 理解为

\[\nabla_{(t\circ\sigma)}(I\circ\sigma)'(1) = 0\]

\[
\left(\frac{d^2x_1}{dt^2}(0), \frac{d^2x_2}{dt^2}(0), \frac{d^2x_3}{dt^2}(0) \right) = \tilde{\nabla}_X X = \nabla_X X = \langle LX, X \rangle N
\]

\[-= \nabla_X X - \langle LX, X \rangle N = \nabla_X X - \langle 0, 0, \lambda \rangle, \]

\[\lambda = -\frac{d^2x_3}{dt^2}(0).\]

(反证) 如果 \(\lambda < 0\), 则 \(\frac{d^2x_3}{dt^2}(0) > 0\), 对充分小的 \(|t|\) 有 \(x_3(t)\)

\[-x_3(0) = \frac{dx_3}{dt}(0)t + \frac{d^2x_3}{dt^2}(0)t^2 + o(t^2) = \left[\frac{d^2x_3}{dt^2}(0) + o(t) \right]t^2 > 0,\]

这与 \(x_3(0)\) 为最大值相矛盾.

因为 \(L\) 自共轭，故特征值都为实数，记为 \(K_1, K_2, \cdots\)，由上证明 K_1 > 0, K_2 > 0。于是，\(K_0(p) = K_1 K_2 > 0\).

证明 2 如同证明 1, r \approx l 在 \(p \in M\) 为最大值, \(p\) 在 \(x^3\) 轴上。设 \(\{u^1, u^2\}\) 为 \(p \in M\) 的局部坐标系, \((x^1(0, 0), x^2(0, 0), x^3(0, 0)) = p\), 从

\[
2 = \text{rank} \begin{pmatrix} \frac{\partial x_1}{\partial u^1} & \frac{\partial x_2}{\partial u^1} & \frac{\partial x_3}{\partial u^1} \\ \frac{\partial x_1}{\partial u^2} & \frac{\partial x_2}{\partial u^2} & \frac{\partial x_3}{\partial u^2} \end{pmatrix}
\]

\[
= \text{rank} \begin{pmatrix} \frac{\partial x_1}{\partial u^1}(0, 0) & \frac{\partial x_2}{\partial u^1}(0, 0) & 0 \\ \frac{\partial x_1}{\partial u^2}(0, 0) & \frac{\partial x_2}{\partial u^2}(0, 0) & 0 \end{pmatrix}
= \text{rank} \begin{pmatrix} \frac{\partial x_1}{\partial u^1} & \frac{\partial x_2}{\partial u^1} \\ \frac{\partial x_1}{\partial u^2} & \frac{\partial x_2}{\partial u^2} \end{pmatrix}_{(0, 0)}
\]

推出 \(\{x^1, x^2\}\) 为 \(p\) 的局部坐标系。令 \((x^1, x^2, x^3) = (x^1, x^2, g(x^1, x^2))\), 则 \(g\) 在 \((0, 0)\) 为最大值，故 \(\frac{\partial g}{\partial x^1}(0, 0) = \frac{\partial g}{\partial x^2}(0, 0) = 0\)，且

\(\cdot 334\).
\[
N = \begin{pmatrix}
\frac{\partial}{\partial x^1} & \frac{\partial}{\partial x^2} & \frac{\partial}{\partial x^3} \\
1 & 0 & \frac{\partial g}{\partial x^1} \\
0 & 1 & \frac{\partial g}{\partial x^2}
\end{pmatrix}
\sqrt{1 + \left(\frac{\partial g}{\partial x^1}\right)^2 + \left(\frac{\partial g}{\partial x^2}\right)^2}
\]

\[
= \frac{\partial g}{\partial x^1} \frac{\partial}{\partial x^1} + \frac{\partial g}{\partial x^2} \frac{\partial}{\partial x^2} \pm \frac{\partial}{\partial x^3}
\sqrt{1 + \left(\frac{\partial g}{\partial x^1}\right)^2 + \left(\frac{\partial g}{\partial x^2}\right)^2}
\]

\[
\begin{pmatrix}
L_{x_1} N \\
L_{x_2} N
\end{pmatrix}
= \begin{pmatrix}
\frac{\partial^2 g}{\partial x^1 \partial x^1} & \frac{\partial^2 g}{\partial x^1 \partial x^3} & \frac{\partial}{\partial x^1} \\
\frac{\partial^2 g}{\partial x^3 \partial x^1} & \frac{\partial^2 g}{\partial x^3 \partial x^3} & \frac{\partial}{\partial x^3}
\end{pmatrix}
\begin{pmatrix}
o, 0, 0, \frac{\partial}{\partial x^2}
\end{pmatrix}
\]

(反证) 如果 \(K_o(p) \): det \(\begin{pmatrix}
\frac{\partial^2 g}{\partial x^1 \partial x^1} & \frac{\partial^2 g}{\partial x^1 \partial x^3} \\
\frac{\partial^2 g}{\partial x^3 \partial x^1} & \frac{\partial^2 g}{\partial x^3 \partial x^3}
\end{pmatrix}
\begin{pmatrix}
o, 0, 0, \frac{\partial}{\partial x^2}
\end{pmatrix} \leq 0.

应用对称实矩阵化为对角形可看出, 存在 \((x^1_0, x^3_0)\) 使得

\[
g(x^1_0, x^3_0) - g(0, 0) = \frac{\partial g}{\partial x^1}(0, 0) x^1_0 + \frac{\partial g}{\partial x^3}(0, 0) x^3_0 + \frac{1}{2} \left(\frac{\partial^2 g}{\partial x^1 \partial x^1} x^1_0 + \frac{\partial^2 g}{\partial x^3 \partial x^3} x^3_0 \right) + o\left((x^1_0)^2 + (x^3_0)^2\right)
\]

\[
= \begin{pmatrix} x^1_0, x^3_0 \end{pmatrix} \begin{pmatrix}
\frac{\partial^2 g}{\partial x^1 \partial x^1} & \frac{\partial^2 g}{\partial x^3 \partial x^3} \\
\frac{\partial^2 g}{\partial x^3 \partial x^1} & \frac{\partial^2 g}{\partial x^3 \partial x^3}
\end{pmatrix}
\begin{pmatrix} x^1_0, x^3_0 \end{pmatrix} + o\left((x^1_0)^2 + (x^3_0)^2\right) > 0,
\]

这与 \(g(0, 0)\) 为最大值相矛盾。 且

定理 5 设 \(M = \mathbb{R}^3\) 的 2 维 \(C^\infty\) 定向 Riemann 正则子流形, 则 Gauss 曲率和 Riemann 载曲率相等。
证明 设 \(X_1, X_2 \) 为 \(TM \) 的局部 \(C^\infty \) 规范正交基向量场，\(L \) 为 Weingarten 映射，

\[
\begin{pmatrix}
LX_1 \\
LX_2
\end{pmatrix} = \begin{pmatrix}
L^1_1 & L^1_2 \\
L^2_1 & L^2_2
\end{pmatrix} \begin{pmatrix}
X_1 \\
X_2
\end{pmatrix}.
\]

则

\[
R(X_1, X_2) = \tilde{R}(X_1, X_2) + \langle LX_1, X_1 \rangle \langle LX_2, X_2 \rangle - \langle LX_1, X_2 \rangle^2 = 0 + \langle L^1_1 X_1 + L^2_1 X_2, X_1 \rangle \langle L^1_2 X_1 + L^2_2 X_2, X_2 \rangle - \langle L^1_1 X_1 + L^2_1 X_2, X_2 \rangle^2 = \langle L^1_1 X_1 + L^2_1 X_2, X_2 \rangle^2 = L^1_1 L^2_2 - (L^1_2)^2 = \det \begin{pmatrix}
L^1_1 & L^2_1 \\
L^1_2 & L^2_2
\end{pmatrix} = K_{\theta},
\]

其中 \(L^1_1 = L^2_2 \) 是因为 \(L^2_1 = \sum_{i=1}^n L^2_i X_i = \langle L X, X_i \rangle = \langle X, X_i \rangle = \langle X_i, X \rangle \).

\[
L X_j = \langle X_i, \sum_{i=1}^n L^1_i X_i \rangle = L^1_j.
\]

最后，我们给出两个具体例子。

例 5 \(M = \mathbb{R}^n, M = S^{n-1}(\sqrt{\frac{1}{c}}) = \left\{ x = (x^1, \ldots, x^n) \in \mathbb{R}^n \mid \sum_{i=1}^n (x^i)^2 = \frac{1}{c} \right\} \) 为 \(n - 1 \) 维球面，设 \(LX = \nabla XN = \nabla X \left(\sum_{i=1}^n (\sqrt{c} x^i) \right) \)

\[
\frac{\partial}{\partial x^i} = \sqrt{c} \sum_{i=1}^n (X x^i) \frac{\partial}{\partial x^i} + \sum_{i=1}^n \sqrt{c} x^i \nabla x^i \frac{\partial}{\partial x^i} = \sqrt{c} X.
\]

取 \(X, Y \) 为 \(\hat{X} \hat{Y} \) 平面上的规范正交基，则

\[
R_\theta(\hat{X} Y) = R_\theta(\hat{X} Y) + \langle LX, X \rangle \langle LY, Y \rangle - \langle LX, Y \rangle^2 = 0 + \langle \sqrt{c} X, X \rangle \langle \sqrt{c} Y, Y \rangle - \langle \sqrt{c} X, Y \rangle^2 = c (\text{魏Riemann 载曲率 } c > 0),
\]

\[
K_{\theta} = \det \begin{pmatrix}
\sqrt{c} \\
& \ddots \\
& & \sqrt{c}
\end{pmatrix} = (\sqrt{c})^{n-1},
\]

\[336\]
\[H = \frac{\text{Trace}(L^1)}{n-1} = \frac{\sqrt{c} + \cdots + \sqrt{c}}{n-1} = \sqrt{c}. \]

例 6 \(\mathcal{M} = \mathbb{R}^n, \quad M = \left\{ x = (x^1, \ldots, x^n) \in \mathbb{R}^n \middle| \sum_{i=1}^{n-1} (x^i)^2 = \frac{1}{c} \right\} \) 为

\(n-1 \) 维圆柱面，则 \(Lx = \nabla_x N = \nabla_x \left(\sum_{i=1}^{n-1} (\sqrt{c} x^i) \frac{\partial}{\partial x^i} \right) = \sqrt{c}. \)

\[\sum_{i=1}^{n-1} (x^i) \frac{\partial}{\partial x^i} = \sqrt{c} \sum_{i=1}^{n-1} a^i \frac{\partial}{\partial x^i}, \text{ 其中 } X = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}. \]

选 \(TM \) 的局部规范正交基为 \(X_1, \ldots, X_{n-2}, \frac{\partial}{\partial x^n} \)，于是，

\[
\begin{pmatrix}
LX_1 \\
\vdots \\
LX_{n-2} \\
L \frac{\partial}{\partial x^n}
\end{pmatrix}
=
\begin{pmatrix}
\sqrt{c} \\
\vdots \\
\sqrt{c} \\
0
\end{pmatrix}
\begin{pmatrix}
X_1 \\
\vdots \\
X_{n-2} \\
\frac{\partial}{\partial x^n}
\end{pmatrix}.
\]

\[K_a = \det \begin{pmatrix}
\sqrt{c} & \cdots & \cdots \\
\vdots & \ddots & \vdots \\
\sqrt{c} & \cdots & \sqrt{c} \\
0 & \cdots & 0
\end{pmatrix} = 0, \]

\[H = \frac{\sqrt{c} + \cdots + \sqrt{c} + 0}{n-1} = \frac{n-2}{n-1} \sqrt{c}. \]

注意，\(M (n \geq 4) \) 不是常 Riemann 萁曲率的 \(C^\infty \) 流形。例如：

\[R_p (\hat{X}_1, \hat{X}_2) = R_p (\hat{X}_1, \hat{X}_2) + \langle LX_1, X_1 \rangle \langle LX_2, X_2 \rangle - \langle LX_1, X_2 \rangle^2 = 0 + \langle \sqrt{c} X_1, X_1 \rangle \langle \sqrt{c} X_2, X_2 \rangle - \langle \sqrt{c} X_1, X_2 \rangle^2 = c > 0, \]

337
\[
R_p \left(\frac{\partial}{\partial x^n} \right) = R_p \left(\frac{\partial}{\partial x^n} \right) - \left\{ \left\langle L X_1, X_2 \right\rangle \frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^n} \right\} - \left\{ \left\langle \sqrt{v} X_1, X_2 \right\rangle \frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^n} \right\} - \left\{ \left\langle \sqrt{v} X_1, X_2 \right\rangle \frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^n} \right\} - \left\{ \left\langle \sqrt{v} X_1, X_2 \right\rangle \frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^n} \right\}
\]

注 1 对 C^∞ 曲线 σ 可以定义能量泛函 $E(\sigma)$，能量泛函的临界点即为测地线，对 C^∞ 正则子流形 M 可以定义能量泛函 $E(M)$，能量泛函的临界点即为极小 f 流形。一般地，对 C^∞ 前后 $f: M \to N$ 可以定义能量泛函 $E(f)$，能量泛函的临界点称为调和映射。详细内容可参见 [Eells, J. and Lemaire, L].

§ 5 Lie导数 L_x，数度 div 和 Laplace 算子 Δ

本节主要讨论 C^∞ 向量场的梯度和 C^∞ 函数的 Laplace 及其有关的性质。

定义 1 设 V 为 n 维实向量空间，$\otimes V$ 为 V 上的 $(0, s)$ 型张量的全体。对于 $v \in V, \theta \in \otimes V$，称 $i_v: \otimes V \to \otimes V, i_v \theta(v_1, \cdots, v_s) = \theta(v, v_1, \cdots, v_{s-1}), v, v_1, \cdots, v_{s-1} \in V$ 为由 v 确定的内导数。注意，如果 $\theta \in \otimes V = R$，定义 $i_v \theta = 0$。

引理 1 （1）设 $v, v_1, v_2 \in V, \lambda \in R, \theta, \eta \in \otimes V$，则
\[
i_v(\theta + \eta) = i_v \theta + i_v \eta, \quad i_v(\lambda \theta) = \lambda i_v \theta,
\]
i_{v_1} v_2 = i_{v_2} v_1, \quad i_v v = -\lambda i_v;

（2）设 $v \in V, \theta \in \Lambda^r V^*, \eta \in \Lambda^s V^*$，则 $i_v \theta \in \Lambda^{r-1} V^*, i_v \eta \in \Lambda^{s-1} V^*$，且
\[
i_v (\theta \wedge \eta) = (i_v \theta) \wedge \eta + (-1)^r \theta \wedge (i_v \eta).
\]

（3）设 $v \in V, \theta \in \Lambda^* V^*$，则 $i_v \theta = 0$。

证明 （1）由 i_v 的定义立即推出。

（2）由 θ 的反称性知 $i_v \theta$ 也具有反称性，故 $i_v \theta \in \Lambda^* V^*, i_v \eta \in \Lambda^* V^*$。
Λ^* \cdot \nu^*，对 \tau 应用归纳法可证

\dot{i}_\nu(\theta \wedge \eta) = (\dot{i}_\nu \theta) \wedge \eta + (-1)^{r-1} \theta \wedge (\dot{i}_\nu \eta)。

事实上，当 \(k = 1\) 时，即 \(i_\nu (\lambda \wedge \eta) = \lambda i_\nu \eta = (i_\nu \lambda) \wedge \eta + (-1)^{r-1} \lambda \wedge (i_\nu \eta)\)。假设 \(k = r-1\) 时公式成立，则对 \(k = r\) 时公式也成立。事实上，由 \(i_\nu\) 的线性性，须证

\[
i_\nu((\theta_1 \wedge \cdots \wedge \theta_r) \wedge \eta) = i_\nu((\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge (\theta_r \wedge \eta))
\]

\[
= i_\nu(\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge (\theta_r \wedge \eta) + (-1)^{r-1} (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge i_\nu(\theta_r \wedge \eta)
\]

\[
= i_\nu(\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge \theta_r \wedge \eta - (-1)^{r-1} (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge (i_\nu \theta_r) \wedge \eta
\]

\[
= \theta_r \wedge i_\nu \eta + (-1)^{r-1} (\theta_1 \wedge \cdots \wedge \theta_{r-1}) \wedge i_\nu \theta_r \wedge \eta
\]

(3) \(i_\nu (v_1, \cdots, v_{n-2}) = i_\nu (v_1 v_2, \cdots, v_{n-2}) = \theta (v_1, v_2, \cdots, v_{n-2}) = 0\)。设 \(M\) 为 \(n\) 维 \(C^\omega\) 流形，\(X \in C^\omega(TM)\)，令

\[
i_\nu: C^\omega(\otimes^0 \cdot 1 TM) \to C^\omega(\otimes^1 \cdot r TM)
\]

\[
\theta \to i_\nu \theta, \quad \theta \to (i_\nu \theta)_p = i_\nu \theta_p, \quad p \in M,
\]

\[
i_\nu \theta = 0, \quad \theta \in C^\omega(\Lambda^0 T^* M) = C^\omega(M, R),
\]

\[
i_\nu \theta(X_1, \cdots, X_{n-1}) = \theta(X, X_1, \cdots, X_{n-1}), \quad \theta \in C^\omega(\Lambda^* T^* M),\]

\(X_1, \cdots, X_{n-1} \in C^\omega(TM)\)，由第三章 §1 定理 5 和 \(\theta\) 的反对称性知若 \(\theta \in C^\omega(\Lambda^* T^* M)\)，则 \(i_\nu \theta \in C^\omega(\Lambda^* T^* M)\)。引理 2 (1) 设 \(X_1, X_2, X \in C^\omega(TM), \ f \in C^\omega(M, R), \ \theta, \eta \in C^\omega(\otimes^0 \cdot 1 TM)\)，则

\[
i_\nu(\theta + \eta) = i_\nu \theta + i_\nu \eta, \quad i_\nu(f \theta) = f i_\nu \theta,
\]

\[
i_{X_1} + i_{X_2} = i_{X_1} + i_{X_2}, \quad i_{fX} = f i_X
\]

(2) 设 \(X \in C^\omega(TM), \ \theta \in C^\omega(\Lambda^* T^* M), \ \eta \in C^\omega(\Lambda^* T^* M)\)，则

\[
i_\nu \theta \in C^\omega(\Lambda^* \cdot 1 T^* M), i_\nu \eta \in C^\omega(\Lambda^* \cdot 1 T^* M), \quad \text{且}
\]

\[
i_\nu(\theta \wedge \eta) = (i_\nu \theta) \wedge \eta + (-1)^r \theta \wedge (i_\nu \eta);
\]

\[
\text{339}.
\]
（3）设 $X \in C^\omega(TM), \theta \in C^\omega(\wedge^r T^*M)$，则 $i_X \theta = 0$。

证明 由引理 1 推出。+

定义 2 设 M 为 n 维 C^ω 流形，$X \in C^\omega(TM)$，令

$$ L_X : C^\omega(\otimes^r T^*M) \to C^\omega(\otimes^r T^*M), \theta \to L_X \theta. $$

（1）$L_X f = X f, f \in C^\omega(M, \mathbb{R}) = C^\omega(\otimes^0 T^*M)$；

（2）$L_X Y = [X, Y], Y \in C^\omega(TM) = C^\omega(\otimes^1 T^*M) $；

（3）$L_X (\theta Y) = X \theta(Y) - \theta([X, Y]) - X \theta(Y) - \theta(L_X Y), \theta \in C^\omega(T^*M) = C^\omega(\otimes^{r+1} T^*M), Y \in C^\omega(TM)$；

（4）$L_X (\theta W_1, \ldots, W_r ; Y_1, \ldots, Y_s) - L_X (\theta(W_1, \ldots, W_r ; Y_1, \ldots, Y_s)) - \sum_{i=1}^r \theta(W_1, \ldots, W_{i-1}, L_X W_i, W_{i+1}, \ldots, W_r; Y_1, \ldots, Y_s) \in C^\omega(\otimes^r T^*M), W_i \in C^\omega(T^*M) = C^\omega(\otimes^0 T^*M), Y_i \in C^\omega(TM) = C^\omega(\otimes^1 T^*M)。我们称 $L_X \theta$ 为 θ 关于 X 的 Lie 导数，称 L_X 为由 X 确定的 Lie 导数。

引理 3 （1）$L_X f \in C^\omega(M, \mathbb{R}) = C^\omega(\otimes^0 T^*M), L_X Y \in C^\omega(TM) = C^\omega(\otimes^1 T^*M), L_X \theta \in C^\omega(\otimes^r T^*M)$，其中 $f \in C^\omega(M, \mathbb{R}), X, Y \in C^\omega(TM), \theta \in C^\omega(\otimes^r T^*M)$；

（2）$L_X : C^\omega(\wedge^r T^* M) \to (\wedge^r T^* M)$；

（3）$L_X (\theta + \eta) = L_X \theta + L_X \eta, \theta, \eta \in C^\omega(\otimes^r T^*M)$；

（4）$L_X (\theta \wedge \eta) = (L_X \theta) \wedge \eta + \theta \wedge L_X \eta, \theta \in C^\omega(\otimes^r T^*M), \eta \in C^\omega(\otimes^r T^*M)$（对称性）；

（5）$L_X (\alpha \wedge \beta) = (L_X \alpha) \wedge \beta + \alpha \wedge L_X \beta, \alpha \in C^\omega(\wedge^r T^*M), \beta \in C^\omega(\wedge^r T^*M)$；

（6）$L_X \circ C^r_i = C^r_i \circ L_X$。

证明 （1）- (5) 类似于 §3 引理 2 的证明。
为证明(6)，只须取 $e^k \cdot dx^k$, $e_x = \frac{\partial}{\partial x^k}$. 于是，

$$(L_x dx^k) \left(\frac{\partial}{\partial x^i} \right) = X dx^k \left(\frac{\partial}{\partial x^i} \right) - dx^k \left(L_x \frac{\partial}{\partial x^i} \right)$$

$$= X \delta_i^k - dx^k \left[\sum_n \frac{\partial a^n}{\partial x^n} \frac{\partial}{\partial x^i} \right]$$

$$- dx \left(\sum_n \frac{\partial a^n}{\partial x^n} \frac{\partial}{\partial x^i} \right) - \sum_n \frac{\partial a^n}{\partial x^n} \delta_i^k = \frac{\partial a^k}{\partial x^i},$$

$$L_x dx^k = \sum_i \frac{\partial a^k}{\partial x^i} dx^i.$$
再类似于 § 3 引理 2 (7) 得到 \(L_x \circ C_j = C_j \circ L_x \).

注 1 由 [Gallot, S., Hulin D. and Lafontaine, J., p37],
\[
L_x \theta = \frac{d}{dt} (\phi^*_t \theta) \big|_{t=0} \quad \Rightarrow \quad L_x \circ C_j \theta = \frac{d}{dt} (\phi^*_t \circ C_j \theta) \big|_{t=0} = C_j \circ \frac{d}{dt} (\phi^*_t \theta) \big|_{t=0} = C_j \circ L_x \theta.
\]

定理 1 设 \(M \) 为 \(n \) 维 \(C^\infty \) 流形，\(X \in C^\infty (TM) \)，则 \(L_x = d \circ i_x + i_x \circ d \)，即对任何 \(\omega \in C^\infty (\wedge^k TM) \)，有 \(L_x \omega = (d \circ i_x + i_x \circ d) \omega \).

证明 如果 \(f \in C^\infty (M, \mathbb{R}) = C^\infty (\wedge^0 TM) \)，则
\[
(d \circ i_x + i_x \circ d) f = d(i_x f) + i_x (df) = 0 + df(X) = Xf = L_x f,
\]
\(L_x = d \circ i_x + i_x \circ d = i_x \circ d. \)

如果 \(\omega \in C^\infty (\wedge^k TM) \)，则
\[
(i_x \circ d \omega)(X_1, \ldots, X_n) = i_x (d \omega)(X_1, \ldots, X_n) = d \omega(X_1, \ldots, X_n, X)
\]
\[
= \left\{ X(\omega(X_1, \ldots, X_n)) + \sum_{j=1}^n (-1)^{j+1} \omega([X, X_j], X, X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n) \right\}
\]
\[
+ \sum_{i<j} (-1)^{i+j} \omega([X_i, X_j], X, X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_n)
\]
\[
= (L_x \omega - d \circ i_x \omega)(X_1, \ldots, X_n),
\]
\(i_x \circ d = L_x - d \circ i_x, \)
\(L_x = d \circ i_x + i_x \circ d. \)

定义 3 设 \(M \) 为 \(n \) 维 \(C^\infty \) 定向仿射流形，\(\Omega \) 为 \(M \) 上的处处非 0 的 \(n \) 阶 \(C^\infty \) 微分形式 (由定向、仿射，这样的 \(\Omega \) 总存在)，它也称为 \(M \) 的体积元素，\(X \in C^\infty (TM) \)，令
\(L_x \Omega = (\text{div} X) \Omega, \)
其中 \(\text{div} X \in C^\infty (M, \mathbb{R}) \) 称为 \(C^\infty \) 切向量场 \(X \) 关于体积要素 \(\Omega \) 的散.
度。特别地，如果 $\Omega : dV$ 为由 M 的 Riemann 度量 g 确定的体积元（由 $(e^1 \wedge \cdots \wedge e^n)(e_1, \cdots, e_n) = 1 \neq 0$ 知 $\Omega = dV = e^1 \wedge \cdots \wedge e^n$ 为 M 上的处处非 0 的 n 阶 C^∞ 微分形式，其中 $(e^k): (M, g)$ 上局部规范化正交基向量场 (e_k) 的对偶基），则称 $\text{div} X$ 为 C^∞ 切向量场 X 关于 Riemann 度量 g 的散度。定理 2（Green）设 M 为 n 维 C^∞ 定向偏紧流形，Ω 为 M 的体积元，$U \subset M$ 为开集，U 紧致且 ∂U 为 M 的 $n-1$ 维 C^∞ 正则子流形或 ∂M，X 为 M 上的 C^∞ 切向量场，则

$$
\int_U \text{div} X \cdot \Omega = \int_{\partial U} I^* (i_X \Omega),
$$

其中 $I : \partial U \rightarrow M$ 为包含映射。如果 $\text{supp} X$ 紧致，特别当 M 紧致时 $(U := M, \partial U = \emptyset)$，有 $\int_M \text{div} X \cdot \Omega = 0$。

证明 由 Stokes 定理和 $d\Omega = 0$，有

$$
\int_U \text{div} X \cdot \Omega = \int_U L_X \Omega = \int_U (d \circ i_X + i_X \circ d) \Omega = \int_U d(i_X \Omega) = \int_{\partial U} I^* (i_X \Omega).
$$

如果 $\text{Supp} X$ 紧致，取开集 U 使得 $\text{Supp} X \subset U$，故 $I^* (i_X \Omega) \mid_{\partial U} = 0$。于是，$\int_U \text{div} X \cdot \Omega = \int_{\partial U} I^* (i_X \Omega) = 0$，完证。

注 2 如果 X 有紧致支柱，则它有整体 1 参数群 φ_t。利用

$$
L_X \Omega = \frac{d}{dt} \varphi_t^* \Omega \mid_{t=0} = -\frac{d}{dt} (\varphi_t^{-1} \ast \Omega) \mid_{t=0} \text{和} \int_M \varphi_t^{-1} \ast \Omega = \int_M \Omega, \text{有}
$$

$$
0 = \frac{d}{dt} \left(\int_M \varphi_t^{-1} \ast \Omega \right) \mid_{t=0} = \int_M \frac{d}{dt} (\varphi_t^{-1} \ast \Omega) \mid_{t=0} = -\int_M L_t \Omega \text{，有}
$$

$$
-\int_M \text{div} X \cdot \Omega,
$$

于是，$\int_M \text{div} X \cdot \Omega = 0$。
定义 4 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(n\) 维 \(C^\infty\) Riemann 流形，我们称 \\
\(\Delta; C^\infty(M, R) \to C^\infty(M, R)\)， \\
f \mapsto \Delta f = \text{div} \ \text{grad} f \) 为 \((M, g)\) 的 Laplace 算子。 \\
如如果 \(\Delta f = 0\)，则称 \(f\) 为 \(M\) 上的调和函数。 \\

定理 3 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(n\) 维 \(C^\infty\) 定向 Riemann 流形， \(U \subset M\) 为开集， \(U\) 紧致且 \(\partial U\) 为 \(M\) 的 \(n-1\) 维 \(C^\infty\) 正则子流形或 \(\mathcal{X}, f \in C^\infty(M, R), \Omega = dv\) 为由 \(g\) 确定的体积元素，则 \\
\[\\
\int_U \Delta fdV = \int_U \text{div} \ \text{grad} fdV = \int_{\partial U} I^* (\text{grad} fdV), \\
\]
如果 \(\text{Supp} f\) 紧致，特别当 \(M\) 紧致时，\(\int_M \Delta fdV = 0\)。

证明 由定理 2 可得到结论。

定理 4 设 \((M, g) = (M, \langle \cdot, \cdot \rangle)\) 为 \(n\) 维 \(C^\infty\) 定向 Riemann 流形，\(\{x^i\}\) 为 \(M\) 的局部坐标系，
\[\\
\left[\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right] \text{与} M \text{的定向一致，则在此局部坐标系中，} \\
\text{div} X = \sum_{i=1}^n \frac{\partial x^i}{\partial x^j} + \frac{1}{2} \sum_{i=1}^n a^i \frac{\partial \ln \det (g_{k l})}{\partial x^i}, \\
X = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i} \\
\]
和 \\
\[\\
\Delta f = \sum_{i, j=1}^n g^{i j} \frac{\partial^2 f}{\partial x^i \partial x^j} + \sum_{i, j=1}^n \left(\frac{\partial g^{i j}}{\partial x^k} + \frac{1}{2} g^{i j} \frac{\partial \ln \det (g_{k l})}{\partial x^k} \right) \frac{\partial f}{\partial x^j}. \\
\]

证明 因为 \[[X, \frac{\partial}{\partial x^j} = \left[\sum_{i=1}^n a^i \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^j} \right] = - \sum_{j=1}^n \frac{\partial a^i}{\partial x^j} \frac{\partial}{\partial x^j}, \]
\[\\
\Omega \left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right) = \sqrt{\det (g_{k l})} dx^1 \wedge \cdots \wedge dx^n \left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right) \]
\[= \sqrt{\det (g_{k l})}, \]
故

* 344 *
\[(\text{div} \, X) \sqrt{\det(g_{kl})} = (\text{div} \, X) \Omega \left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right) \]
\[= (L_x \Omega) \left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right) \]
\[= X \left(\Omega \left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right) \right) - \sum_{i=1}^{n} \Omega \left(\frac{\partial}{\partial x^1}, \ldots, \left[x, \frac{\partial}{\partial x^i} \right], \ldots, \frac{\partial}{\partial x^n} \right) \]
\[= X \sqrt{\det(g_{kl})} + \sum_{i,j=1}^{n} \frac{\partial a^i}{\partial x^i} \Omega \left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^{i-1}}, \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^{j+1}}, \ldots, \frac{\partial}{\partial x^n} \right) \]
\[= \sum_{i=1}^{n} a^i \frac{\partial \sqrt{\det(g_{kl})}}{\partial x^i} + \sum_{i=1}^{n} \frac{\partial a^i}{\partial x^i} \sqrt{\det(g_{kl})}, \]
\[\text{div} \, X = \sum_{i=1}^{n} \frac{\partial a^i}{\partial x^i} + \frac{1}{2} \sum_{i=1}^{n} a^i \frac{\partial \ln \det(g_{kl})}{\partial x^i}.\]

如果令 \(X = \text{grad} \, f = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} g^{ij} \frac{\partial f}{\partial x^j} \right) \frac{\partial}{\partial x^i} \) 代入上式得到

\[\Delta f = \sum_{i,j=1}^{n} g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} + \sum_{i,j=1}^{n} \left(\frac{\partial g^{ij}}{\partial x^i} + \frac{1}{2} g^{ij} \frac{\partial \ln \det(g_{kl})}{\partial x^i} \right) \frac{\partial f}{\partial x^j}.\]

注 3 如果 \(M = \mathbb{R}^n, \{x^i\} \) 为 \(\mathbb{R}^n \) 的通常的直角坐标系，
\(g_{ij} = g^{ij} = \delta_{ij}, \det(g_{ij}) = \det(\delta_{ij}) = 1, \) 则

\[\text{div} \, X = \sum_{i=1}^{n} \frac{\partial a^i}{\partial x^i},\]
\[\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x^i \partial x^i}.\]

注 4 当 Riemann 流形 \((M, g) = (\mathbb{M}, \langle, \rangle)\) 可定向时，利用体
积元素定义了 $\text{div} \mathbf{X}$ 和 Δf。如果 M 不可定向，则可用上述 $\text{div} \mathbf{X}$ 和 Δf 的坐标形式分别作为它们的定义，并通过直接计算验证其定义与局部坐标系的选取无关。

定理 5 设 $(M, g) = (M, \langle \cdot, \cdot \rangle)$ 为 n 维 C^∞ 紧致连通定向 Riemann 流形，则 M 上的任何调和函数是常值函数。

证明 因为

$$
\Delta f^2 = \sum_{i,j=1}^n g^{ij} \frac{\partial^2 f^2}{\partial x^i \partial x^j} + \sum_{i,j=1}^n \left(g^{ij} \frac{\partial}{\partial x^i}, \Delta \text{det}(g_{kl}) \right) \frac{\partial f^2}{\partial x^j}
$$

$$
= 2f \Delta f + 2 \sum_{i,j=1}^n g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j}
$$

$$
- 2f \Delta f + 2 \sum_{i,j=1}^n g_{ij} \left(\sum_{i=1}^n g^{ii} \frac{\partial f}{\partial x^i} \right) \left(\sum_{j=1}^n g^{jj} \frac{\partial f}{\partial x^j} \right)
$$

$$
= 2f \Delta f + 2 \| \text{grad} f \|^2,
$$

故当 f 为调和函数时，$\Delta f = 0$，因而 $\Delta f^2 = 2 \| \text{grad} f \|^2$。再由定理 3 得到

$$
\int_M \| \text{grad} f \|^2 dV = \frac{1}{2} \int_M \Delta f^2 dV = 0.
$$

于是，$\| \text{grad} f \| = 0$，且在局部坐标系中，

$$
\sum_{i=1}^n \left(\sum_{j=1}^n g_{ij} \frac{\partial f}{\partial x^j} \right) \frac{\partial}{\partial x^i} = 0
$$

这等价于

$$
\sum_{j=1}^n g_{ij} \frac{\partial f}{\partial x^j} = 0, \quad j = 1, \cdots, n,
$$

即

$$
\frac{\partial f}{\partial x^j} = 0, \quad j = 1, \cdots, n.
$$

\[345\]
再由 M 连通，f 必为常值函数。由此

下面我们从另一方式引进 div 和 Δ。

定义 5 设 (M, \mathcal{O}) 为 n 维 C^∞ Riemann 流形，令

$$\widetilde{\nabla} : C^\infty(\otimes r^s TM) \to C^\infty(\otimes r^{s+1} TM),$$

$$\theta \mapsto \widetilde{\nabla} \theta,$$

使得

$$(\widetilde{\nabla} \theta)(W_1, \ldots, W_s; Y_1, \ldots, Y_{s+1})$$

$$= (\nabla_{Y_r} \theta)(W_1, \ldots, W_s; Y_1, \ldots, Y_r),$$

其中 $W_i \in C^\infty(T^* M)$，$Y_j \in C^\infty(TM)$。显然 $\widetilde{\nabla} \theta \in C^\infty(\otimes r^{s+1} TM)$，则称

$\widetilde{\nabla}$ 为由 ∇ 诱导的一般协变导数算子，而

$$\text{div} : C^\infty(\otimes r^s TM) \to C^\infty(\otimes r^{s-1} TM), \quad \text{div} = C_i^{s+1} \circ \widetilde{\nabla}$$

称为散度，$\Delta = \text{div} \ \text{grad}$ 称为 Laplace 算子。

显然 $\widetilde{\nabla}$ 为线性算子，且由 $\text{grad} C_j^i = C_j^i \circ \nabla$ 知 $\widetilde{\nabla} \circ C_j^i = C_j^i \circ \widetilde{\nabla}$。

因为

$$\frac{\partial \det(g_{kl})}{\partial x^i} = \sum_{m,r=1}^n G_{mr} \frac{\partial g_{mr}}{\partial x^i} = \sum_{m,r=1}^n G_{mr} \frac{\partial g_{mr}}{\partial x^i},$$

其中 G_{mr} 为 g_{mr} 的代数余子式，故

$$\sum_{m=1}^n \frac{\Gamma_{mk}^m}{\det(g_{kl})} = \frac{1}{2} \sum_{m,r=1}^n g_{mr} \left(\frac{\partial g_{rk}}{\partial x^i} + \frac{\partial g_{rm}}{\partial x^i} - \frac{\partial g_{mr}}{\partial x^i} \right) = \frac{1}{2} \sum_{m,r=1}^n g_{mr} \frac{\partial g_{rm}}{\partial x^i}$$

$$= \frac{1}{2} \frac{\partial \det(g_{kl})}{\partial x^i} - \frac{1}{2 \det(g_{kl})} \frac{\partial \det(g_{kl})}{\partial x^i}$$

$$= \frac{1}{2} \frac{\partial \ln \det(g_{kl})}{\partial x^i}$$

和
\[
\text{div } X = C_1 \cdot \dot{\nabla} X - \sum_{m=1}^{n} \dot{\nabla} X (d x^m, \frac{\partial}{\partial x^m}) = \sum_{m=1}^{n} \left(\nabla, X \right) (d x^m) \\
= \sum_{m=1}^{n} d x^m \left(\nabla \cdot \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i} \right) \\
= \sum_{m=1}^{n} d x^m \left(\sum_{i=1}^{n} \frac{\partial a^i}{\partial x^m} \frac{\partial}{\partial x^i} + \sum_{i=1}^{n} a^i \nabla \cdot \frac{\partial}{\partial x^i} \right) \\
= \sum_{m=1, i=1}^{n} \frac{\partial a^i}{\partial x^m} \delta_{im} + \sum_{m=1, i=1}^{n} a^i d x^m \left(\sum_{i=1}^{n} \Gamma_{mi}^{\lambda} \frac{\partial}{\partial x^\lambda} \right) \\
= \sum_{m=1}^{n} \frac{\partial a^i}{\partial x^m} + \sum_{m=1, i=1}^{n} a^i \Gamma_{mi}^{\lambda} \delta_{im} - \sum_{m=1}^{n} \frac{\partial a^i}{\partial x^m} + \sum_{i=1}^{n} a^i \left(\sum_{m=1}^{n} \Gamma_{mi}^{\lambda} \right) \\
= \sum_{m=1}^{n} \frac{\partial a^i}{\partial x^m} + \frac{1}{2} \sum_{i=1}^{n} a^i \frac{\partial \ln \det (g_{kl})}{\partial x^i}.
\]

定理 6 设 \((M, g) = (M, \langle \rangle)\) 为 n 维 \(C^\infty\) Riemann 流形, \(f \in C^\infty(M, \mathbb{R})\), 则 \(\Delta f = \sum_{k=1}^{n} \ddot{\nabla}^2 f_k(x_k, e_k)\), 其中 \(\{e_k\}\) 为 \((M, g)\) 的局部 \(C^\infty\) 规范正交基。

证明 设 \(X \in C^\infty(TM)\), 则 \(\ddot{\nabla} f(X) = \nabla_X f = X f = df(X)\), 即 \(\ddot{\nabla} f = df\). 于是,

\[
\sum_{k=1}^{n} \ddot{\nabla}^2 f_k(x_k, e_k) = \sum_{k=1}^{n} \ddot{\nabla} f_k(x_k, e_k) = \sum_{k=1}^{n} \ddot{\nabla} f \left(\sum_{i=1}^{n} b^i_k \frac{\partial}{\partial x^i}, \sum_{j=1}^{n} b^j_k \frac{\partial}{\partial x^j} \right) \\
= \sum_{k, i, j=1}^{n} b^i_k b^j_k \ddot{\nabla} f \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) = \sum_{i, j=1}^{n} g^{ij} (\nabla_{\frac{\partial}{\partial x^i}} df) \left(\frac{\partial}{\partial x^j} \right) \\
= \sum_{i, j=1}^{n} g^{ij} \left(\frac{\partial}{\partial x^i} df \left(\frac{\partial}{\partial x^j} \right) - df \left(\nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^i} \right) \right) = \sum_{i, j=1}^{n} g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j}.
\]
\[-\sum_{i, j = 1}^{n} g^{ij} \left(\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial f}{\partial x^j} \right) = \sum_{i, j = 1}^{n} g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} - \sum_{i, j, \tau = 1}^{n} g^{ij} \Gamma^\tau_{ji} \frac{\partial f}{\partial x^\tau} \]

\[= \sum_{i, j = 1}^{n} g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} - \sum_{\tau = 1}^{n} \left(\sum_{i, j, \tau = 1}^{n} g^{ij} g^{\tau j} \frac{\partial g^{\tau i}}{\partial x^j} \right) \frac{\partial f}{\partial x^\tau} \]

\[= \sum_{i, j = 1}^{n} g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} + \sum_{\tau = 1}^{n} \frac{\partial g^{ij}}{\partial x^\tau} \frac{\partial f}{\partial x^\tau} \]

\[+ \frac{1}{2} \sum_{\tau = 1}^{n} \frac{\partial \text{ln} \det (g_{\kappa \lambda})}{\partial x^\tau} \frac{\partial f}{\partial x^\tau} \]

\[= \sum_{i, j = 1}^{n} g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} + \sum_{\tau = 1}^{n} \left(\frac{\partial g^{ij}}{\partial x^\tau} + \frac{1}{2} g^{ij} \frac{\partial \text{ln} \det (g_{\kappa \lambda})}{\partial x^\tau} \right) \frac{\partial f}{\partial x^\tau} = \Delta f \]

其中

\[\sum_{i, j = 1}^{n} b^i_b^j g_{ij} = \left(\sum_{k = 1}^{n} b^i_b^j \frac{\partial}{\partial x^i} \sum_{j = 1}^{n} b^j_b^j \frac{\partial}{\partial x^j} \right) - \langle e_b, e_b \rangle = \begin{cases} 1, & k = i, \\ 0, & k \neq i, \end{cases} \]

即

\[\sum_{k = 1}^{n} b^i_b^j = g^{ij}; \]

\[\sum_{i, j = 1}^{n} g^{ij} \frac{\partial g_{\tau r}}{\partial x^i} - \sum_{i, r = 1}^{n} g^{ij} \left(\frac{\partial (g^{ij} g_{\tau r})}{\partial x^i} - \frac{\partial g^{ij} g_{\tau r}}{\partial x^i} \right) \]

\[= \sum_{\tau = 1}^{n} g^{ij} \frac{\partial g_{\tau r}}{\partial x^i} - \sum_{i = 1}^{n} \frac{\partial g^{ij}}{\partial x^i} g_{\tau r} = -\frac{\partial g^{ij}}{\partial x^i} \]

和

\[\sum_{i, j = 1}^{n} g^{ij} \Gamma^i_{ji} = \frac{1}{2} \sum_{i, j, \tau = 1}^{n} g^{ij} g^{\tau j} \left(\frac{\partial g_{\tau r}}{\partial x^i} + \frac{\partial g_{\tau r}}{\partial x^j} + \frac{\partial g_{\tau r}}{\partial x^i} \right) \]
\[
\begin{align*}
\sum_{i,j,r=1}^n g_{ij} g_{rs} \frac{\partial^2 g_{ij}}{\partial x^r} & - \frac{1}{2} \sum_{i,j,r=1}^n g_{ij} g_{rs} \frac{\partial^2 g_{ij}}{\partial x^r} \\
= \sum_{i,j,r=1}^n g_{ij} g_{rs} \frac{\partial^2 g_{ij}}{\partial x^r} & - \frac{1}{2} \sum_{r=1}^n g_{rs} \cdot \partial \ln \det(g_{kk}) \\
\end{align*}
\]

定理 7 设 \((M, g)\) 为 \(n\) 维 \(C^\infty\)Riemann 流形，\(f \in C^\infty(M, \mathbb{R})\)，
则 \(\nabla^2 f \in C^\infty(\bigotimes^2 T^*M)\)，其中 \(\bigotimes^2 T^*M\) 为 \(TM\) 上半对称 \(s\) 阶协变张量从。

证明 因为
\[
\nabla^2 f(X, Y) - \nabla^2 f(Y, X) = \nabla (df)(X, Y) - \nabla (df)(Y, X)
\]
\[
= (\nabla_X, df)(Y) - (\nabla_Y, df)(X)
\]
\[
= X(df(Y)) - df(\nabla_Y X) - X(df(Y)) + df(\nabla_Y X)
\]
\[
= (Y \cdot X) f + (\nabla_Y X - \nabla_X Y) f = -[X, Y] f + [X, Y] f = 0,
\]
故 \(\nabla^2 f(X, Y) = \nabla^2 f(Y, X)\)，即 \(\nabla^2 f \in C^\infty(\bigotimes^2 T^*M)\)。

注 5 由定理 5，我们可以用 \(\sum_{k=1}^n \nabla^2 f(e_k, e_l)\) 定义 \(\nabla f\)，从证明中的结果知道，它与局部 \(C^\infty\) 规范正交基 \(\{e_k\}\) 的选取无关，都等于
\[
\sum_{i,j=1}^n g^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} + \sum_{i,j=1}^n \left(\frac{\partial g^{ij}}{\partial x^i} \right) + \frac{1}{2} g^{ij} \frac{\partial \ln \det(g_{kk})}{\partial x^i} \frac{\partial f}{\partial x^j}.
\]

但也可直接从
\[
\sum_{k=1}^n \nabla^2 f(e_k, e_k) = \sum_{k=1}^n \nabla^2 f\left(\sum_{j=1}^n c_{kj} e_j, \sum_{j=1}^n c_{kj} e_j\right)
\]
\[
= \sum_{k,j=1}^n c_{kj} c_{kj} \nabla^2 f(e_j, e_j) = \sum_{j=1}^n \delta_{j} \nabla^2 f(e_j, e_j) = \sum_{j=1}^n \nabla^2 f(e_j, e_j)
\]

* 350 *
看出它与局部 C^∞ 规范正交基 $\{e_i\}$ 的选取无关，其中 $\{e_i\}$ 为另一局部 C^∞ 规范正交基。

定理 8 设 $(M, g) = (\mathcal{M}, \langle \cdot, \cdot \rangle)$ 为定向 Riemann 流形，$f \in C^\infty(M, \mathbb{R}), df = \sum_{i=1}^{n} f_i \omega_i$，其中 $\{\omega_i\}$ 为 (M, g) 的局部 C^∞ 规范正交基向量场 $\{e_i\}$ 的对偶基向量场。则

(1) 存在唯一的线性算子（称为星算子）$*: C^\infty(\wedge^s T^* M) \to C^\infty(\wedge^{n-s} T^* M)$ 使得

$$\omega \wedge^* \tau = \langle \omega, \tau \rangle dV, \omega, \tau \in C^\infty(\wedge^s T^* M);$$

(2) $*df = \sum_{i=1}^{n} (-1)^{i-1} f_i \omega_1 \wedge \cdots \wedge \hat{\omega}_i \wedge \cdots \wedge \omega_n$，$f \in C^\infty(M, \mathbb{R});$

(3) 对任何 $f, h \in C^\infty(M \cup \partial M, \mathbb{R})$，有

$$\int_M f \Delta h dV + \int_M \langle \Delta f, -\Delta h \rangle dV = \int_{\partial M} f \cdot i_{\text{grad} h} d\nu$$

和 Green 公式

$$\int_M (f \Delta h - h \Delta f) dV = \int_{\partial M} (f \cdot \text{grad} h - h \cdot \text{grad} f) d\nu$$

$$= \int_{\partial M} (f \frac{\partial h}{\partial N} - h \frac{\partial f}{\partial N}) i_N d\nu$$，其中 N 为沿 ∂M 的 C^∞ 单位法向量场，$M, \partial M$ 满足 Stokes 定理中的条件；

(4) 在 (3) 中，如果 $\partial M = \emptyset$，则

$$\int_M f \Delta h dV + \int_M \langle f, h \rangle dV = 0,$$

$$\int_M f \Delta dV + \int_M \| \Delta f \|^2 dV = 0,$$

(5) $\int_M \Delta dV = \int_{\partial M} *df, M, \partial M$ 满足 Stokes 定理中的条件。

证明 (1) 如果存在线性算子 $*: C^\infty(\wedge^s T^* M) \to C^\infty(\wedge^{n-s} T^* M)$

351
使得 \(\omega \wedge \tau = \langle \omega, \tau \rangle dV \), \(\omega, \tau \in C^\infty(\wedge^* T^* M) \).

取 \(\tau = \omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \quad 1 \leq i_1 < \cdots < i_s \leq n \) 并令 \(\tau = \sum_{1 < j_1 < \cdots < j_{n-s} < n} \lambda_{j_1,\ldots,j_{n-s}} \omega_{j_1} \wedge \cdots \wedge \omega_{j_{n-s}} \) 则对 \(1 \leq l_1 < \cdots < l_{n-s} \leq n \) 有

\[
(-1)^{s \cdot l_1 \cdots l_{n-s}} \lambda_{j_1,\ldots,j_{n-s}} dV = (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) \wedge \sum_{1 < j_1 < \cdots < j_{n-s} < n} \lambda_{j_1,\ldots,j_{n-s}} \omega_{j_1} \wedge \cdots \wedge \omega_{j_{n-s}}
\]

\[
= (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) \wedge (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) = (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) \wedge (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) dV
\]

\[
= s! dV, \quad (l_1, \ldots, l_{n-s}) = (i_1, \ldots, i_s),
\]

于是，

\[
\ast (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) = s! (-1)^{s \cdot l_1 \cdots l_{n-s}} \omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \wedge \omega_{i_1} \wedge \cdots \wedge \omega_{i_s}
\]

反之，按上述定义并线性扩张为 \(\ast : C^\infty(\wedge^* T^* M) \to C^\infty(\wedge^{n-s} T^* M) \) 且

\[
\omega \wedge \tau = \left(\sum_{1 < j_1 < \cdots < j_{n-s} < n} \omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \right) \wedge \left(\sum_{1 < j_1 < \cdots < j_{n-s} < n} \tau_{j_1,\ldots,j_{n-s}} \omega_{j_1} \wedge \cdots \wedge \omega_{j_{n-s}} \right)
\]

\[
= \sum_{1 < j_1 < \cdots < j_{n-s} < n} \omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \tau_{j_1,\ldots,j_{n-s}} ((\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) \wedge (\omega_{j_1} \wedge \cdots \wedge \omega_{j_{n-s}}))
\]

\[
= s! \sum_{1 < i_1 < \cdots < i_s < n} \omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \tau_{i_1,\ldots,i_s} ((\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) \wedge ((\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) \wedge (\omega_{j_1} \wedge \cdots \wedge \omega_{j_{n-s}})) \wedge (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \wedge \omega_{j_1} \wedge \cdots \wedge \omega_{j_{n-s}}))
\]

\[
= \langle \omega, \tau \rangle dV.
\]

(2) \(\ast df = \ast \left(\sum_{i=1}^n f_i \omega_i \right) = \sum_{i=1}^n f_i \ast \omega_i \)

\[
= \sum_{i=1}^n (-1)^{i-1} f_i \omega_i \wedge \cdots \wedge \omega_{i-1} \wedge \omega_{i+1} \wedge \cdots \wedge \omega_n.
\]
(3) 因为
\[d(\mathbf{f} \cdot \mathbf{i}_{\text{grad } h}) dV = \mathbf{f} \cdot d(\mathbf{i}_{\text{grad } h} dV) + d\mathbf{f} \wedge \mathbf{i}_{\text{grad } h} dV \]
\[= f(d\mathbf{i}_{\text{grad } h}) dV + d\mathbf{f} (\text{grad } h) \cdot dV \]
\[= f \text{div grad } h \cdot dV + \langle df, dh \rangle dV = f \Delta h \cdot dV + \langle \nabla f, \nabla h \rangle dV, \]
其中
\[df(\text{grad } h) = \left(\sum_{i,j=1}^{n} g^{ij} \frac{\partial h}{\partial x^j} \frac{\partial}{\partial x^i} \right) f = \sum_{i,j=1}^{n} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial h}{\partial x^j} \]
\[= \langle \sum_{i=1}^{n} \frac{\partial f}{\partial x^i} dx^i, \sum_{j=1}^{n} \frac{\partial h}{\partial x^j} dx^j \rangle \]
\[= \langle df, dh \rangle = \langle \nabla f, \nabla h \rangle, \]
\[(d\mathbf{i}_{\text{grad } h}) dV = (d\mathbf{i}_{\text{grad } h} + i_{\text{grad } h} d) dV \]
\[= L_{\text{grad } h} dV = \text{div grad } h dV, \]
所以，由 Stokes 定理得到
\[\int_M f \Delta h dV + \int_M \langle \nabla f, \nabla h \rangle dV = \int_M d(\mathbf{f} \cdot \mathbf{i}_{\text{grad } h} dV) = \int_M \mathbf{f} \cdot d\mathbf{i}_{\text{grad } h} dV \]
和
\[\int_M (f\Delta h - h \Delta f) dV = \left[\int_M f \Delta h dV + \int_M \langle \nabla f, \nabla h \rangle dV \right] \]
\[- \left[\int_M h \Delta f dV + \int_M \langle \nabla f, \nabla h \rangle dV \right] \]
\[= \int_M (f \cdot \mathbf{i}_{\text{grad } h} - h \cdot \mathbf{i}_{\text{grad } f}) dV = \int_M \left(f \frac{\partial h}{\partial N} - h \frac{\partial f}{\partial N} \right) i_N dV, \]
其中
\[i_{\text{grad } h} dV(X_1, \cdots, X_{n-1}) = dV(\text{grad } h, X_1, \cdots, X_{n-1}) \]
\[= dV(\frac{\partial h}{\partial N}, X_1, \cdots, X_{n-1}) \]
分别于 M 和 ∂M 的局部 C∞规范正交基向量场。
(4) 由 (3) 和 ∂M = ∅，
\[\int_M f \Delta h dV + \int_M \langle \nabla f, \nabla h \rangle dV = 0. \]

(5) 因为
\[
i_{\nu} dV(e_1, \cdots, e_i, \cdots, e_n) = dV(\text{grad } f, e_1, \cdots, \hat{e}_i, \cdots, e_n)
= \langle \text{grad } f, e_i \rangle dV(e_1, \cdots, \hat{e}_i, \cdots, e_n)
= (-1)^{i-1} e_i(f) = (-1)^{i-1} df(e_i)
= * df(e_1, \cdots, \hat{e}_i, \cdots, e_n),
\]
所以
\[i_{\nu} dV = * df. \]
再由 Green 公式得到
\[\int_M \Delta f dV = \int_M i_{\nu} dV = \int_M * df. \]

注 6 可以对 C^∞ 微分形式定义 Laplace 算子 $\Delta : C^\infty(\Lambda^* T^* M) \to C^\infty(\Lambda^* T^* M)$. 满足 $\Delta \omega = 0$ 的 ω 称为调和形式。关于调和形式和 deRham 上同调群的关系有著名的 Hodge 理论，参阅 [Warner, F. W.].

§ 6 活动标架

这一节主要利用活动标架研究线性联络，Levi-Civita 联络、曲率和 C^∞ 正则子流形的局部几何。先用另一方式定义联络和协变导数。

定义 1 设 M 为 n 维 C^∞ 流形，$\xi = (E, M, \pi, GL(m, R), R^n)$，
\(\delta \) 为秩 \(m \) 的 \(C^\infty \) 向量丛。如果线性算子

\(\nabla : C^\infty (E) \to C^\infty (T^* M \otimes E) \)

满足

\[\nabla (fs) = df \otimes s + f \nabla s, \quad s \in C^\infty (E), \quad f \in C^\infty (M, \mathbb{R}) \]

则称 \(\nabla \) 为 \(E \) 或 \(\xi \) 上的线性联络，称 \(\nabla s \) 为 \(s \) 的协变导数。

由定义和 §2 引理 3(2) 的证明可知，线性联络 \(\nabla \) 为局部算子，那就是，如果 \(s \mid _U = 0 \)，则 \(\nabla s \mid _U = 0 \)。于是，\(\nabla \) 在 \(M \) 的开子集 \(U \) 上的限制 \(\nabla \mid _U = \nabla \mid _U \) 是有意义的（为方便，有时也记作 \(\nabla \)）。如果 \(E \mid _U \) 平凡，则 \(E \mid _U \) 的 \(C^\infty \) 标架场 \(\{ s_1, \ldots, s_m \} \)（即 \(s_i \in C^\infty (E \mid _U) \)，且 \(\{ s_i (x), \ldots, s_m (x) \} \) 为 \(x \in U \) 上纤维 \(E_x \) 的基）称为 \(U \) 上的 \(C^\infty \) 局部标架场。

设 \(\{ U_a \mid a \in \Gamma \} \) 为 \(M \) 的开覆盖，使得 \(E \mid _{U_a} \) 是平凡的，则 \(E \) 上的线性联络 \(\nabla \) 由 \(\{ \nabla \mid _U \mid a \in \Gamma \} \) 唯一决定。令 \(\{ s_1, \ldots, s_m \} \) 为 \(U_a \) 上的局部标架场，则存在 \(U_a \) 上的 \(C^\infty \) 实值 \(1 \) 形式的 \(m \times m \) 实矩阵 \(\omega = (\omega_{ij}) \)，使得

\[\nabla s_i = \sum_{j=1}^m \omega_{ij} \otimes s_j. \]

如果 \(\{ s_1^*, \ldots, s_m^* \} \) 为 \(U_a \) 上另一局部标架场，\(\nabla s_i^* = \sum_{j=1}^m \omega_{ij}^* s_j^* \)。设

\[s_i^* = \sum_{j=1}^m h_{ij} s_j, \quad h^{-1} = (h^{ij}) \]

为 \(h = (h_{ij}) \) 的逆矩阵。因此，\(s_i = \sum_{j=1}^m h^{ij} s_j^* \)，从

\[\sum_{j=1}^m \omega_{ij}^* \otimes s_j^* = \nabla s_i^* = \nabla \left(\sum_{j=1}^m h_{ij} s_j \right) = \sum_{j=1}^m \left[d h_{ij} \otimes s_i + h_{ij} \nabla s_j \right] \]

得到

\[= \sum_{j=1}^m \left(dh_{ij} + \sum_{k=1}^m h_{ik} \omega_{kj} \right) \otimes s_j \]

\[= \sum_{j=1}^m \left[\sum_{i=1}^m d h_{ij} h^{ij} + \sum_{i,j=1}^m h_{ik} \omega_{kj} h^{ij} \right] \otimes s_j^*, \]

\[\otimes s_j^* \]
有
$$\omega^* = (\omega \omega^{-1} + \omega^{-1} \omega) \omega^{-1}.$$

已给 M 的开复合 $\{ U_\alpha | \alpha \in \Gamma \}$ 和 U_α 上的局部标架 $\{ s_\alpha \}$. 设在 $U_\alpha \cap U_\beta$ 上，$s_\alpha = \sum_{j=1}^m (h_j^{\alpha \beta}) s_\beta$. 设 B 上的线性联络由一图 U_α 上的 $gl(m, \mathbb{R})$ 值 1 形式 ω^α 定义，使得在 $U_\alpha \cap U_\beta$ 上满足
$$\omega^\alpha = (\omega \omega_{\beta \gamma}) (\omega_{\gamma \delta})^{-1} + (\omega_{\beta \delta}) \omega^\delta (\omega_{\gamma \delta})^{-1}.$$

设 $s \in C^\infty (B), X, Y \in C^\infty (TM), f \in C^\infty (M, \mathbb{R})$. 令
$$\nabla_X s = \nabla s (X),$$
$$R(X, Y) s = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}) s.$$

从 §2 引理 1 知，线性联络 ∇ 的曲率 R 具有性质:
$$R(Y, X) = - R(X, Y),$$
$$R(fX, Y) = R(X, fY) = fR(X, Y),$$
$$R(X, Y) (f s) = fR(X, Y) s.$$

假定 $\{ s_1, \cdots, s_m \}$ 为 M 的开复合 U 上的 C^∞ 局部标架 $\nabla s_i = \sum_{j=1}^m \omega_{ij} \otimes s_j$.

则存在 C^∞ 2 重形式 Ω_{ij} 使得
$$R(s_i) = \sum_{j=1}^m \Omega_{ij} \otimes s_j.$$

从
$$\sum_{j=1}^m \Omega_{ij} (X, Y) s_j = R(s_i) (X, Y) = R(X, Y) s_i$$
$$= (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}) s_i$$
$$= \nabla_X \left(\sum_{j=1}^m \omega_{ij} (Y) s_j \right) - \nabla_Y \left(\sum_{j=1}^m \omega_{ij} (X) s_j \right)$$
$$- \sum_{j=1}^m \omega_{ij} ([X, Y]) s_j$$

- 356 -
\[\begin{align*}
&= \sum_{j=1}^{n} (X(\omega_{ij}(Y)) - Y(\omega_{ij}(X)) - \omega_{ij}([X,Y]Y)s_j \\
&\quad + \sum_{j, k=1}^{m} (\omega_{ij}(Y)\omega_{jk}(X) - \omega_{ij}(X)\omega_{jk}(Y))s_k \\
&= \sum_{j=1}^{n} \left(d\omega_{ij} - \sum_{k=1}^{m} \omega_{ik} \wedge \omega_{kj} \right)(X,Y)s_j,
\end{align*}\]

有

\[\Omega_{ij} = d\omega_{ij} - \sum_{k=1}^{m} \omega_{ik} \wedge \omega_{kj}.\]

因此，\(R \) 局部可由 \(C^2 \) 形式的 \(m \times m \) 矩阵 \(\Omega = (\Omega_{ij}) \) 定义，它正如 \(V \) 局部可由 \(C^1 \) 形式 \(\omega = (\omega_{ij}) \) 定义一样，利用矩阵记号，有

\[\Omega = d\omega - \omega \wedge \omega.\]

定义 1 如果在 \(U \) 上 \(\forall \theta = 0 \)，则称 \(E|_U \) 的 \(C^n \) 截面 \(s \) 关于 \(V \) 是平行的。

定义 2 如果曲率 \(R = 0 \)（相当于任何局部有 \(\Omega = (\Omega_{ij}) = 0 \)），则称线性联络 \(V \) 是平坦的。

定理 1 \(E \) 上的线性联络 \(V \) 是平坦的 \(\iff \) 存在局部平行的 \(C^n \) 标架场。

证明 （\(\iff \)）设 \(\{s_1, \ldots, s_m\} \) 在开集 \(U \) 中为局部平行的 \(C^n \) 标架场，则 \(\nabla s_i = 0, \nabla_X s_i = (\nabla s_i)(X) = 0, \nabla_Y \nabla_X s_i = 0 \)。如果 \(s \in C^n(E) \)，则局部有 \(s = \sum_{j=1}^{m} f_j s_j, f_j \in C^n(U, R) \)。于是，

\[R(X, Y)s = R(X, Y)\left(\sum_{j=1}^{m} f_j s_j \right) = \sum_{j=1}^{m} f_j R(X, Y)s_j = \sum_{j=1}^{m} f_j (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]})s_j = 0.\]
这就证明了 $R=0$.

或者从 $0 = \nabla s_i = \sum_{j=1}^m \omega_{i,j} \otimes s_j$ 得到 $\omega = (\omega_{i,j}) = 0$ 和 $\Omega = d\omega - \omega \wedge \omega = 0$，因而 $R=0$。

(\Leftarrow) 假定 ∇ 是平坦的，即 $R=0$ 或 $\Omega = 0$，则 ω 满足 Maurer-Cartan 方程 $d\omega = \omega \wedge \omega$。由下面的定理，局部存在一个 $GL(m, \mathbb{R})$ 值映射 $k = (k_{ij})$ 使得 $(dh)k^{-1} = \omega$。令 $h^{-1} = (h^j_i)$ 和 $s_i^* = \sum_{j=1}^m h^j_i s_j$，则

$$\nabla s_i^* = \sum_{j=1}^m \omega_{i,j} \otimes s_j$$

且

$$\omega^* = (dh)h^{-1} = \omega = -h^{-1}(dh)h^{-1} h + h^{-1}(dh)h^{-1} h = 0$$

即

$$\nabla s_i^* = 0, s_i^* \text{ 为 } C^\infty \text{ 平行标架场}.$$

注 1 如果 $k = (k_{ij}) : U \rightarrow GL(m, \mathbb{R})$ 为 C^∞ 映射且 $\omega = (dh)h^{-1}$，则 ω 为 U 上的 $gl(m, \mathbb{R})$ 值 C^∞ 一形式，且

$$\omega h = dh,$$

$$(d\omega) h - \omega \wedge dh = d^2 h = 0,$$

即满足所谓的 Maurer-Cartan 方程 $d\omega = (\omega \wedge dh)h^{-1} = \omega \wedge \omega$。

相反地，给定一个 U 上具有 $d\omega = \omega \wedge \omega$ 的 $gl(m, \mathbb{R})$ 值 C^∞ 一形式 ω，从 Frobenius 定理 (参阅 Palais, R. S. and Terng, C. L., 1.4.7 Example) 可知，给定任何 $x_0 \in U \text{ 和 } k_0 \in GL(m, \mathbb{R})$，存在 x_0 在 U 中的开邻域 $U_0 \text{ 和 } C^\infty \text{ 映射 } k = (k_{ij}) : U_0 \rightarrow GL(m, \mathbb{R})$，使得 $k(x_0) = k_0 \text{ 和 } (dh)h^{-1} = \omega$。因此，一阶微分方程组：$dh = \omega h$ 或 $(dh)h^{-1} = \omega$ 有局部解 $\iff d\omega = \omega \wedge \omega$。

定义 3 如果 ω 组成 C^∞ 流形 M 上存在整体的 C^∞ 平行标架场，则 M 上的线性联络 ∇ 称为整体平坦的。

例 1 设 $E = M \times \mathbb{R}^m$ 为平凡 C^∞ 向量丛，$s \in C^\infty(E)$，$s(x) = (x, f(x))$，定义 $\nabla s)_x = (x, df_x)$. 则截面 s 平行 $\iff df = 0 \iff f$ 为
局部常值映射，设 \(\{x, e_i\} \mid e_i = (0, \cdots, 0, 1, 0, \cdots, 0) \)，其中第 \(i \) 个坐标为 1，\(i = 1, \cdots, m \) 为 \(C^\infty \) 平行架标系，即 \(\nabla \) 为整体平的。

引理 1 令具有整体平坦的线性联络 \(\nabla \leftrightarrow E \) 为平凡 \(C^\infty \) 向量丛。

因此，如果 \(E \) 不是平凡 \(C^\infty \) 向量丛，则 \(E \) 上没有整体平坦的线性联络。

证明（\(\Rightarrow \)）因为 \(E \) 具有整体 \(C^\infty \) 平行架标系，故 \(E \) 为平凡 \(C^\infty \) 向量。

（\(\Leftarrow \)）如果 \(E \) 为平凡 \(C^\infty \) 向量丛，则 \(E \) 同构于积丛 \(M \times \mathbb{R}^n \)，由例 1，\(E \) 存在整体平坦的线性联络 \(\nabla \)。

例 2 平坦线性联络不必是整体平的。例如 \(M \) 为 Möbius 值 \([0, 1] \times \mathbb{R}/\sim\)，其中 \((0, t) \sim (1, -t)\)。则 \([0, 1] \times \mathbb{R} \) 的切丛的平凡线性联络诱导了 \(TM \) 上的平坦线性联络 \(\nabla \)，但因 \(TM \) 不是平凡向量丛（否则 \(TM \) 有整体 \(C^\infty \) 架标系，因而 \(M \) 可定向，与 \(M \) 不可定向相矛盾），故 \(\nabla \) 不是整体平的。

设 \((M, g)\) 为 \(n \) 维 \(C^\infty \) Riemann 流，\(\nabla \) 为 Riemann 联络或 Levi-Civita 联络。\(\{e_1, \cdots, e_n\} \) 为 \(M \) 的开子集 \(U \) 上的局部规范正交切标系，\(\{\omega_1, \cdots, \omega_n\} \) 为 \(U \) 中对偶于 \(\{e_1, \cdots, e_n\} \) 的 1 形式，即

\[
\omega_i(e_j) = \begin{cases} 1, & i = j; \\ 0, & i \neq j; \\
\end{cases}
\]

假定 \(\nabla e_i = \sum_{j=1}^{n} \omega_{ij} \otimes e_j \)，则

\[
\nabla \text{与} g \text{相容，即}
\]

\[
X(g(Y, Z)) = g(\nabla_X Y, Z) + g(X, \nabla_X Z)
\]

\[
\text{即} \quad 0 = \Delta g_{ij}(X) = \sum_{i=1}^{n} \omega_{ij} + g(e_i, \Delta e_j)(X)
\]

\[
= g(\nabla_{e_i} e_j, e_j) + g(e_i, \nabla_{e_j} e_j)(X)
\]

\[
= (\omega_{ij} + \omega_{ji})(X)
\]

\[
\text{• 359 •}
\]
\(\iff \omega_{ij} + \omega_{ji} = 0. \)

此外，挠张量为 0，即

\[0 = T(X, Y) = \nabla_x Y - \nabla_Y X - [X, Y] \]

\(\iff [e_i, e_j] = \nabla_i e_j - \nabla_j e_i = (\nabla e_j)(e_i) - (\nabla e_i)(e_j) \]

\[= \left(\sum_{i=1}^{n} \omega_{ji} e_i \right)(e_j) - \left(\sum_{i=1}^{n} \omega_{ij} e_i \right)(e_j) \]

\[= \sum_{i=1}^{n} \left[\omega_{ji}(e_i) - \omega_{ij}(e_j) \right] e_i. \]

于是，

\[d\omega = \sum_{k=1}^{n} \omega_{ik} \wedge \omega_k \]

\(\iff -\omega([e_i, e_j]) = e_i \omega(e_j) - e_j \omega(e_i) - \omega([e_i, e_j]) \]

\[= d\omega(e_i, e_j) \]

\[= \sum_{k=1}^{n} \omega_{ik} \wedge \omega_k(e_i, e_j) = \omega_{ii}(e_j) - \omega_{jj}(e_i) \]

\(\iff [e_i, e_j] = \sum_{i=1}^{n} \left[\omega_{ji}(e_i) - \omega_{ij}(e_j) \right] e_i. \)

\(\iff T = 0. \)

设 \([e_i, e_j] = \sum_{i=1}^{n} c_{i,j} e_i\) 和 \(\omega_{ij} = \sum_{i=1}^{n} h_{i,j} e_i\)，则

\(\omega_{ij} + \omega_{ji} = 0 \iff h_{i,j} = -h_{j,i}. \)

\[[e_i, e_j] = \sum_{i=1}^{n} \left[\omega_{ji}(e_i) - \omega_{ij}(e_j) \right] e_i \iff h_{j,i} = -h_{i,j} = c_{i,j}. \]

如果 \(c_{i,j}\) 作为已知，则 \(h_{i,j}\) 为上述线性方程组的唯一解，它容易明显地找到。那就是

\[
 h_{i,j} = \frac{1}{2} (-c_{i,j} + g_{j,i} + o_{i,j}).
\]

于是，由 \(h_{i,j}\) 依次确定 \(\omega_{ij}, \nabla e_i, \nabla\) 等价地，对任何 \(X, Y, \zeta \in \cdot 360\). \]
\[C^\infty(TM), \nabla_x Y \text{ 由方程} \]

\[
g(\nabla_x Y, Z) = \frac{1}{2} (Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) \\
- g(Y, [X, Z]) - g(X, [Y, Z]) - g(Z, [Y, X]))
\]

确定。

综合上述得到

定理 2 (Riemann 流形基本定理) 在 n 维 \(C^\infty \) Riemann 流形 \((M, g) \) 上存在唯一的线性联络 \(\nabla \) 使得 \(T = 0 \) 且 \(\nabla \) 与 \(g \) 相容 (这联络就是 Riemann 联络或 Levi-Civita 联络)。如果 \(\{e_1, \ldots, e_n\} \) 为 \(\tau M \) 的局部规范正交 \(C^\infty \) 标架场，\(\{\omega_1, \ldots, \omega_n\} \) 对偶于 \(\{e_1, \ldots, e_n\} \) 的 \(C^\infty \) 1 形式 (称为余标架场)，则 \(g \) 的 Levi-Civita 1 形式 \(\omega_{ij} \) 由以下结构方程:

\[
d\omega_i = \sum_{j=1}^n \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0
\]

唯一确定。

设 \(\omega = (\omega_{ij}) \) 为 \(g \) 的 Levi-Civita 联络 1 形式，\(\Omega = (\Omega_{ij}) \) 为 Riemann 曲率张量。\(\Omega = d\omega - \omega \wedge \omega \) 称为曲率方程。记

\[
\Omega_{ij} = -\frac{1}{2} \sum_{k, l=1}^n K_{ijkl} \omega_k \wedge \omega_l, \quad K_{ijkl} = -K_{ljik}.
\]

易见

\[
K_{ijkl} = \frac{1}{2} (K_{ijkl} - K_{ijlk}) = \frac{1}{2} \sum_{s, t=1}^n K_{ij(t}s\omega_t \wedge \omega_s(e_s, e_t)
\]

\[
= \Omega_{ij}(e_s, e_t) = g(R(e_s)(e_t), (e_s, e_t), e_t) = g(R(e_s, e_t)e_s, e_s, e_t).
\]

对 \(d\omega_i = \sum_{j=1}^n \omega_{ij} \wedge \omega_j \) 两边求外微分数，并利用 \(\Omega = d\omega - \omega \wedge \omega \) 得到
\[0 = d^2 \omega = \sum_{j=1}^{\text{n}} (d \omega_j \wedge \omega_j - \omega_j \wedge d \omega_j) = \sum_{j=1}^{\text{n}} \left(\Omega_{ij} + \sum_{l=1}^{\text{n}} \omega_{il} \wedge \omega_{lj} \right) \wedge \omega_j \\
- \sum_{j=1}^{\text{n}} \omega_{ij} \wedge d \omega_j = \sum_{j=1}^{\text{n}} \Omega_{ij} \wedge \omega_j + \sum_{j,i,l=1}^{\text{n}} \omega_{il} \wedge \omega_{lj} \wedge \omega_j - \sum_{j,i,l=1}^{\text{n}} \omega_{il} \wedge \omega_{lj} \wedge \omega_i \\
= \sum_{j=1}^{\text{n}} \Omega_{ij} \wedge \omega_j = -\frac{1}{2} \sum_{j,i,k,l=1}^{\text{n}} K_{ijk} \omega_k \wedge \omega_i \wedge \omega_j. \]

从上式立即可推出第一 Bianchi 恒等式

\[K_{ijk} + K_{ikj} + K_{jik} = 0. \]

最后，我们将研究 \(C^\infty \) 正则子流形的局部不变性，设 \(M \) 为 \(n+m \) 维 \(C^\infty \) Riemann 流形 \((\hat{M}, \hat{g}) = (\hat{M}, \langle , \rangle)\) 的 \(n \) 维 \(C^\infty \) 正则子流形，\(\nabla \) 为 \((\hat{M}, \hat{g})\) 的 Levi-Civita 联络，\(T_pM \) 为 \(T_p \hat{M} \) 中的正交补，\(TM^\perp \) 为 \(M \) 在其中的法丛，即 \(TM^\perp \mid_{T_pM} = T_pM^\perp \)。下面我们给出 \(C^\infty \) 正则子流形的三个基本局部不变量：第 I 和第 II 基本形式以及诱导联络，并导出与它们有关的方程。

设 \(N \in C^\infty(TM^\perp), A_p: T_pM \to T_pM, A_p(X) = (\nabla_X N \mid_p)^\top \) 表示线性映射，它是 \(\nabla_X N \mid_p \) 到 \(T_pM \) 的正交投影（与 §4 例 1 比较，那里的 \(N \) 为 \(C^\infty \) 单位法向量场，而这里不必是）。因

\[\nabla_X (fN) = (Xf)N + f \nabla_X N = df(X)N + f \nabla_X N, f \in C^\infty(M, \mathbb{R}), \]

而 \(df(X)N \) 为法向量，我们有

\[A_{fN}(X) = fA_N(X). \]

特别地，如果 \(N_1, N_2 \in C^\infty(TM^\perp), N_1(p) = N_2(p), \) 则对任何 \(X \in T_pM, \) 有

\[A_{N_1}(X) - A_{N_2}(X) = A_{N_1 - N_2}(X) = A_{\sum_{i=1}^{m} \langle \omega_i \rangle} \]

\[= \sum_{i=1}^{m} a^i(p) A_{\omega_i}(X) \mid_p = 0, \]

\[\bullet 362 \bullet \]
即 $A_N(X) = A_{N_0}(X)$，其中 $\{e_1, \cdots, e_m\}$ 为 TM^\perp 在 p 的某开邻域中的局部 C^∞ 基向量场。因此，对每个法向量 $N_0 \in T_p M^\perp$，对应一个 $T_p M$ 上的线性算子 A_{N_0}，称为在法方向 N_0 上的 M 的形状算子。

引理 1 形状算子 $A_{N_0} : T_p M \to T_p M$ 是自共轭的，即对任何 $u_1, u_2 \in T_p M$，有 $\bar{g}(A_{N_0}(u_1), u_2) = g(u_1, A_{N_0}(u_2))$。

证明 设 N 为 M 上定义在 p 的开邻域 U 上的 C^∞ 法向量场，使得 $N(p) = N_0$，而 X_i 为 U 上的 C^∞ 切向量场使 $X_i(p) = u_i, i = 1, 2$。则

$$\langle A_N(X_1), X_2 \rangle = \langle (\nabla_{X_1} N)^\tau, X_2 \rangle$$

$$= \langle \nabla_{X_1} N, X_2 \rangle = X_1 \langle N, X_2 \rangle - \langle N, \nabla_{X_1} X_2 \rangle$$

$$= -\langle N, \nabla_{X_1} X_2 \rangle.$$

类似地，有

$$\langle A_N(X_2), X_1 \rangle = -\langle N, \nabla_{X_2} X_1 \rangle,$$

故

$$\langle A_N(X_1), X_2 \rangle = -\langle A_N(X_2), X_1 \rangle$$

$$= -\langle N, \nabla_{X_1} X_2 \rangle + \langle N, \nabla_{X_2} X_1 \rangle = \langle N, \nabla_{X_1} X_2 - \nabla_{X_2} X_1 \rangle$$

$$= -\langle N, [X_1, X_2] \rangle = 0,$$

即

$$\langle A_N(X_1), X_2 \rangle = \langle X_1, A_N(X_2) \rangle,$$

$$\bar{g}(A_{N_0}(u_1), u_2) = \bar{g}(u_1, A_{N_0}(u_2)).$$

设 $i : M \to \overline{M}$ 为包含映射。M 的第 1 基本形式 ρ 是诱导度量 $i^* \gamma$，即 $T_x M$ 上的内积 $\gamma_x = \gamma_{x_0} |_{r_x M \times r_x M} = (i^* \gamma)_x$，$\rho(x, y) = (i^* \gamma)_x(y)(x, y) = \gamma_x(i_x y, i_x y), x, y \in T_x M$。根据 §4 定义 1 和

$$\nabla_x \gamma = \nabla x \gamma + \gamma (X, Y),$$

并利用公式

$$\langle \mathcal{L}(X, Y), N \rangle = \langle \gamma (X, Y), N \rangle = \langle \nabla x Y - \nabla x Y, N \rangle.$$
得到 Π 的第 II 基本形式 II, 它是 C^∞ 截面

$$II : M \rightarrow \bigotimes^2 (T^* M) \otimes TM^\perp, \quad x \mapsto II_x$$

其中 $\bigotimes^2 (T^* M)$ 为 \otimes 阶对称协变张量丛, $II_x (X, Y) \in T_x M^\perp$.

M 的第三个不变量是 TM^\perp 上的诱导法联络 ∇^\perp, 由 $\nabla^\perp_N = (\nabla_N)^T + (\nabla_N)^\perp = A_N (X) + \nabla^\perp_N$ 定义, 它是 ∇_N 到 TM^\perp 的正交投影. 于是, $\nabla_N = (\nabla_N)^T + (\nabla_N)^\perp = A_N (X) + \nabla^\perp_N$.

现在我们利用活动标架叙述上述三个局部不变量. 选 $(\bar{\omega}, \bar{g})$ 的一个 C^∞ 局部规范正交标架场 e_1, \ldots, e_{n+m}, 如果限制到 M, e_1, \ldots, e_n 切于 M, 即它是 $(M, I) = (M, \bar{g}^*)$ 的 C^∞ 局部规范正交标架场 $(M$ 为 C^∞ 正则子流形, 并对适当的坐标标架场作 Gram-Schmidt 正交化而得到). 下面我们规定指标变化范围:

$$1 \leq A, B, C \leq n + m; \quad 1 \leq i, j, k \leq n; \quad n + 1 \leq \alpha, \beta, \gamma \leq n + m.$$

设 $\omega_1, \ldots, \omega_{n+m}$ 为 M 上 e_1, \ldots, e_{n+m} 的对偶基, 限制到 M 有

$$\omega_{ia} = \sum_j h_{ia} \omega_j$$

定理 3

1. $I = \sum_i \omega_i \otimes \omega_i$;
2. $A_{e_ia} (e_i) = - \sum_j h_{ia} e_j$;
3. $II (e_i, e_j) = - \sum_a h_{ia} e_a$;
4. $II = - \sum_{a, i} \omega_{ia} \otimes \omega_i \otimes e_a$;
5. $\nabla^\perp e_a = \sum \omega_{ab} \otimes e_b$.

证明 (1) 因为...
$$\sum_i \omega_i \otimes \omega_i(X, Y) = \sum_i \omega_i(X) \omega_i(Y)$$

$$= \sum_i \omega_i \left(\sum_j a^i e_j \right) \omega_i \left(\sum_k b^k e_k \right) = \sum_{i, j, k} a^i b^k \delta_j^i \delta_k^i$$

$$= \sum_i a^i b^i = \left\langle \sum_i a^i e_i, \sum_j b^j e_j \right\rangle = \langle X, Y \rangle = I(X, Y).$$

故

$$1 = \sum_i \omega_i \otimes \omega_i.$$

(2) \(A_{e_i}(e_i) = \left(\tilde{\nabla}_{e_i} e_a \right)^T = \left(\tilde{\nabla} e_a \right)^T (e_i)^T$$

$$= \left(\left(\sum_j \omega_{a j} \otimes e_j \right) (e_i) \right)^T = - \left(\sum_j \omega_{a j} (e_i) e_j \right)^T$$

$$= - \sum_j \omega_{j a} (e_i) e_j = - \sum_j \left(\sum_k h_{j a k} \omega_k (e_i) \right) e_j$$

$$= - \sum_{j, k} h_{j a k} \delta_k^j e_j = - \sum_j h_{j a i} e_j.$$

(3) 因 \(\langle II, e_i, e_j \rangle = - \langle A_{e_i}(e_i), e_j \rangle$$

$$= - \left(\sum_k h_{k a i} e_k, e_j \right) = - \sum_k h_{k a i} \delta_k^j = - h_{j a i}.$$

故

$$II(e_i, e_j) = - \sum_a h_{j a i} e_a.$$

(4) 由(3)得到

$$II = - \sum_{i, j} \omega_i \otimes \omega_j \otimes \left(\sum_k h_{j a k} e_a \right)$$

$$= - \sum_{a, j} \left(\sum_i h_{j a i} \omega_i \right) \otimes \omega_j \otimes e_a = - \sum_{a, j} \omega_{j a} \otimes \omega_j \otimes e_a$$

$$= - \sum_{a, i} \omega_{i a} \otimes \omega_i \otimes e_a.$$

• 365 •
(5) \((\nabla e_a)(X) - \nabla_X e_a = (\widetilde{\nabla} X e_a)^\perp = ((\nabla e_a)(X))\perp\nabla = (\sum \omega_a \otimes e_B(X)^{\perp}) = (\sum \omega_a \otimes e_B)(X),\)

即

\[\nabla^\perp e_a = \sum \omega_a \otimes e_B,\]

设\((\bar{M}, \bar{g})\)的结构方程为

\[\bar{d} \omega_A = \sum \omega_{AB} \Lambda \omega_B, \quad \omega_{AB} + \omega_{BA} = 0,\]

曲率方程为

\[\bar{\Omega}_{AB} = \bar{d} \omega_{AB} - \sum \omega_{AC} \Lambda \omega_{CB},\]

\[= -\frac{1}{2} \sum_{c,d} K_{ABC} \omega_c \Lambda \omega_d, \quad K_{ABC} = -K_{ABC},\]

其中\(\omega_{AB}\)和\(\bar{\Omega}_{AB}\)分别为\((\bar{M}, \bar{g})\)的 Levi-Civita 联络和 Riemann 曲率张量。

限制\((\bar{M}, \bar{g})\)的结构方程到\((M, i^*\bar{g}) = (M, \bar{I})\)，得到\(\omega_{ij}\)为\((M, \bar{I})\)上的 Levi-Civita 联络 1 形式与\(\omega_{ij}\)的结构方程为（注意\(i^*\omega_a = 0\)，简记为\(\omega_a = 0\))

\[d \omega_i = \sum \omega_{ij} \Lambda \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,\]

相应于法联络，有

\[0 = d \omega_a = \sum \omega_{ai} \Lambda \omega_i, \quad \omega_{ai} + \omega_{ia} = 0.\]

限制\((\bar{M}, \bar{g})\)的曲率方程

\[\bar{\Omega}_{ij} = \bar{d} \omega_{ij} - \sum \omega_{ik} \Lambda \omega_{kj} - \sum \omega_{ia} \Lambda \omega_{aj} = \omega_{ij} - \sum \omega_{ia} \Lambda \omega_{aj},\]

\[= \sum \omega_{ia} \Lambda \omega_{aj} ,\]

(1)
到$(M, i^* \tilde{g}) = (M, i)$得到$(M, i)$的 Levi-Civita 联络$\nabla$的曲率张量$\Omega$和法联络$\nabla^1$的法曲率$\Omega^1$分别为

$$\Omega_{ij} = \sum_a \omega_{ia} \omega_{aj} \dot{\mathcal{D}}_{ij}$$

和

$$\Omega^1_{i \beta} = \sum_i \omega_{ai} \omega_{i \beta} \dot{\mathcal{D}}_{a \beta}$$

方程(1), (2)和(3)分别称为C^∞正则子流形M的 Gauss, Codazzi 和 Ricci 方程。

注2 完备、单连通空间形式(Euclid 空间，球面和双曲空间)的C^∞正则子流形M的第 I 和第 II 基本形式以及法联络(满足 Gauss, Codazzi 和 Ricci 方程)在相差一个空间形式的同尺映射下，完全确定了M. 参阅 [Palais, R.S. and Terng, C.L., Chapter 2].
参考文献

索引

一画
- 一般协变导数算子 347

三画
- 协 (全)空间 61
 - 平面 337
- 切向量 84
- 切向量场 90
- 丛 (全)空间 61

四画
- 切丛 87
- 不可定向 77, 180
 - 双曲空间 311
- 切空间 84
- 边界 49
 - ～点 210
- 内点 210
- 内积 240, 255
 - 反称化 150
- 反称积 151
- 分量 131
 - 闭形式 167

五画
- 平凡丛 63
 - 有效的 52

六画
- 协变 (余)向量 128
- 协变阶数 131
- 协变导数 273, 355
<table>
<thead>
<tr>
<th>七 画</th>
</tr>
</thead>
<tbody>
<tr>
<td>余切丛</td>
</tr>
<tr>
<td>余切向量</td>
</tr>
<tr>
<td>余切空间</td>
</tr>
<tr>
<td>运动群</td>
</tr>
<tr>
<td>形状算子</td>
</tr>
<tr>
<td>完备的 C^∞ 切向量场</td>
</tr>
<tr>
<td>坐标表</td>
</tr>
<tr>
<td>坐标变换</td>
</tr>
<tr>
<td>余标架场</td>
</tr>
<tr>
<td>体积</td>
</tr>
<tr>
<td>～元</td>
</tr>
<tr>
<td>局部 1 参数群</td>
</tr>
<tr>
<td>局部平行系</td>
</tr>
<tr>
<td>局部平行设域</td>
</tr>
<tr>
<td>局部平行映射</td>
</tr>
<tr>
<td>局部有限</td>
</tr>
<tr>
<td>局部坐标系</td>
</tr>
<tr>
<td>局部坐标设域</td>
</tr>
<tr>
<td>局部坐标映射</td>
</tr>
<tr>
<td>局部联系</td>
</tr>
</tbody>
</table>

* 372 *
<table>
<thead>
<tr>
<th>十</th>
<th>散度</th>
<th>342, 343, 347</th>
</tr>
</thead>
<tbody>
<tr>
<td>十三画</td>
<td>微分</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>～构造的基础</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>零空间</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>零性数</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>零测集</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>模积</td>
<td>151</td>
</tr>
<tr>
<td>十四画</td>
<td>截曲率</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>精致</td>
<td>36</td>
</tr>
<tr>
<td>十五画</td>
<td>整体平坦</td>
<td>358</td>
</tr>
<tr>
<td>十八画</td>
<td>覆盖</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Brouwer 不动点定理</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Brouwer 磨</td>
<td>215, 219</td>
</tr>
<tr>
<td></td>
<td>Cartan-de Rham 定理</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Codazzi-Mainardi 方程</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>C^0 (连续) 切向量场</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>C^0 漂形</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>C^k 切向量场</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>C^k 同伦</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>C^k 同伦于</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>C^k 同底</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>C^k 同底于</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>C^k 映射</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>C^k 满入</td>
<td>23</td>
</tr>
<tr>
<td>C^r</td>
<td>Gauss 曲率方程</td>
<td>324</td>
</tr>
<tr>
<td>C^r 微分同胚</td>
<td>Gauss 定理</td>
<td>332</td>
</tr>
<tr>
<td>C^r 绕面</td>
<td>Gauss 映射</td>
<td>223, 333</td>
</tr>
<tr>
<td>C^r 子流形</td>
<td>Grassmann 代数 (外代数)</td>
<td>154</td>
</tr>
<tr>
<td>C^r 可逆</td>
<td>Grassmann 积</td>
<td>151</td>
</tr>
<tr>
<td>C^r 正则子流形</td>
<td>Grassmann 流形</td>
<td>16</td>
</tr>
<tr>
<td>C^r 齐性空间</td>
<td>G 左方 C^r 作用于 M</td>
<td>52</td>
</tr>
<tr>
<td>C^r 齐性流形</td>
<td>Hessian</td>
<td>236</td>
</tr>
<tr>
<td>C^r 丛映射</td>
<td>Hopf 度数定理</td>
<td>251</td>
</tr>
<tr>
<td>C^r 丛映射复盖</td>
<td>Jacobi 映射</td>
<td>92</td>
</tr>
<tr>
<td>C^r 对偶丛</td>
<td>Jacobi 矩阵</td>
<td>93</td>
</tr>
<tr>
<td>C^r 丛等价</td>
<td>Laplace 算子</td>
<td>344, 347, 354</td>
</tr>
<tr>
<td>C^r 曲线</td>
<td>Levi-Civita 联络</td>
<td>299</td>
</tr>
<tr>
<td>C^r 纤维丛</td>
<td>Lie 代数</td>
<td>116</td>
</tr>
<tr>
<td>C^r 作用于 M</td>
<td>Lie 导数</td>
<td>113, 340</td>
</tr>
<tr>
<td>C^r 构造</td>
<td>Lie 环</td>
<td>116</td>
</tr>
<tr>
<td>C^r 变换</td>
<td>Mayer-Vietoris 序列</td>
<td>180</td>
</tr>
<tr>
<td>C^r 带边微分流形</td>
<td>$M-C^r$ 丛同态</td>
<td>71</td>
</tr>
<tr>
<td>C^r 流形</td>
<td>$M-C^r$ 丛同构</td>
<td>71</td>
</tr>
<tr>
<td>C^r 积流形</td>
<td>$M-C^r$ 丛映射</td>
<td>71</td>
</tr>
<tr>
<td>C^r 微分流形</td>
<td>$M-C^r$ 丛等价</td>
<td>71</td>
</tr>
<tr>
<td>C^r Lie 子群</td>
<td>M 的焦点</td>
<td>233</td>
</tr>
<tr>
<td>C^n 分布</td>
<td>n 阶正 (变) 交群</td>
<td>56</td>
</tr>
<tr>
<td>C^n 场张量</td>
<td>n 次复一般线性群</td>
<td>52</td>
</tr>
<tr>
<td>C^n 积分曲线 (流线)</td>
<td>n 次复一般线性群</td>
<td>52</td>
</tr>
<tr>
<td>C^n Lie 群 G 的 Lie 代数</td>
<td>n 维向量群</td>
<td>50</td>
</tr>
<tr>
<td>de Rham 上同调群</td>
<td>n 维拓扑流形</td>
<td>3</td>
</tr>
<tr>
<td>f 关于正则值 y 的 Brouwer 度</td>
<td>n 维实解析 Lie 群</td>
<td>48</td>
</tr>
<tr>
<td>f 在 A 上是 C^r 的</td>
<td>n 维带边拓扑流形</td>
<td>209</td>
</tr>
<tr>
<td>$f^{**}(f$ 在 p) 的指数</td>
<td>n 维复解析流形</td>
<td>13</td>
</tr>
<tr>
<td>Frobenius 定理</td>
<td>n 维复解析 Lie 群</td>
<td>48</td>
</tr>
<tr>
<td>Gauss 公式</td>
<td>n 维圆环群</td>
<td>50</td>
</tr>
<tr>
<td>内容</td>
<td>页码</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>n 维 C^r 带侧流形</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>n 维 C^r 群</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>n 维 C^r Lie 群</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>n 维 C^r Lie 群</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>p 的轨迹</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>p 的局部坐标系</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>p 点处的 s 外形</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Poincaré 空间</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Poincaré-Hopf 指数定理</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>弧形变长度</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Riemann 度量</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Riemann 流形</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Riemann 流形基本定理</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>Riemann 联络</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>Riemann 指数曲率</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>Riemann-Christoffel 指数张量</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>R^n 中的零测集</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>(r,s) 型张量</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>潜函数</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>(r,s) 型 C^r 张量</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>(r,s) 型 C^r 张量</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>s 阶反射单调张量</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>s 阶反射单调张量</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>s 阶 C^r (连续) 外形</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>s 阶 C^r 外形</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>s 阶 C^r 外形从</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Sard 定理</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Stokes 定理</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Thom 曲面横截性定理</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Weingarten 映射</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>Whitney 和</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Whitney 投射定理</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>z 上的纤维</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>环的 (r,s) 型的 C^r 张量</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>σ 紧</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>0 截面</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>1 参数群</td>
<td>104</td>
<td></td>
</tr>
</tbody>
</table>
第一章 微分流形

1. 微分流形
2. C^k 映射
3. 单位分解

第二章 向量丛和切丛

1. Lie 群
2. 纤维丛和向量丛
3. 切丛
4. C^∞ 切向量场和积分曲线

第三章 外微分形式和 Stokes 定理

1. 张量丛和 C^∞ 张量场
2. 外微分形式和外微分
3. C^∞ 流形的定向和 Stokes 定理

第四章 Sard 定理、Brouwer 度和 Poincaré-Hopf 指数定理

1. Sard 定理
2. Brouwer 度
3. C^∞ 切向量场的指数和 Poincaré-Hopf 指数定理

第五章 向量丛上的 Riemann 度量和线性联络

1. 向量丛上的 Riemann 度量
2. 向量丛上的线性联络
3. Levi-Civita 联络
4. Riemann 正则子流形的 Riemann 联络
5. Lie 导数 L_x、散度 div 和 Laplace 算子 Δ
6. 活动标架