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» In this talk | will consider the
Gauss-Bonnet-Chern formula on some open

Riemannian manifolds.
» The question iIs as follows:

What Is the Gauss-Bonnet-Chern formula on
conformally compact four manifolds?
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» Let M be the interior of a compact manifold
with boundary. According to Penrose, a
complete metric g on M IS conformally compact If
there Is a smooth defining function p on
M=MUOM,i.e. p(OM) =0, dp# 0on oM
and p > 0 on M, such that the metric

g=p""9, (1)

extends to a smooth metric on M.
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» Let M be the interior of a compact manifold
with boundary. According to Penrose, a
complete metric g on M IS conformally compact If
there Is a smooth defining function p on

M =MUOM,ie. p(OM) =0, dp # 0on oM
and p > 0 on M, such that the metric
g=p-g, (1)
extends to a smooth metric on M.
» pis called special if |dp|; = 1 on a

neighborhood of the boundary. |
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# Under mild conditions, the
Gauss-Bonnet-Chern formula for a
conformally compact manifolds has the

following form:

1 2 1 2 1 2
— [ (W] -2 (54 12)2)d
3 -
= x(M V

o W:. Weyl tensor, z. trace-free Ricci tensor, s:
scalar curvature. |
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» Let's review briefly the history of the
Gauss-Bonnet-Chern formula.

» Gauss, 1828: For a geodesic triangle ABC' In
a surface in R?, one has

oz+ﬁ—|—7—7T:/ kds.
ABC

#» Bonnet, 1848: extended the formula to

smooth curves on surfaces.
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» (Gauss-Bonnet)Let > be a smooth closed
oriented surface in R?, then

/Z kds = 2my (%),

» Hopf, 1925: For a hypersurface M" in R"(n
even), one has

/ kdv = %VOI(S”)X(M),

where £ 1s the Gauss-Kronecker curvature. |
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» Allendoerfer and Weil(independently), 1940:
Extended the formula to submanifolds of any

co-dimensions.

» Allendoerfer and Well, 1943: For any abstract
oriented riemannian manifolds, one has

/M@ = x(M")

» Remarks: For odd n, ©® = 0; They use the
local iIsometric embedding theorem to obtain

the global formula.
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[1 Chern, 1944: "A simple intrinsic proof of the
Generalized Gauss-Bonnet theorem".

[1 Results for open manifolds:

[1 Cohn-Vossen, 1935: For complete surface
M, if dim H,(M, R) is finite, then

/M@ < x(M).

[1 Huber, 1957: Extended the above result to

general 2-manifolds. |
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[1 Walter, 1975: For complete 4-manifolds with
non-negative sectional curvature,

/M@ < x(M).

[1 Greene and Wu, 1976: The above formula
holds for 4-manifolds with positive sectional
curvature outside some compact set.

B



| Gauss-Bonnet on open manifolds

[1 Walter, 1975: For complete 4-manifolds with
non-negative sectional curvature,

/M@ < x(M).

[1 Greene and Wu, 1976: The above formula
holds for 4-manifolds with positive sectional
curvature outside some compact set.

[1 Cheeger and Gromov, 1985: They considered
complete manifolds with bounded curvature

and finite volume. |
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[1 In this case, If the manifold is of finite
topological type, then

| e =xan,

[1 Chang, Qing, Yang, 2000: For certain
complete metric on R*, one has

Qedx < 4m*x(R*Y) = 47
R4

[1 Fang, 2005: Considered a class of complete |
locally conformally flat manifolds.
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[ Let’s now return back to conformally compact
manifolds. When (M, g) is a complete
conformally compact Einstein metric with
Ric, = —(n — 1)g, then the sectional
curvatures of g necessarily approach —1
uniformly at infinity at an exponential rate, I.e,
the manifolds are asymptotically hyperbolic.
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[ Let’s now return back to conformally compact
manifolds. When (M, g) is a complete
conformally compact Einstein metric with
Ric, = —(n — 1)g, then the sectional
curvatures of g necessarily approach —1
uniformly at infinity at an exponential rate, I.e,
the manifolds are asymptotically hyperbolic.

[1 The study of this kind of manifolds has
become very active recently due to the so
called AdS/CFT correspondence In string

theory. |
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[1 Let p be a special defining function. Graham
observed that, in even dimensions,
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[1 Let p be a special defining function. Graham
observed that, in even dimensions,

/ dvol, = Coe' "+ Cye® " +. .. (odd powers)
p>€

4 Cpoe V4 0(1),

1 V is known as the renormalized volume, it
does not depend on the choice of special

defining functions.



| Gauss-Bonnet Renormalized

[1 Anderson (2001) showed that, for 4-dim
conformally compact Einstein manifolds,

1 2, O
8(271')2/]\4“/‘/’ F(QW_)QV_X(M)a

where W Is the Weyl curvature tensor.
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[1 Anderson (2001) showed that, for 4-dim
conformally compact Einstein manifolds,

1 2, O
8(271')2/]\4“4/’ | (QW)QV_X(M)a

where W Is the Weyl curvature tensor.

[1 This formula can be thought as a
Renormalized Gauss-Bonnet formula. From it
one can glso see that the renormalized

volume V' is only depend on (M, g). |
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[1 Albin (2005) then proved a Renormalized
Gauss-Bonnet formula for any even

dimensional conformally compact Einstein

manifolds:
R
/@ = x(M).

M

[1 A particular case was also obtained by
Epstein (2001) for convex cocompact
hyperbolic manifold:

Cym_m VZX(M)-—l

om/2(27)m/2 (m /2)!
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[1 Also, Chang, Qing, and Yang (2004) obtained
the following general formula:

Fm—l—l

/ Wdvol, + (—1)2 —2-V = x(M),

where W is a full contraction of the Weyl
tensor and Its covariant derivatives.

B
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[1 Also, Chang, Qing, and Yang (2004) obtained
the following general formula:

F’m—l—l

/ Wdvol, + (—1)2 —2-V = x(M),

where W is a full contraction of the Weyl
tensor and Its covariant derivatives.

[J Question 1. Both formulas are the
generalizations of the Gauss-Bonnet-Chern

formula. What's the relation between them? |
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[1 Question 2. What happens if the manifolds
are not Einstein?

[1 To our knowledge, the answer to question 1 Is
unclear up to now. We consider question 2 for
the case of dimension 4.

[1 Let M be a 4-dimensional open manifold with
a complete metric g. Suppose p IS a positive
function on M such that p? - ¢ can be extended
to a metric gon M = M UOM. S0 play = 0.

—
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1 Let K;;, K;; be the sectional curvatures on M
and M respectively. We have

[]

K;j = p *(Kij + |Vp|*)
—p ' [D?p(é;,€;) + D*plé;, €)]

[1 Assume that

i).|Vp| = 1 near OM, ii).D?*p = O(p).

—
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l.e, (M, g) is asymtotically hyperbolic. Also
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[ Then we have

Kij +1=0(p*)

l.e, (M, g) is asymtotically hyperbolic. Also
[]

Ric+3=p*- Ric+2p-Vp+p- Ap,

s+12=p*-5+6p-Ap.
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0 Let p=e", and \;, \; be the eigenvalues of
D?r and D?p respectively. We have

Ai=1—p-\

1 Since |Vp| = 1 near 9M, the integral curves

of Vp are geodesics. So along these
geodesics, we have the Ricatti equation:

H' +|A]* + Ric(Vp,Vp) = 0.

Where H is the mean curvature of OM. |
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[1 In particular, Since

Ric(4,4) +3 = p* - Ric(4,4) +p- H,

we have the following estimate
[]

1 _
Ric(4,4) + 3 = —§p3 - H"(0) + O(p")

which means Ricci along normal direction

decays at rate of order at least 3.
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Gauss-bonnet-Chern formula is to apply the

above computations to manifolds with
boundary.
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[1 The idea of proof of the renormalized
Gauss-bonnet-Chern formula is to apply the

above computations to manifolds with
boundary.

1
872

1 1
?/@DHAZ 8772/81)(76253[(0102.)\03

(\3\2 4|2[%) = x(D)~-
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0 Take D = B(r) ={logp ! <r} c M,

0D = S(r). It follows that

1 1
- W2—— 2 122
2 [V = glel + gyl 12)°

= x(B(r)) 473T2[I FIT+ I11+ O(p),
1 I .

I =volB(r) — §UOZS(T) =3P ,

1 ~
—glogp- [ H'+Cit 0<1>_|

5(0)
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1 1
[[:—/ (S+12)——/ (s 4+ 12)
6 JB(r) 6 Js0r)

— ——logp- / 27'(0) + H"(0)] + C + o(1)
3(0)

1 _ _
HJ:i/(ﬁH—mﬂ)
3 Js(r)

=5 [, O +00 |
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[] Thus we have

1
877'2 B(r)

1 1
WIE = SJaf? + (s + 12)

= x(B(r)) + Cs -log p + Cy + o(1)
This implies that the constants C5 is 0.

B
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[] Thus we have

1 1 1
(W = S l2* +

— 12
87T2 B(r) 2 24< ot )]

= x(B(r)) + Cs -log p + Cy + o(1)
This implies that the constants C5 is 0.
[1 The final formula:

1
872

1

2__ 2 |
WP =5l 5

— (s +12)%]
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0 where V is the following limit:

. 1 1
V = lim [volB(r) — §UOZS(7°) + : / (s +12)
B(r)

r—-+00

1 1 i
——/ (s+12)+—/ (02H' — 2pH)]
6 Jsr) 3 Js(r)

B
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0 where V is the following limit:

. 1 1
V = lim [volB(r) — §UOZS(7°) + : / (s +12)
B(r)

r—-+00

1 1 i i
——/ (s+12)+—/ (02H' — 2pH)]
6 Jsr) 3 Js(r)

O V is called the renormalized volume.
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| Remarks

[1 What's the meaning of the renormalized
volume V' ?

[1 Which metric g can be conformally
compactified ?

[ How about the Gauss-Bonnet-Chern formula
on higher dimensional manifolds?

[1 Acknowledgement: THANKS FOR YOUR

PATIENCE!
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