SOME QUESTIONS

LIANG YU

Abstract. These are some questions I am every interested in. Your solution to any question in this draft would be welcome. I keep updating this draft.

1. Classical recursion theory

We use \mathcal{R} to denote the partial ordering of r.e. degrees and \mathcal{D}_n to denote the partial ordering of n-r.e. degrees. Yang and I proved that \mathcal{R} is not a Σ_1-substructure of \mathcal{D}_n.

Question 1.1 (Khoussainov). For $n > 1$, is there a function $f : R \rightarrow D_n$ so that for any Σ_1-formula $\varphi(x_1, \ldots, x_m)$,
\[D_1 \models \varphi(x_1, x_2, \ldots, x_m) \text{ iff } D_n \models \varphi(f(x_1), f(x_2), \ldots, f(x_m)), \]
where x_1, x_2, \ldots, x_m range over D_1?

Question 1.2. Does there exist a construction of minimal Turing degree without using perfect set forcing?

Cooper proved that for each $x \geq_T T'$, there is a minimal degree $m' = x$. Chong and I proved that for each countable set A of reals and a real x, there is a minimal cover z of A so that $z'' \geq_T x$.

Question 1.3. Is it true that for each countable set A of reals and a real x, there is a minimal cover z of A so that $z' \geq_T x$?

By a usual Skolem argument, one can show that there is a countable elementary substructure of Turing degrees. Wang and I also proved that each non-principal ideal is a Σ_1-substructure of r.e. degrees.

Question 1.4. Is there a proper Σ_1-substructure of Δ^0_2-degrees?

Note on 4 July 2006: Slaman pointed out that there does exist one. Roughly speaking, one can embed a countable partial order which satisfies Shoenfield conjecture into Δ^0_2-degrees. But the construction does not give much information about the structure of Δ^0_2-degrees.

Question 1.5. Is there a reasonable Σ_1-substructure of Δ^0_2-degrees? Furthermore, for any Π^1_1-path T through \mathcal{O}, is the set $\{a | \exists n \in T \exists A \in a(A \in \Sigma^{-1}_n)\}$ a Σ_1-substructure of Δ^0_2-degrees? Here Σ^{-1}_n is the Ershov hierarchy at the level n.

We say a real x is r.e.a some real y if x is y-r.e. set and $x >_T y$. It is easy to prove that if a real is r.e.a some real then it is Turing equivalent to a join of two 1-generic reals.

Date: 13 May, 2014.
Question 1.6. A Turing degree x is r.e.a in some degree y iff there are two 1-generic degrees g_1 and g_2 so that $x \equiv_T g_1 \oplus g_2$?

Note on June 5, 2008: Some progress has been made towarding to solving this question. Ambos-Spies, Ding, Wang and I prove that every degree computing a non-GL_2 is REA. Slaman proves that every degree computing a 2-generic is REA. Shore uniformizes both results by showing that every ANR degree is REA. So it seems that the conjecture holds for all the “natural examples”, though the question is still open.

2. Higher recursion theory

Each non-recursive degree cups a 1-generic degree above $0'$(Posner and Robinson) but there is a non-recursive degree cups no 1-random degree above $0'$(Nies).

Question 2.1. Can each non-hyperarithmetic degree cup a minimal hyper-degree above 0?

3. Randomness theory

Question 3.1. For every $Z \in 2^\omega$, is there a 1-random real $X \geq_K Z$?

Question 3.2. For 1-random reals $X,Y \in 2^\omega$, does $X \equiv_K Y$ imply $X \equiv_T Y$?

Note on 6 Oct, 2006: Frank negatively answered this question based on Nies’ results. Just considering a hyperimmune-free 1-random set X and a nonrecursive set Z which is low for K. Take $Y = X \Delta Z$. Then X and Y are Turing incomparable but K-equivalent.

Note it is known that $X \geq_K Y$ does not imply $X \geq_T Y$ although both are 1-random reals

Question 3.3. Are there maximal (1-random) K-degrees?

The questions above can also be asked for \leq_C. In addition, very little known about the relationship between \leq_K and \leq_C. One thing that is known is that $X \equiv_K Y$ does not, in general, imply $X \equiv_C Y$.

Other basic questions remain open.

Question 3.4. Does $X \leq_C Y$ imply $X \leq_K Y$?

Question 3.5. Do \leq_K and \leq_C differ for 1-random reals?

Rettingen proved that all of random d.c.e reals have the same K-degree.

Question 3.6. What’s the maximal field in which all of random reals have the same K-degree?

Note by Zorn Lemma, there must be a maximal field in which all of random reals have the same K-degree. I want to know whether there is a natural one.

A real x is said to be Kurtz random if $x \in U$ for all Σ^0_1 set U with $\mu(U) = 1$. Stephan and I prove that lowness for Kurtz random is strictly between hyperimmune-freeness and recursive tracebility.

Question 3.7. Finding out a characterization of lowness for Kurtz randomness.

\footnote{By the work of Solovay, Downey, Hirschfeldt, Nies and Stephan, there exists a non-recursive real X so that $X \equiv_K 0''$. However, Chaitin prove that if $X \equiv_C 0''$, then X is recursive. Hence $X \not\equiv_C 0''$.}
Note on June 5, 2008: Miller and Greenberg prove that every low for Kurtz randomness real is not DNR. So this question was answered.

Question 3.8. Is there a maximal sw-degree in r.e. reals? Is every r.e. random sw-degree maximal in r.e. reals?

4. **Descriptive set theory aspects of recursion theory**

Yu has constructed a non-measurable antichain using randomness theory. But some interesting questions left. Given a set $X \subseteq 2^\omega$, define $\mathcal{U}(x) = \{y | \exists x \in X (y \geq_T x)\}$.

Question 4.1 (Jockusch). Does there exist an antichain X in the Turing degrees for which $\mu(X) = 0$ and $\mu(\mathcal{U}(X)) = 1$?

Yu proved that if $\mu(\mathcal{U}(X)) = 1$ then $\mu(X) = 0$.

Note on 13 May, 2014, Chong and I gave a positive answer to the question.

Question 4.2. Is it true that for any locally countable Π^1_1 partial order $\mathcal{P} = \langle 2^\omega, \leq \mathcal{P} \rangle$, there exists a nonmeasurable antichain in \mathcal{P}?

Yu proved that for any locally countable Σ^1_1 partial order $\mathcal{P} = \langle 2^\omega, \leq \mathcal{P} \rangle$, there exists a nonmeasurable antichain in \mathcal{P}.

We say that a set $X \subseteq 2^\omega$ is a **quasi-antichain** in the Turing degrees if it satisfies the following properties:

1. $\forall x \in X \forall y (x \equiv_T y \implies y \in X)$.
2. $\forall x \in X \forall y \in X (x \not\equiv_T y \implies x \not\geq_T y)$.

It is not hard to see that there is a nonmeasurable quasi-antichain in the Turing degrees.

Question 4.3 (Jockusch). Is every maximal quasi-antichain in the Turing degrees nonmeasurable?

Note on 8 May 2006: Chong and I negatively answered this question under the assumption CH. Note on 13 May 2014: Chong and I negatively answered this question under ZFC.

Question 4.4. Is there a Σ^1_1-maximal antichain in the Turing degrees? Even is there a perfect maximal antichain in the Turing degrees?

5. **Set theory**

Terwijn asked whether it is a theorem of ZFC that there is a chain of size 2^{ω_1} in the Medvedev degrees. This problem can be reduced to a pure set theory question which is related a classical set theory problem, generalized Kurepa-trees.

Question 5.1. Is there a model of ZFC in which $2^{\aleph_2} > 2^{\aleph_1} > \aleph_2 = 2^{\aleph_0}$ and there is no a binary tree of size \aleph_2 having 2^{\aleph_2}-many branches.

Note on Aug 2011, Paul Shafer affirmly answered this question by using singular cardinality trick. A further question is whether there is a model in which all the cardinalities of those power sets are regular so that the conclusion remains true.

Wei Wang, Liuzhen Wu and I proved that under ZF, CH is independent of the statement that there is a cofinal chain in the Turing degrees.
Question 5.2. Is it true that under ZF, CH is independent of the statement that there is a cofinal maximal chain in the Turing degrees?